[Skip to Content]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 18.207.249.15. Please contact the publisher to request reinstatement.
[Skip to Content Landing]
1.
Wood  RA, Camargo  CA  Jr, Lieberman  P,  et al.  Anaphylaxis in America: the prevalence and characteristics of anaphylaxis in the United States.  J Allergy Clin Immunol. 2014;133(2):461-467. doi:10.1016/j.jaci.2013.08.016PubMedGoogle ScholarCrossref
2.
Grabenhenrich  LB, Dolle  S, Moneret-Vautrin  A,  et al Anaphylaxis in children and adolescents: the European Anaphylaxis Registry.  J Allergy Clin Immunol. 2016;137(4):1128.e1-1137.e1. doi:10.1016/j.jaci.2015.11.015PubMedGoogle ScholarCrossref
3.
Lieberman  P, Camargo  CA  Jr, Bohlke  K,  et al.  Epidemiology of anaphylaxis: findings of the American College of Allergy, Asthma and Immunology Epidemiology of Anaphylaxis Working Group.  Ann Allergy Asthma Immunol. 2006;97(5):596-602. doi:10.1016/S1081-1206(10)61086-1PubMedGoogle ScholarCrossref
4.
Lee  S, Hess  EP, Lohse  C, Gilani  W, Chamberlain  AM, Campbell  RL.  Trends, characteristics, and incidence of anaphylaxis in 2001-2010: a population-based study.  J Allergy Clin Immunol. 2017;139(1):182.e2-188.e2. doi:10.1016/j.jaci.2016.04.029PubMedGoogle Scholar
5.
Liew  WK, Chiang  WC, Goh  AE,  et al.  Paediatric anaphylaxis in a Singaporean children cohort: changing food allergy triggers over time.  Asia Pac Allergy. 2013;3(1):29-34. doi:10.5415/apallergy.2013.3.1.29PubMedGoogle ScholarCrossref
6.
Harduar-Morano  L, Simon  MR, Watkins  S, Blackmore  C.  A population-based epidemiologic study of emergency department visits for anaphylaxis in Florida.  J Allergy Clin Immunol. 2011;128(3):594.e1-600.e1. doi:10.1016/j.jaci.2011.04.049PubMedGoogle ScholarCrossref
7.
Decker  WW, Campbell  RL, Manivannan  V,  et al.  The etiology and incidence of anaphylaxis in Rochester, Minnesota: a report from the Rochester Epidemiology Project.  J Allergy Clin Immunol. 2008;122(6):1161-1165. doi:10.1016/j.jaci.2008.09.043PubMedGoogle ScholarCrossref
8.
Ross  MP, Ferguson  M, Street  D, Klontz  K, Schroeder  T, Luccioli  S.  Analysis of food-allergic and anaphylactic events in the National Electronic Injury Surveillance System.  J Allergy Clin Immunol. 2008;121(1):166-171. doi:10.1016/j.jaci.2007.10.012PubMedGoogle ScholarCrossref
9.
Allen  KJ, Koplin  JJ.  The epidemiology of IgE-mediated food allergy and anaphylaxis.  Immunol Allergy Clin North Am. 2012;32(1):35-50. doi:10.1016/j.iac.2011.11.008PubMedGoogle ScholarCrossref
10.
Jerschow  E, Lin  RY, Scaperotti  MM, McGinn  AP.  Fatal anaphylaxis in the United States, 1999-2010: temporal patterns and demographic associations.  J Allergy Clin Immunol. 2014;134(6):1318.e7-1328.e7. doi:10.1016/j.jaci.2014.08.018PubMedGoogle ScholarCrossref
11.
Turner  PJ, Gowland  MH, Sharma  V,  et al.  Increase in anaphylaxis-related hospitalizations but no increase in fatalities: an analysis of United Kingdom national anaphylaxis data, 1992-2012.  J Allergy Clin Immunol. 2015;135(4):956.e1-963.e1. doi:10.1016/j.jaci.2014.10.021PubMedGoogle ScholarCrossref
12.
Pumphrey  R. An epidemiological approach to reducing the risk of fatal anaphylaxis. In: Castells  M, ed.  Anaphylaxis and Hypersensitivity Reactions. Totowa, NJ: Humana Press; 2010:13-31.
13.
Ma  L, Danoff  TM, Borish  L.  Case fatality and population mortality associated with anaphylaxis in the United States.  J Allergy Clin Immunol. 2014;133(4):1075-1083. doi:10.1016/j.jaci.2013.10.029PubMedGoogle ScholarCrossref
14.
Lee  S, Sadosty  AT, Campbell  RL.  Update on biphasic anaphylaxis.  Curr Opin Allergy Clin Immunol. 2016;16(4):346-351. doi:10.1097/ACI.0000000000000279PubMedGoogle ScholarCrossref
15.
Lieberman  P.  Biphasic anaphylactic reactions.  Ann Allergy Asthma Immunol. 2005;95(3):217-226. doi:10.1016/S1081-1206(10)61217-3PubMedGoogle ScholarCrossref
16.
Stark  BJ, Sullivan  TJ.  Biphasic and protracted anaphylaxis.  J Allergy Clin Immunol. 1986;78(1):76-83. doi:10.1016/0091-6749(86)90117-XPubMedGoogle ScholarCrossref
17.
Hanna  M. Utility of steroid use in prevention of biphasic and protracted anaphylaxis.  Ann Emerg Med. 2017;70(4)(suppl):S120-S121. doi:10.1016/j.annemergmed.2017.07.377Google ScholarCrossref
18.
Penney  K, Balram  B, Trevisonno  J, Ben-Shoshan  M.  Incidence of biphasic anaphylactic reactions: a systematic review and meta-analysis.  J Allergy Clin Immunol. 2015;135(2):AB204. doi:10.1016/j.jaci.2014.12.1602Google ScholarCrossref
19.
Alqurashi  W, Stiell  I, Chan  K, Neto  G, Alsadoon  A, Wells  G.  Epidemiology and clinical predictors of biphasic reactions in children with anaphylaxis.  Ann Allergy Asthma Immunol. 2015;115(3):217.e2-223.e2. doi:10.1016/j.anai.2015.05.013PubMedGoogle ScholarCrossref
20.
Rohacek  M, Edenhofer  H, Bircher  A, Bingisser  R.  Biphasic anaphylactic reactions: occurrence and mortality.  Allergy. 2014;69(6):791-797. doi:10.1111/all.12404PubMedGoogle ScholarCrossref
21.
Alqurashi  W, Ellis  AK.  Do corticosteroids prevent biphasic anaphylaxis.  J Allergy Clin Immunol Pract. 2017;5(5):1194-1205. doi:10.1016/j.jaip.2017.05.022PubMedGoogle ScholarCrossref
22.
Michelson  KA, Monuteaux  MC, Neuman  MI.  Glucocorticoids and hospital length of stay for children with anaphylaxis: a retrospective study.  J Pediatr. 2015;167(3):719.e3-724.e3. doi:10.1016/j.jpeds.2015.05.033PubMedGoogle ScholarCrossref
23.
Oya  S, Nakamori  T, Kinoshita  H.  Incidence and characteristics of biphasic and protracted anaphylaxis: evaluation of 114 inpatients.  Acute Med Surg. 2014;1(4):228-233. doi:10.1002/ams2.48PubMedGoogle ScholarCrossref
24.
Lieberman  P, Nicklas  RA, Randolph  C,  et al.  Anaphylaxis: a practice parameter update 2015.  Ann Allergy Asthma Immunol. 2015;115(5):341-384. doi:10.1016/j.anai.2015.07.019PubMedGoogle ScholarCrossref
25.
Shaker  M, Kanaoka  T, Feenan  L, Greenhawt  M.  An economic evaluation of immediate vs non-immediate activation of emergency medical services after epinephrine use for peanut-induced anaphylaxis.  Ann Allergy Asthma Immunol. 2019;122(1):79-85. doi:10.1016/j.anai.2018.06.035PubMedGoogle ScholarCrossref
26.
Grunau  BE, Li  J, Yi  TW,  et al.  Incidence of clinically important biphasic reactions in emergency department patients with allergic reactions or anaphylaxis.  Ann Emerg Med. 2014;63(6):736.e2-744.e2. doi:10.1016/j.annemergmed.2013.10.017PubMedGoogle ScholarCrossref
27.
Kim  TH, Yoon  SH, Hong  H, Kang  HR, Cho  SH, Lee  SY.  Duration of observation for detecting a biphasic reaction in anaphylaxis: a meta-analysis.  Int Arch Allergy Immunol. 2019;179(1):31-36. doi:10.1159/000496092PubMedGoogle ScholarCrossref
28.
Blumenthal  KG, Li  Y, Banerji  A, Yun  BJ, Long  AA, Walensky  RP.  The cost of penicillin allergy evaluation.  J Allergy Clin Immunol Pract. 2018;6(3):1019.e2-1027.e2. doi:10.1016/j.jaip.2017.08.006PubMedGoogle ScholarCrossref
29.
Bureau of Labor Statistics. CPI inflation calculator. https://data.bls.gov/cgi-bin/cpicalc.pl. Accessed March 18, 2019.
30.
Bureau of Labor Statistics. Average hourly and weekly earnings of all employees on private nonfarm payrolls by industry sector, seasonally adjusted. https://www.bls.gov/news.release/empsit.t19.htm. Updated September 6, 2019. Accessed September 12, 2019.
31.
Kim  TH, Yoon  SH, Hong  H, Kang  HR, Cho  SH, Lee  SY.  Duration of observation for detecting a biphasic reaction in anaphylaxis: a meta-analysis.  Int Arch Allergy Immunol. 2019; 179(1):31-36. doi:10.1159/000496092PubMedGoogle ScholarCrossref
32.
Husereau  D, Drummond  M, Petrou  S,  et al; CHEERS Task Force.  Consolidated Health Economic Evaluation Reporting Standards (CHEERS) statement.  BMJ. 2013;346:f1049. doi:10.1136/bmj.f1049PubMedGoogle ScholarCrossref
33.
Yu  YR, Abbas  PI, Smith  CM,  et al.  Time-driven activity-based costing: a dynamic value assessment model in pediatric appendicitis.  J Pediatr Surg. 2017;52(6):1045-1049. doi:10.1016/j.jpedsurg.2017.03.032PubMedGoogle ScholarCrossref
34.
Sanders  GD, Neumann  PJ, Basu  A,  et al.  Recommendations for conduct, methodological practices, and reporting of cost-effectiveness analyses: Second Panel on Cost-Effectiveness in Health and Medicine.  JAMA. 2016;316(10):1093-1103. doi:10.1001/jama.2016.12195PubMedGoogle ScholarCrossref
35.
US Department of Transportation. Economic values used in analysis. https://www.transportation.gov/regulations/economic-values-used-in-analysis. Published December 21, 2016. Accessed May 27, 2019.
36.
Lee  S, Peterson  A, Lohse  CM, Hess  EP, Campbell  RL.  Further evaluation of factors that may predict biphasic reactions in emergency department anaphylaxis patients.  J Allergy Clin Immunol Pract. 2017;5(5):1295-1301. doi:10.1016/j.jaip.2017.07.020PubMedGoogle ScholarCrossref
37.
Brown  SG, Stone  SF, Fatovich  DM,  et al.  Anaphylaxis: clinical patterns, mediator release, and severity.  J Allergy Clin Immunol. 2013;132(5):1141.e5-1149.e5. doi:10.1016/j.jaci.2013.06.015PubMedGoogle ScholarCrossref
38.
Neumann  PJ, Cohen  JT.  QALYs in 2018: advantages and concerns.  JAMA. 2018;319(24):2473-2474. doi:10.1001/jama.2018.6072PubMedGoogle ScholarCrossref
39.
AAAAI/ACAAI Joint Task Force on Practice Parameters. What are allergy/immunology practice parameters? http://allergyparameters.org. Accessed March 30, 2019.
Limit 200 characters
Limit 25 characters
Conflicts of Interest Disclosure

Identify all potential conflicts of interest that might be relevant to your comment.

Conflicts of interest comprise financial interests, activities, and relationships within the past 3 years including but not limited to employment, affiliation, grants or funding, consultancies, honoraria or payment, speaker's bureaus, stock ownership or options, expert testimony, royalties, donation of medical equipment, or patents planned, pending, or issued.

Err on the side of full disclosure.

If you have no conflicts of interest, check "No potential conflicts of interest" in the box below. The information will be posted with your response.

Not all submitted comments are published. Please see our commenting policy for details.

Limit 140 characters
Limit 3600 characters or approximately 600 words
    Original Investigation
    Allergy
    October 23, 2019

    Simulation of Health and Economic Benefits of Extended Observation of Resolved Anaphylaxis

    Author Affiliations
    • 1Section of Allergy and Immunology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
    • 2Dartmouth Geisel School of Medicine, Hanover, New Hampshire
    • 3Nova Southeastern Allopathic Medical School, Fort Lauderdale, Florida
    • 4Division of Allergy-Clinical Immunology, Johns Hopkins University, Baltimore, Maryland
    • 5Department of Internal Medicine, UMDMJ-Rutgers New Jersey Medical School, Newark
    • 6Children’s Hospital Colorado, University of Colorado School of Medicine, Section of Allergy and Immunology, Food Challenge and Research Unit, Aurora
    JAMA Netw Open. 2019;2(10):e1913951. doi:10.1001/jamanetworkopen.2019.13951
    Key Points español 中文 (chinese)

    Question  What is the cost-effectiveness of 1 hour vs 6 to 24 hours of medical observation for biphasic anaphylaxis?

    Findings  In this economic evaluation, routine use of prolonged medical observation costs $62 374 to $230 202 per case of biphasic anaphylaxis observed, depending on the hourly costs of observation and duration of stay, with costs of prolonged observation approaching or exceeding $10 million per death prevented.

    Meaning  Routine use of 6- to 24-hour medical observation for unselected patients with resolved anaphylaxis is a low-value medical practice unless the risk of biphasic anaphylaxis is significantly pronounced.

    Abstract

    Importance  Biphasic anaphylaxis may occur in up to 20% of patients with anaphylaxis; however, the optimal observation time of patients with resolved anaphylaxis is unknown.

    Objective  To characterize the cost-effectiveness of short vs prolonged medical observation times after resolved anaphylaxis.

    Design, Setting, and Participants  An economic evaluation was performed of computer-simulated adult patients observed in outpatient allergy clinics and emergency departments, with rates of biphasic anaphylaxis derived from a 2019 meta-analysis.

    Exposures  Computer-simulated patients (10 000 per strategy) were randomized to undergo 1 hour of medical observation (associated with 95% negative predictive value of biphasic anaphylaxis) or 6 or more hours of observation (associated with a 97.3% negative predictive value of biphasic anaphylaxis).

    Main Outcomes and Measures  Cost-effectiveness of 6- to 24-hour medical observation of resolved anaphylaxis evaluated at willingness-to-pay thresholds of $10 000 per case of biphasic anaphylaxis observed and $10 million per death prevented, assuming that observation is associated with a 10- to 1000-fold reduction in the risk of death due to biphasic anaphylaxis.

    Results  Biphasic anaphylaxis occurred after hospital discharge in 365 patients observed for 1 hour and in 213 patients undergoing prolonged observation. From a health care sector perspective, with medical observation costs of $286.92 per hour, the incremental cost of extended medical observation of resolved anaphylaxis (1 hour vs 6 hours) was $62 374 per case of biphasic anaphylaxis identified ($68 411 from the societal perspective). In Monte Carlo simulations, with hourly costs ranging from $100 to $500 and extended observation ranging from 6 to 24 hours (health care sector perspective), the mean (SD) costs were $295.36 ($81.22) for 1 hour of observation vs $3540.42 ($1626.67) for extended observation. The incremental cost-effectiveness ratio was $213 439 per biphasic anaphylaxis observed ($230 202 from the societal perspective). A 6-hour observation could be cost-effective if the risk of biphasic anaphylaxis after 1-hour observation of resolved anaphylaxis was 17% or if hourly observation costs were less than $46 in the base case. Cost-effectiveness could also be achieved (willingness-to-pay of $10 million per death prevented, health care sector perspective) when a baseline fatality rate of 0.33% per biphasic anaphylactic event was assumed, with a no greater than 24% relative risk of fatality associated with 6-hour observation.

    Conclusions and Relevance  This study indicates that prolonged medical observation (6-24 hours) for resolved anaphylaxis may not be cost-effective for patients at low risk for biphasic anaphylaxis; however, in particular clinical circumstances of low observation costs, high postdischarge risk of biphasic anaphylaxis, or large incremental fatality risk reduction associated with extended observation, longer medical observation can be justified.

    ×