[Skip to Content]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 34.204.191.0. Please contact the publisher to request reinstatement.
[Skip to Content Landing]
1.
Benjafield  AV, Ayas  NT, Eastwood  PR,  et al.  Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature-based analysis.  Lancet Respir Med. 2019;7(8):687-698. doi:10.1016/S2213-2600(19)30198-5PubMedGoogle ScholarCrossref
2.
Rosenzweig  I, Glasser  M, Polsek  D, Leschziner  GD, Williams  SCR, Morrell  MJ.  Sleep apnoea and the brain: a complex relationship.  Lancet Respir Med. 2015;3(5):404-414. doi:10.1016/S2213-2600(15)00090-9PubMedGoogle ScholarCrossref
3.
Mulgrew  AT, Ryan  CF, Fleetham  JA,  et al.  The impact of obstructive sleep apnea and daytime sleepiness on work limitation.  Sleep Med. 2007;9(1):42-53. doi:10.1016/j.sleep.2007.01.009PubMedGoogle ScholarCrossref
4.
Bjornsdottir  E, Keenan  BT, Eysteinsdottir  B,  et al.  Quality of life among untreated sleep apnea patients compared with the general population and changes after treatment with positive airway pressure.  J Sleep Res. 2015;24(3):328-338. doi:10.1111/jsr.12262PubMedGoogle ScholarCrossref
5.
Gottlieb  DJ, Ellenbogen  JM, Bianchi  MT, Czeisler  CA.  Sleep deficiency and motor vehicle crash risk in the general population: a prospective cohort study.  BMC Med. 2018;16(1):44. doi:10.1186/s12916-018-1025-7PubMedGoogle ScholarCrossref
6.
Drager  LF, McEvoy  RD, Barbe  F, Lorenzi-Filho  G, Redline  S; INCOSACT Initiative (International Collaboration of Sleep Apnea Cardiovascular Trialists).  Sleep apnea and cardiovascular disease: lessons from recent trials and need for team science.  Circulation. 2017;136(19):1840-1850. doi:10.1161/CIRCULATIONAHA.117.029400PubMedGoogle ScholarCrossref
7.
Hoyos  CM, Drager  LF, Patel  SR.  OSA and cardiometabolic risk: what’s the bottom line?  Respirology. 2017;22(3):420-429. doi:10.1111/resp.12984PubMedGoogle ScholarCrossref
8.
Javaheri  S, Barbe  F, Campos-Rodriguez  F,  et al.  Sleep apnea: types, mechanisms, and clinical cardiovascular consequences.  J Am Coll Cardiol. 2017;69(7):841-858. doi:10.1016/j.jacc.2016.11.069PubMedGoogle ScholarCrossref
9.
Marin  JM, Carrizo  SJ, Vicente  E, Agusti  AGN.  Long-term cardiovascular outcomes in men with obstructive sleep apnoea-hypopnoea with or without treatment with continuous positive airway pressure: an observational study.  Lancet. 2005;365(9464):1046-1053. doi:10.1016/S0140-6736(05)71141-7PubMedGoogle ScholarCrossref
10.
Craig  SE, Kohler  M, Nicoll  D,  et al.  Continuous positive airway pressure improves sleepiness but not calculated vascular risk in patients with minimally symptomatic obstructive sleep apnoea: the MOSAIC randomised controlled trial.  Thorax. 2012;67(12):1090-1096. doi:10.1136/thoraxjnl-2012-202178PubMedGoogle ScholarCrossref
11.
Yu  J, Zhou  Z, McEvoy  RD,  et al.  Association of positive airway pressure with cardiovascular events and death in adults with sleep apnea: a systematic review and meta-analysis.  JAMA. 2017;318(2):156-166. doi:10.1001/jama.2017.7967PubMedGoogle ScholarCrossref
12.
Sia  CH, Hong  Y, Tan  LWL, van Dam  RM, Lee  CH, Tan  A.  Awareness and knowledge of obstructive sleep apnea among the general population.  Sleep Med. 2017;36:10-17. doi:10.1016/j.sleep.2017.03.030PubMedGoogle ScholarCrossref
13.
Peppard  PE, Hagen  EW.  The last 25 years of obstructive sleep apnea epidemiology—and the next 25?  Am J Respir Crit Care Med. 2018;197(3):310-312. doi:10.1164/rccm.201708-1614PPPubMedGoogle ScholarCrossref
14.
Tarraubella  N, Sánchez-de-la-Torre  M, Nadal  N,  et al.  Management of obstructive sleep apnoea in a primary care vs sleep unit setting: a randomised controlled trial.  Thorax. 2018;73(12):1152-1160. doi:10.1136/thoraxjnl-2017-211237PubMedGoogle ScholarCrossref
15.
Abrahamyan  L, Sahakyan  Y, Chung  S,  et al.  Diagnostic accuracy of level IV portable sleep monitors versus polysomnography for obstructive sleep apnea: a systematic review and meta-analysis.  Sleep Breath. 2018;22(3):593-611. doi:10.1007/s11325-017-1615-1PubMedGoogle ScholarCrossref
16.
Uddin  MB, Chow  CM, Su  SW.  Classification methods to detect sleep apnea in adults based on respiratory and oximetry signals: a systematic review.  Physiol Meas. 2018;39(3):03TR01. doi:10.1088/1361-6579/aaafb8PubMedGoogle Scholar
17.
Muto  V, Berthomier  C, Schmidt  C,  et al.  Inter- and intra-expert variability in sleep scoring: comparison between visual and automatic analysis  [abstract 0315].  Sleep. 2018;41(suppl 1):A121. doi:10.1093/sleep/zsy061.314Google ScholarCrossref
18.
Stöberl  AS, Schwarz  EI, Haile  SR,  et al.  Night-to-night variability of obstructive sleep apnea.  J Sleep Res. 2017;26(6):782-788. doi:10.1111/jsr.12558PubMedGoogle ScholarCrossref
19.
Randerath  W, Bassetti  CL, Bonsignore  MR,  et al.  Challenges and perspectives in obstructive sleep apnoea: report by an ad hoc working group of the Sleep Disordered Breathing Group of the European Respiratory Society and the European Sleep Research Society.  Eur Respir J. 2018;52(3):1702616. doi:10.1183/13993003.02616-2017PubMedGoogle Scholar
20.
Gray  EL, Barnes  DJ.  Beyond the thermistor: novel technology for the ambulatory diagnosis of obstructive sleep apnoea.  Respirology. 2017;22(3):418-419. doi:10.1111/resp.13004PubMedGoogle ScholarCrossref
21.
Obermeyer  Z, Emanuel  EJ.  Predicting the future—big data, machine learning, and clinical medicine.  N Engl J Med. 2016;375(13):1216-1219. doi:10.1056/NEJMp1606181PubMedGoogle ScholarCrossref
22.
Bragazzi  NL, Guglielmi  O, Garbarino  S.  SleepOMICS: how big data can revolutionize sleep science.  Int J Environ Res Public Health. 2019;16(2):E291. doi:10.3390/ijerph16020291PubMedGoogle Scholar
23.
Alvarez-Estevez  D, Moret-Bonillo  V.  Computer-assisted diagnosis of the sleep apnea-hypopnea syndrome: a review.  Sleep Disord. 2015;2015:237878. doi:10.1155/2015/237878PubMedGoogle Scholar
24.
Martinot  JB, Le-Dong  NN, Cuthbert  V,  et al.  Mandibular movements as accurate reporters of respiratory effort during sleep: validation against diaphragmatic electromyography.  Front Neurol. 2017;8:353. doi:10.3389/fneur.2017.00353PubMedGoogle ScholarCrossref
25.
Senny  F, Destiné  J, Poirrier  R.  Midsagittal jaw movements as a sleep/wake marker.  IEEE Trans Biomed Eng. 2009;56(2):303-309. doi:10.1109/TBME.2008.2003264PubMedGoogle ScholarCrossref
26.
Senny  F, Maury  G, Cambron  L, Leroux  A, Destiné  J, Poirrier  R.  The sleep/wake state scoring from mandible movement signal.  Sleep Breath. 2012;16(2):535-542. doi:10.1007/s11325-011-0539-4PubMedGoogle ScholarCrossref
27.
Martinot  JB, Borel  JC, Cuthbert  V,  et al.  Mandibular position and movements: suitability for diagnosis of sleep apnoea.  Respirology. 2017;22(3):567-574. doi:10.1111/resp.12929PubMedGoogle ScholarCrossref
28.
Berry  RB, Budhiraja  R, Gottlieb  DJ,  et al; American Academy of Sleep Medicine; Deliberations of the Sleep Apnea Definitions Task Force of the American Academy of Sleep Medicine.  Rules for scoring respiratory events in sleep: update of the 2007 AASM Manual for the Scoring of Sleep and Associated Events J Clin Sleep Med. 2012;8(5):597-619. doi:10.5664/jcsm.2172PubMedGoogle Scholar
29.
Berry  RB, Brooks  R, Gamaldo  C,  et al.  AASM Scoring Manual updates for 2017 (version 2.4).  J Clin Sleep Med. 2017;13(5):665-666. doi:10.5664/jcsm.6576PubMedGoogle ScholarCrossref
30.
American Academy of Sleep Medicine.  International Classification of Sleep Disorders. 3rd ed. Darien, IL: American Academy of Sleep Medicine; 2014.
31.
Sateia  MJ.  International Classification of Sleep Disorders–third edition: highlights and modifications.  Chest. 2014;146(5):1387-1394. doi:10.1378/chest.14-0970PubMedGoogle ScholarCrossref
32.
R Core Team.  R: A Language and Environment for Statistical Computing. Vienna, Austria: R Project for Statistical Computing; 2017.
33.
Bland  JM, Altman  DG.  Statistical methods for assessing agreement between two methods of clinical measurement.  Lancet. 1986;1(8476):307-310. doi:10.1016/S0140-6736(86)90837-8PubMedGoogle ScholarCrossref
34.
Carstensen  B, Simpson  J, Gurrin  LC.  Statistical models for assessing agreement in method comparison studies with replicate measurements.  Int J Biostat. 2008;4(1):16. doi:10.2202/1557-4679.1107PubMedGoogle ScholarCrossref
35.
Collop  NA, Anderson  WM, Boehlecke  B,  et al; Portable Monitoring Task Force of the American Academy of Sleep Medicine.  Clinical guidelines for the use of unattended portable monitors in the diagnosis of obstructive sleep apnea in adult patients.  J Clin Sleep Med. 2007;3(7):737-747.PubMedGoogle Scholar
36.
Bibbins-Domingo  K, Grossman  DC, Curry  SJ,  et al; US Preventive Services Task Force.  Screening for obstructive sleep apnea in adults: US Preventive Services Task Force recommendation statement.  JAMA. 2017;317(4):407-414. doi:10.1001/jama.2016.20325PubMedGoogle ScholarCrossref
37.
Collop  N.  Breathing related arousals: call them what you want, but please count them.  J Clin Sleep Med. 2014;10(2):125-126. doi:10.5664/jcsm.3434PubMedGoogle Scholar
38.
Tsai  WH, Flemons  WW, Whitelaw  WA, Remmers  JE.  A comparison of apnea-hypopnea indices derived from different definitions of hypopnea.  Am J Respir Crit Care Med. 1999;159(1):43-48. doi:10.1164/ajrccm.159.1.9709017PubMedGoogle ScholarCrossref
39.
Bianchi  MT, Goparaju  B.  Potential underestimation of sleep apnea severity by at-home kits: rescoring in-laboratory polysomnography without sleep staging.  J Clin Sleep Med. 2017;13(4):551-555. doi:10.5664/jcsm.6540PubMedGoogle ScholarCrossref
40.
Setty  AR.  Underestimation of sleep apnea with home sleep apnea testing compared to in-laboratory sleep testing.  J Clin Sleep Med. 2017;13(4):531-532. doi:10.5664/jcsm.6534PubMedGoogle ScholarCrossref
41.
Collop  NA, Tracy  SL, Kapur  V,  et al.  Obstructive sleep apnea devices for out-of-center (OOC) testing: technology evaluation.  J Clin Sleep Med. 2011;7(5):531-548. doi:10.5664/jcsm.1328PubMedGoogle Scholar
42.
Mendonça  F, Mostafa  SS, Ravelo-García  AG, Morgado-Dias  F, Penzel  T.  Devices for home detection of obstructive sleep apnea: a review.  Sleep Med Rev. 2018;41:149-160. doi:10.1016/j.smrv.2018.02.004PubMedGoogle ScholarCrossref
43.
Rétory  Y, David  P, de Picciotto  C, Niedzialkowski  P, Bonay  M, Petitjean  M.  Validity of thoracic respiratory inductive plethysmography in high body mass index subjects.  Respir Physiol Neurobiol. 2017;242:52-58. doi:10.1016/j.resp.2017.03.009PubMedGoogle ScholarCrossref
44.
Ghamari  M, Castaneda  D, Esparza  A, Soltanpur  C, Nazeran  H.  A review on wearable photoplethysmography sensors and their potential future applications in health care.  Biosens Bioelectron. 2018;4(4). doi:10.15406/ijbsbe.2018.04.00125Google Scholar
45.
Senaratna  CV, Perret  JL, Matheson  MC,  et al.  Validity of the Berlin questionnaire in detecting obstructive sleep apnea: a systematic review and meta-analysis.  Sleep Med Rev. 2017;36:116-124. doi:10.1016/j.smrv.2017.04.001PubMedGoogle ScholarCrossref
46.
Topol  EJ.  High-performance medicine: the convergence of human and artificial intelligence.  Nat Med. 2019;25(1):44-56. doi:10.1038/s41591-018-0300-7PubMedGoogle ScholarCrossref
47.
Xu  Z, Gutiérrez-Tobal  GC, Wu  Y,  et al.  Cloud algorithm–driven oximetry-based diagnosis of obstructive sleep apnoea in symptomatic habitually snoring children.  Eur Respir J. 2019;53(2):1801788. doi:10.1183/13993003.01788-2018PubMedGoogle Scholar
48.
Hornero  R, Kheirandish-Gozal  L, Gutiérrez-Tobal  GC,  et al.  Nocturnal oximetry–based evaluation of habitually snoring children.  Am J Respir Crit Care Med. 2017;196(12):1591-1598. doi:10.1164/rccm.201705-0930OCPubMedGoogle ScholarCrossref
49.
Veauthier  C, Piper  SK, Gaede  G, Penzel  T, Paul  F.  The first night effect in multiple sclerosis patients undergoing home-based polysomnography.  Nat Sci Sleep. 2018;10:337-344. doi:10.2147/NSS.S176201PubMedGoogle ScholarCrossref
Limit 200 characters
Limit 25 characters
Conflicts of Interest Disclosure

Identify all potential conflicts of interest that might be relevant to your comment.

Conflicts of interest comprise financial interests, activities, and relationships within the past 3 years including but not limited to employment, affiliation, grants or funding, consultancies, honoraria or payment, speaker's bureaus, stock ownership or options, expert testimony, royalties, donation of medical equipment, or patents planned, pending, or issued.

Err on the side of full disclosure.

If you have no conflicts of interest, check "No potential conflicts of interest" in the box below. The information will be posted with your response.

Not all submitted comments are published. Please see our commenting policy for details.

Limit 140 characters
Limit 3600 characters or approximately 600 words
    Original Investigation
    Pulmonary Medicine
    January 22, 2020

    Assessment of Mandibular Movement Monitoring With Machine Learning Analysis for the Diagnosis of Obstructive Sleep Apnea

    Author Affiliations
    • 1Pôle Thorax et Vaisseaux, Centre Hospitalier Universitaire (CHU) de Grenoble-Alpes (CHUGA), Université Grenoble Alpes, Institut National de la Santé et de la Recherche Medicale, Grenoble, France
    • 2Sunrise, Namur, Belgium
    • 3Sleep Laboratory, CHU Université Catholique de Louvain (UCL) Namur Site Sainte-Elisabeth, Namur, Belgium
    • 4Institute of Experimental and Clinical Research, UCL Bruxelles Woluwe, Brussels, Belgium
    • 5Department of Child Health, University of Missouri, Columbia
    • 6Child Health Research Institute, University of Missouri, Columbia
    JAMA Netw Open. 2020;3(1):e1919657. doi:10.1001/jamanetworkopen.2019.19657
    Key Points español 中文 (chinese)

    Question  How does the performance of an automated mandibular movement analysis for the diagnosis of obstructive sleep apnea compare with that of polysomnography?

    Findings  In this diagnostic study of 376 adults with suspected obstructive sleep apnea, the mandibular movement–derived respiratory disturbance index identified patients with a polysomnography respiratory disturbance index of at least 5 events/h or at least 15 events/h with accuracy of 0.92 and 0.88, respectively.

    Meaning  Automatic analysis of mandibular movement patterns reliably calculated respiratory disturbance index, and the use of this approach in obstructive sleep apnea diagnosis appears to be promising.

    Abstract

    Importance  Given the high prevalence of obstructive sleep apnea (OSA), there is a need for simpler and automated diagnostic approaches.

    Objective  To evaluate whether mandibular movement (MM) monitoring during sleep coupled with an automated analysis by machine learning is appropriate for OSA diagnosis.

    Design, Setting, and Participants  Diagnostic study of adults undergoing overnight in-laboratory polysomnography (PSG) as the reference method compared with simultaneous MM monitoring at a sleep clinic in an academic institution (Sleep Laboratory, Centre Hospitalier Universitaire Université Catholique de Louvain Namur Site Sainte-Elisabeth, Namur, Belgium). Patients with suspected OSA were enrolled from July 5, 2017, to October 31, 2018.

    Main Outcomes and Measures  Obstructive sleep apnea diagnosis required either evoking signs or symptoms or related medical or psychiatric comorbidities coupled with a PSG-derived respiratory disturbance index (PSG-RDI) of at least 5 events/h. A PSG-RDI of at least 15 events/h satisfied the diagnosis criteria even in the absence of associated symptoms or comorbidities. Patients who did not meet these criteria were classified as not having OSA. Agreement analysis and diagnostic performance were assessed by Bland-Altman plot comparing PSG-RDI and the Sunrise system RDI (Sr-RDI) with diagnosis threshold optimization via receiver operating characteristic curves, allowing for evaluation of the device sensitivity and specificity in detecting OSA at 5 events/h and 15 events/h.

    Results  Among 376 consecutive adults with suspected OSA, the mean (SD) age was 49.7 (13.2) years, the mean (SD) body mass index was 31.0 (7.1), and 207 (55.1%) were men. Reliable agreement was found between PSG-RDI and Sr-RDI in patients without OSA (n = 46; mean difference, 1.31; 95% CI, −1.05 to 3.66 events/h) and in patients with OSA with a PSG-RDI of at least 5 events/h with symptoms (n = 107; mean difference, −0.69; 95% CI, −3.77 to 2.38 events/h). An Sr-RDI underestimation of −11.74 (95% CI, −20.83 to −2.67) events/h in patients with OSA with a PSG-RDI of at least 15 events/h was detected and corrected by optimization of the Sunrise system diagnostic threshold. The Sr-RDI showed diagnostic capability, with areas under the receiver operating characteristic curve of 0.95 (95% CI, 0.92-0.96) and 0.93 (95% CI, 0.90-0.93) for corresponding PSG-RDIs of 5 events/h and 15 events/h, respectively. At the 2 optimal cutoffs of 7.63 events/h and 12.65 events/h, Sr-RDI had accuracy of 0.92 (95% CI, 0.90-0.94) and 0.88 (95% CI, 0.86-0.90) as well as posttest probabilities of 0.99 (95% CI, 0.99-0.99) and 0.89 (95% CI, 0.88-0.91) at PSG-RDIs of at least 5 events/h and at least 15 events/h, respectively, corresponding to positive likelihood ratios of 14.86 (95% CI, 9.86-30.12) and 5.63 (95% CI, 4.92-7.27), respectively.

    Conclusions and Relevance  Automatic analysis of MM patterns provided reliable performance in RDI calculation. The use of this index in OSA diagnosis appears to be promising.

    ×