Association of Dietary Patterns With Testicular Function in Young Danish Men | Endocrinology | JAMA Network Open | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 35.170.64.36. Please contact the publisher to request reinstatement.
1.
Levine  H, Jørgensen  N, Martino-Andrade  A,  et al.  Temporal trends in sperm count: a systematic review and meta-regression analysis.  Hum Reprod Update. 2017;23(6):646-659. doi:10.1093/humupd/dmx022PubMedGoogle ScholarCrossref
2.
Carlsen  E, Giwercman  A, Keiding  N, Skakkebaek  NE.  Evidence for decreasing quality of semen during past 50 years.  BMJ. 1992;305(6854):609-613. doi:10.1136/bmj.305.6854.609PubMedGoogle ScholarCrossref
3.
Andersson  AM, Jensen  TK, Juul  A, Petersen  JH, Jørgensen  T, Skakkebaek  NE.  Secular decline in male testosterone and sex hormone binding globulin serum levels in Danish population surveys.  J Clin Endocrinol Metab. 2007;92(12):4696-4705. doi:10.1210/jc.2006-2633PubMedGoogle ScholarCrossref
4.
Mínguez-Alarcón  L, Williams  PL, Chiu  YH,  et al; Earth Study Team.  Secular trends in semen parameters among men attending a fertility center between 2000 and 2017: identifying potential predictors.  Environ Int. 2018;121(pt 2):1297-1303. doi:10.1016/j.envint.2018.10.052PubMedGoogle ScholarCrossref
5.
USDA UDoA.  Profiling Food Consumption in America: Agriculture Fact Book 2001-2002. Washington, DC: Government Printing Office; 2003.
6.
Nassan  FL, Chavarro  JE, Tanrikut  C.  Diet and men’s fertility: does diet affect sperm quality?  Fertil Steril. 2018;110(4):570-577. doi:10.1016/j.fertnstert.2018.05.025PubMedGoogle ScholarCrossref
7.
Salas-Huetos  A, Bulló  M, Salas-Salvadó  J.  Dietary patterns, foods and nutrients in male fertility parameters and fecundability: a systematic review of observational studies.  Hum Reprod Update. 2017;23(4):371-389. doi:10.1093/humupd/dmx006PubMedGoogle ScholarCrossref
8.
Arab  A, Rafie  N, Mansourian  M, Miraghajani  M, Hajianfar  H.  Dietary patterns and semen quality: a systematic review and meta-analysis of observational studies.  Andrology. 2018;6(1):20-28. doi:10.1111/andr.12430PubMedGoogle ScholarCrossref
9.
Giahi  L, Mohammadmoradi  S, Javidan  A, Sadeghi  MR.  Nutritional modifications in male infertility: a systematic review covering 2 decades.  Nutr Rev. 2016;74(2):118-130. doi:10.1093/nutrit/nuv059PubMedGoogle ScholarCrossref
10.
Li  Y, Lin  H, Li  Y, Cao  J.  Association between socio-psycho-behavioral factors and male semen quality: systematic review and meta-analyses.  Fertil Steril. 2011;95(1):116-123. doi:10.1016/j.fertnstert.2010.06.031PubMedGoogle ScholarCrossref
11.
Liu  CY, Chou  YC, Chao  JC, Hsu  CY, Cha  TL, Tsao  CW.  The association between dietary patterns and semen quality in a general Asian population of 7282 males.  PLoS One. 2015;10(7):e0134224. doi:10.1371/journal.pone.0134224PubMedGoogle Scholar
12.
Eslamian  G, Amirjannati  N, Rashidkhani  B, Sadeghi  MR, Hekmatdoost  A.  Intake of food groups and idiopathic asthenozoospermia: a case-control study.  Hum Reprod. 2012;27(11):3328-3336. doi:10.1093/humrep/des311PubMedGoogle ScholarCrossref
13.
Vujkovic  M, de Vries  JH, Dohle  GR,  et al.  Associations between dietary patterns and semen quality in men undergoing IVF/ICSI treatment.  Hum Reprod. 2009;24(6):1304-1312. doi:10.1093/humrep/dep024PubMedGoogle ScholarCrossref
14.
Gaskins  AJ, Colaci  DS, Mendiola  J, Swan  SH, Chavarro  JE.  Dietary patterns and semen quality in young men.  Hum Reprod. 2012;27(10):2899-2907. doi:10.1093/humrep/des298PubMedGoogle ScholarCrossref
15.
Jurewicz  J, Radwan  M, Sobala  W, Radwan  P, Bochenek  M, Hanke  W.  Dietary patterns and their relationship with semen quality.  Am J Mens Health. 2018;12(3):575-583. doi:10.1177/1557988315627139PubMedGoogle ScholarCrossref
16.
Cutillas-Tolín  A, Mínguez-Alarcón  L, Mendiola  J,  et al.  Mediterranean and western dietary patterns are related to markers of testicular function among healthy men.  Hum Reprod. 2015;30(12):2945-2955. doi:10.1093/humrep/dev236PubMedGoogle Scholar
17.
Priskorn  L, Nordkap  L, Bang  AK,  et al.  Average sperm count remains unchanged despite reduction in maternal smoking: results from a large cross-sectional study with annual investigations over 21 years.  Hum Reprod. 2018;33(6):998-1008. doi:10.1093/humrep/dey090PubMedGoogle ScholarCrossref
18.
Lenz  S, Giwercman  A, Elsborg  A,  et al.  Ultrasonic testicular texture and size in 444 men from the general population: correlation to semen quality.  Eur Urol. 1993;24(2):231-238. doi:10.1159/000474300PubMedGoogle ScholarCrossref
19.
Mikkelsen  TB, Osler  M, Olsen  SF.  Validity of protein, retinol, folic acid and n-3 fatty acid intakes estimated from the food-frequency questionnaire used in the Danish National Birth Cohort.  Public Health Nutr. 2006;9(6):771-778. doi:10.1079/PHN2005883PubMedGoogle ScholarCrossref
20.
Tjønneland  A, Overvad  K, Haraldsdóttir  J, Bang  S, Ewertz  M, Jensen  OM.  Validation of a semiquantitative food frequency questionnaire developed in Denmark.  Int J Epidemiol. 1991;20(4):906-912. doi:10.1093/ije/20.4.906PubMedGoogle ScholarCrossref
21.
National Food Institute TUoD. Danish food composition databank. https://www.foodcomp.dk/v7/fcdb_search.asp. Published 2019. Accessed March 30, 2019.
22.
Hu  FB, Rimm  EB, Stampfer  MJ, Ascherio  A, Spiegelman  D, Willett  WC.  Prospective study of major dietary patterns and risk of coronary heart disease in men.  Am J Clin Nutr. 2000;72(4):912-921. doi:10.1093/ajcn/72.4.912PubMedGoogle ScholarCrossref
23.
WHO.  WHO Laboratory Manual for the Examination and Processing of Human Semen. 5th ed. Geneva, Switzerland: World Health Organization Department of Reproductive Health and Research; 2010.
24.
Jørgensen  N, Joensen  UN, Jensen  TK,  et al.  Human semen quality in the new millennium: a prospective cross-sectional population-based study of 4867 men.  BMJ Open. 2012;2(4):e000990. doi:10.1136/bmjopen-2012-000990PubMedGoogle Scholar
25.
Kruger  TF, Acosta  AA, Simmons  KF, Swanson  RJ, Matta  JF, Oehninger  S.  Predictive value of abnormal sperm morphology in in vitro fertilization.  Fertil Steril. 1988;49(1):112-117. doi:10.1016/S0015-0282(16)59660-5PubMedGoogle ScholarCrossref
26.
Jørgensen  N, Auger  J, Giwercman  A,  et al.  Semen analysis performed by different laboratory teams: an intervariation study.  Int J Androl. 1997;20(4):201-208. doi:10.1046/j.1365-2605.1997.00052.xPubMedGoogle ScholarCrossref
27.
Menkveld  R, Stander  FS, Kotze  TJ, Kruger  TF, van Zyl  JA.  The evaluation of morphological characteristics of human spermatozoa according to stricter criteria.  Hum Reprod. 1990;5(5):586-592. doi:10.1093/oxfordjournals.humrep.a137150PubMedGoogle ScholarCrossref
28.
Vermeulen  A, Verdonck  L, Kaufman  JM.  A critical evaluation of simple methods for the estimation of free testosterone in serum.  J Clin Endocrinol Metab. 1999;84(10):3666-3672. doi:10.1210/jcem.84.10.6079PubMedGoogle ScholarCrossref
29.
Damsgaard  J, Joensen  UN, Carlsen  E,  et al.  Varicocele is associated with impaired semen quality and reproductive hormone levels: a study of 7035 healthy young men from six European countries.  Eur Urol. 2016;70(6):1019-1029. doi:10.1016/j.eururo.2016.06.044PubMedGoogle ScholarCrossref
30.
Andersson  AM, Petersen  JH, Jørgensen  N, Jensen  TK, Skakkebaek  NE.  Serum inhibin B and follicle-stimulating hormone levels as tools in the evaluation of infertile men: significance of adequate reference values from proven fertile men.  J Clin Endocrinol Metab. 2004;89(6):2873-2879. doi:10.1210/jc.2003-032148PubMedGoogle ScholarCrossref
31.
Jørgensen  N, Liu  F, Andersson  AM,  et al.  Serum inhibin-B in fertile men is strongly correlated with low but not high sperm counts: a coordinated study of 1797 European and US men.  Fertil Steril. 2010;94(6):2128-2134. doi:10.1016/j.fertnstert.2009.12.051PubMedGoogle ScholarCrossref
32.
Karayiannis  D, Kontogianni  MD, Mendorou  C, Douka  L, Mastrominas  M, Yiannakouris  N.  Association between adherence to the Mediterranean diet and semen quality parameters in male partners of couples attempting fertility.  Hum Reprod. 2017;32(1):215-222. doi:10.1093/humrep/dew288PubMedGoogle Scholar
33.
Efrat  M, Stein  A, Pinkas  H, Unger  R, Birk  R.  Dietary patterns are positively associated with semen quality.  Fertil Steril. 2018;109(5):809-816. doi:10.1016/j.fertnstert.2018.01.010PubMedGoogle ScholarCrossref
34.
Oostingh  EC, Steegers-Theunissen  RP, de Vries  JH, Laven  JS, Koster  MP.  Strong adherence to a healthy dietary pattern is associated with better semen quality, especially in men with poor semen quality.  Fertil Steril. 2017;107(4):916-923.e2. doi:10.1016/j.fertnstert.2017.02.103PubMedGoogle ScholarCrossref
35.
Chavarro  JE, Furtado  J, Toth  TL,  et al.  Trans-fatty acid levels in sperm are associated with sperm concentration among men from an infertility clinic.  Fertil Steril. 2011;95(5):1794-1797. doi:10.1016/j.fertnstert.2010.10.039PubMedGoogle ScholarCrossref
36.
Salas-Huetos  A, Moraleda  R, Giardina  S,  et al.  Effect of nut consumption on semen quality and functionality in healthy men consuming a Western-style diet: a randomized controlled trial.  Am J Clin Nutr. 2018;108(5):953-962. doi:10.1093/ajcn/nqy181PubMedGoogle ScholarCrossref
37.
Safarinejad  MR.  Effect of omega-3 polyunsaturated fatty acid supplementation on semen profile and enzymatic anti-oxidant capacity of seminal plasma in infertile men with idiopathic oligoasthenoteratospermia: a double-blind, placebo-controlled, randomised study.  Andrologia. 2011;43(1):38-47. doi:10.1111/j.1439-0272.2009.01013.xPubMedGoogle ScholarCrossref
38.
Zareba  P, Colaci  DS, Afeiche  M,  et al.  Semen quality in relation to antioxidant intake in a healthy male population.  Fertil Steril. 2013;100(6):1572-1579. doi:10.1016/j.fertnstert.2013.08.032PubMedGoogle ScholarCrossref
39.
Smits  RM, Mackenzie-Proctor  R, Yazdani  A, Stankiewicz  MT, Jordan  V, Showell  MG.  Antioxidants for male subfertility.  Cochrane Database Syst Rev. 2019;3:CD007411. doi:10.1002/14651858.CD007411.pub4PubMedGoogle Scholar
40.
Chiu  YH, Afeiche  MC, Gaskins  AJ,  et al.  Sugar-sweetened beverage intake in relation to semen quality and reproductive hormone levels in young men.  Hum Reprod. 2014;29(7):1575-1584. doi:10.1093/humrep/deu102PubMedGoogle ScholarCrossref
41.
Jensen  TK, Swan  SH, Skakkebaek  NE, Rasmussen  S, Jørgensen  N.  Caffeine intake and semen quality in a population of 2554 young Danish men.  Am J Epidemiol. 2010;171(8):883-891. doi:10.1093/aje/kwq007PubMedGoogle ScholarCrossref
42.
Yang  YF, Li  TC, Li  CI,  et al.  Visit-to-visit glucose variability predicts the development of end-stage renal disease in type 2 diabetes: 10-year follow-up of Taiwan Diabetes Study.  Medicine (Baltimore). 2015;94(44):e1804. doi:10.1097/MD.0000000000001804PubMedGoogle Scholar
43.
Jørgensen  N, Joensen  UN, Toppari  J,  et al.  Compensated reduction in Leydig cell function is associated with lower semen quality variables: a study of 8182 European young men.  Hum Reprod. 2016;31(5):947-957. doi:10.1093/humrep/dew021PubMedGoogle ScholarCrossref
44.
Andersen  AG, Jensen  TK, Carlsen  E,  et al.  High frequency of sub-optimal semen quality in an unselected population of young men.  Hum Reprod. 2000;15(2):366-372. doi:10.1093/humrep/15.2.366PubMedGoogle ScholarCrossref
45.
Chiu  YH, Edifor  R, Rosner  BA,  et al; EARTH Study Team.  What does a single semen sample tell you? implications for male factor infertility research.  Am J Epidemiol. 2017;186(8):918-926. doi:10.1093/aje/kwx169PubMedGoogle ScholarCrossref
46.
Stokes-Riner  A, Thurston  SW, Brazil  C,  et al.  One semen sample or 2? insights from a study of fertile men.  J Androl. 2007;28(5):638-643. doi:10.2164/jandrol.107.002741PubMedGoogle ScholarCrossref
47.
Salvini  S, Hunter  DJ, Sampson  L,  et al.  Food-based validation of a dietary questionnaire: the effects of week-to-week variation in food consumption.  Int J Epidemiol. 1989;18(4):858-867. doi:10.1093/ije/18.4.858PubMedGoogle ScholarCrossref
48.
Feskanich  D, Rimm  EB, Giovannucci  EL,  et al.  Reproducibility and validity of food intake measurements from a semiquantitative food frequency questionnaire.  J Am Diet Assoc. 1993;93(7):790-796. doi:10.1016/0002-8223(93)91754-EPubMedGoogle ScholarCrossref
Limit 200 characters
Limit 25 characters
Conflicts of Interest Disclosure

Identify all potential conflicts of interest that might be relevant to your comment.

Conflicts of interest comprise financial interests, activities, and relationships within the past 3 years including but not limited to employment, affiliation, grants or funding, consultancies, honoraria or payment, speaker's bureaus, stock ownership or options, expert testimony, royalties, donation of medical equipment, or patents planned, pending, or issued.

Err on the side of full disclosure.

If you have no conflicts of interest, check "No potential conflicts of interest" in the box below. The information will be posted with your response.

Not all submitted comments are published. Please see our commenting policy for details.

Limit 140 characters
Limit 3600 characters or approximately 600 words
    Original Investigation
    Urology
    February 21, 2020

    Association of Dietary Patterns With Testicular Function in Young Danish Men

    Author Affiliations
    • 1Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
    • 2Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
    • 3Department of Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark
    • 4Odense Patient Data Explorative Network (OPEN), Odense, Denmark
    • 5Department of Growth and Reproduction, International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
    • 6Centre for Foetal Programming, Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
    • 7Faculty of Food Science and Nutrition, School of Health Sciences, University of Iceland, Reykjavík
    • 8Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
    • 9Channing Division of Network Medicine, Harvard Medical School and Brigham and Women’s Hospital, Boston, Massachusetts
    JAMA Netw Open. 2020;3(2):e1921610. doi:10.1001/jamanetworkopen.2019.21610
    Key Points español 中文 (chinese)

    Question  What is the association of dietary patterns with testicular function in men?

    Findings  In a cross-sectional study of 2935 young Danish men unaware of their fertility status, higher adherence to the Western diet pattern was associated with lower sperm quality than that of men with the lowest adherence. Conversely, higher adherence to the prudent diet pattern was associated with higher sperm quality.

    Meaning  These findings suggest that adherence to healthy diet patterns, a potentially modifiable lifestyle factor, is associated with better semen quality and potentially more favorable fertility potential among young men.

    Abstract

    Importance  Diet may play a role in testicular function, but data on how adherence to different diet patterns influences human testicular function are scarce.

    Objective  To determine whether adherence to specific dietary patterns is associated with testicular function in young men.

    Design, Setting, and Participants  This cross-sectional study included 2935 young Danish men unselected regarding fertility status who were enrolled from April 1, 2008, through May 31, 2017. Data were analyzed from July 1, 2017, to January 30, 2019.

    Exposures  Dietary patterns identified with principal component analysis based on responses to a validated food frequency questionnaire.

    Main Outcomes and Measures  Standard semen quality assessment; serum concentrations of testosterone, free testosterone, estradiol, inhibin B, follicle-stimulating hormone, luteinizing hormone, and sex hormone–binding globulin; and testicular volume measured with ultrasonography.

    Results  Among the 2935 participants included in the analysis, median age was 19 (interquartile range, 19-20) years and 2290 (78.0%) had normal body mass index. The 4 dietary patterns identified included Western, prudent, open-sandwich (a traditional Danish eating pattern), and vegetarianlike. The greatest adherence to the prudent pattern was associated with the highest total sperm count (median, 167 [95% CI, 146-183] million), followed by adherence to vegetarianlike (median, 151 [95% CI, 134-168] million) and open-sandwich (median, 146 [95% CI, 131-163] million) patterns. Adherence to the Western pattern was associated with the lowest total sperm count (median, 122 [95% CI, 109-138] million), which was significantly lower than sperm count in the other 3 diet patterns. After adjusting for confounders, the median total sperm count for men in the highest quintile of adherence to the Western pattern was 26 million lower (95% CI, –42 to –9 million) than for men in the lowest quintile of adherence to this pattern. Conversely, the median total sperm count of men in the highest quintile of adherence to the prudent pattern was 43 million (95% CI, 23-63 million) higher than that of men in the lowest quintile. Men with the highest adherence to the Western pattern had a lower median ratio of inhibin B to follicle-stimulating hormone (–12 [95% CI, –20 to –3]) and higher median ratio of free testosterone to luteinizing hormone (10 [95% CI, 2-19]) compared with men with lowest adherence to this pattern.

    Conclusions and Relevance  In this cross-sectional study, adherence to generally healthy diet patterns was associated with better semen quality, with potentially more favorable fertility potential among adult men.

    ×