Association Between Prenatal Exposure to Alcohol and Tobacco and Neonatal Brain Activity: Results From the Safe Passage Study | Child Development | JAMA Network Open | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 35.175.212.130. Please contact the publisher to request reinstatement.
1.
Williams  JF, Smith  VC; Committee on Substance Abuse.  Fetal alcohol spectrum disorders.   Pediatrics. 2015;136(5):e1395-e1406. doi:10.1542/peds.2015-3113PubMedGoogle Scholar
2.
Dietz  PM, England  LJ, Shapiro-Mendoza  CK, Tong  VT, Farr  SL, Callaghan  WM.  Infant morbidity and mortality attributable to prenatal smoking in the US.   Am J Prev Med. 2010;39(1):45-52. doi:10.1016/j.amepre.2010.03.009PubMedGoogle Scholar
3.
Matousek  M, Petersén  I.  Automatic evaluation of EEG background activity by means of age-dependent EEG quotients.   Electroencephalogr Clin Neurophysiol. 1973;35(6):603-612. doi:10.1016/0013-4694(73)90213-7PubMedGoogle Scholar
4.
Clarke  AR, Barry  RJ, McCarthy  R, Selikowitz  M.  Age and sex effects in the EEG: development of the normal child.   Clin Neurophysiol. 2001;112(5):806-814. doi:10.1016/S1388-2457(01)00488-6PubMedGoogle Scholar
5.
Somsen  RJM, van’t Klooster  BJ, van der Molen  MW, van Leeuwen  HM, Licht  R.  Growth spurts in brain maturation during middle childhood as indexed by EEG power spectra.   Biol Psychol. 1997;44(3):187-209. doi:10.1016/S0301-0511(96)05218-0PubMedGoogle Scholar
6.
Dustman  RE, Shearer  DE, Emmerson  RY.  Life-span changes in EEG spectral amplitude, amplitude variability and mean frequency.   Clin Neurophysiol. 1999;110(8):1399-1409. doi:10.1016/S1388-2457(99)00102-9PubMedGoogle Scholar
7.
Marshall  PJ, Bar-Haim  Y, Fox  NA.  Development of the EEG from 5 months to 4 years of age.   Clin Neurophysiol. 2002;113(8):1199-1208. doi:10.1016/S1388-2457(02)00163-3PubMedGoogle Scholar
8.
Tarokh  L, Carskadon  MA, Achermann  P.  Developmental changes in brain connectivity assessed using the sleep EEG.   Neuroscience. 2010;171(2):622-634. doi:10.1016/j.neuroscience.2010.08.071PubMedGoogle Scholar
9.
Brito  NH, Fifer  WP, Myers  MM, Elliott  AJ, Noble  KG.  Associations among family socioeconomic status, EEG power at birth, and cognitive skills during infancy.   Dev Cogn Neurosci. 2016;19:144-151. doi:10.1016/j.dcn.2016.03.004PubMedGoogle Scholar
10.
Isler  JR, Tarullo  AR, Grieve  PG,  et al.  Toward an electrocortical biomarker of cognition for newborn infants.   Dev Sci. 2012;15(2):260-271. doi:10.1111/j.1467-7687.2011.01122.xPubMedGoogle Scholar
11.
Scher  MS, Steppe  DA, Banks  DL.  Prediction of lower developmental performances of healthy neonates by neonatal EEG-sleep measures.   Pediatr Neurol. 1996;14(2):137-144. doi:10.1016/0887-8994(96)00013-6PubMedGoogle Scholar
12.
Williams  IA, Tarullo  AR, Grieve  PG,  et al.  Fetal cerebrovascular resistance and neonatal EEG predict 18-month neurodevelopmental outcome in infants with congenital heart disease.   Ultrasound Obstet Gynecol. 2012;40(3):304-309. doi:10.1002/uog.11144PubMedGoogle Scholar
13.
Bell  MA, Cuevas  K.  Using EEG to study cognitive development: issues and practices.   J Cogn Dev. 2012;13(3):281-294. doi:10.1080/15248372.2012.691143PubMedGoogle Scholar
14.
Tierney  AL, Gabard-Durnam  L, Vogel-Farley  V, Tager-Flusberg  H, Nelson  CA.  Developmental trajectories of resting EEG power: an endophenotype of autism spectrum disorder.   PLoS One. 2012;7(6):e39127. doi:10.1371/journal.pone.0039127PubMedGoogle Scholar
15.
Wang  J, Barstein  J, Ethridge  LE, Mosconi  MW, Takarae  Y, Sweeney  JA.  Resting state EEG abnormalities in autism spectrum disorders.   J Neurodev Disord. 2013;5(1):24. doi:10.1186/1866-1955-5-24PubMedGoogle Scholar
16.
Levin  AR, Varcin  KJ, O’Leary  HM, Tager-Flusberg  H, Nelson  CA.  EEG Power at 3 months in infants at high familial risk for autism.   J Neurodev Disord. 2017;9(1):34. doi:10.1186/s11689-017-9214-9PubMedGoogle Scholar
17.
Righi  G, Tierney  AL, Tager-Flusberg  H, Nelson  CA.  Functional connectivity in the first year of life in infants at risk for autism spectrum disorder: an EEG study.   PLoS One. 2014;9(8):e105176. doi:10.1371/journal.pone.0105176PubMedGoogle Scholar
18.
Orekhova  EV, Elsabbagh  M, Jones  EJ, Dawson  G, Charman  T, Johnson  MH; BASIS Team.  EEG Hyper-connectivity in high-risk infants is associated with later autism.   J Neurodev Disord. 2014;6(1):40. doi:10.1186/1866-1955-6-40PubMedGoogle Scholar
19.
Bosl  W, Tierney  A, Tager-Flusberg  H, Nelson  C.  EEG Complexity as a biomarker for autism spectrum disorder risk.   BMC Med. 2011;9:18. doi:10.1186/1741-7015-9-18PubMedGoogle Scholar
20.
Dinstein  I, Pierce  K, Eyler  L,  et al.  Disrupted neural synchronization in toddlers with autism.   Neuron. 2011;70(6):1218-1225. doi:10.1016/j.neuron.2011.04.018PubMedGoogle Scholar
21.
Gabard-Durnam  L, Tierney  AL, Vogel-Farley  V, Tager-Flusberg  H, Nelson  CA.  Alpha asymmetry in infants at risk for autism spectrum disorders.   J Autism Dev Disord. 2015;45(2):473-480. doi:10.1007/s10803-013-1926-4PubMedGoogle Scholar
22.
Gabard-Durnam  LJ, Wilkinson  C, Kapur  K, Tager-Flusberg  H, Levin  AR, Nelson  CA.  Longitudinal EEG power in the first postnatal year differentiates autism outcomes.   Nat Commun. 2019;10(1):4188. doi:10.1038/s41467-019-12202-9PubMedGoogle Scholar
23.
Havlicek  V, Childiaeva  R, Chernick  V.  EEG Frequency spectrum characteristics of sleep states in infants of alcoholic mothers.   Neuropadiatrie. 1977;8(4):360-373. doi:10.1055/s-0028-1091532PubMedGoogle Scholar
24.
Chernick  V, Childiaeva  R, Ioffe  S.  Effects of maternal alcohol intake and smoking on neonatal electroencephalogram and anthropometric measurements.   Am J Obstet Gynecol. 1983;146(1):41-47. doi:10.1016/0002-9378(83)90924-9PubMedGoogle Scholar
25.
Loffe  S, Childiaeva  R, Chernick  V.  Prolonged effects of maternal alcohol ingestion on the neonatal electroencephalogram.   Pediatrics. 1984;74(3):330-335.PubMedGoogle Scholar
26.
Cortese  BM, Krahl  SE, Berman  RF, Hannigan  JH.  Effects of prenatal ethanol exposure on hippocampal theta activity in the rat.   Alcohol. 1997;14(3):231-235. doi:10.1016/S0741-8329(96)00147-4PubMedGoogle Scholar
27.
Stephen  JM, Flynn  L, Kabella  D,  et al.  Hypersynchrony in MEG spectral amplitude in prospectively-identified 6-month-old infants prenatally exposed to alcohol.   Neuroimage Clin. 2017;17:826-834. doi:10.1016/j.nicl.2017.12.012PubMedGoogle Scholar
28.
King  E, Campbell  A, Belger  A, Grewen  K.  Prenatal nicotine exposure disrupts infant neural markers of orienting.   Nicotine Tob Res. 2018;20(7):897-902. doi:10.1093/ntr/ntx177PubMedGoogle Scholar
29.
Frank  MG, Srere  H, Ledezma  C, O’Hara  B, Heller  HC.  Prenatal nicotine alters vigilance states and AchR gene expression in the neonatal rat: implications for SIDS.   Am J Physiol Regul Integr Comp Physiol. 2001;280(4):R1134-R1140. doi:10.1152/ajpregu.2001.280.4.R1134PubMedGoogle Scholar
30.
Bhattacharya  D, Majrashi  M, Ramesh  S,  et al.  Assessment of the cerebellar neurotoxic effects of nicotine in prenatal alcohol exposure in rats.   Life Sci. 2018;194:177-184. doi:10.1016/j.lfs.2017.12.010PubMedGoogle Scholar
31.
Dukes  KA, Burd  L, Elliott  AJ,  et al; PASS Research Network.  The Safe Passage Study: design, methods, recruitment, and follow-up approach.   Paediatr Perinat Epidemiol. 2014;28(5):455-465. doi:10.1111/ppe.12136PubMedGoogle Scholar
32.
Dukes  K, Tripp  T, Petersen  J,  et al; PASS Network.  A modified Timeline Followback assessment to capture alcohol exposure in pregnant women: application in the Safe Passage Study.   Alcohol. 2017;62:17-27. doi:10.1016/j.alcohol.2017.02.174PubMedGoogle Scholar
33.
Himes  SK, Dukes  KA, Tripp  T,  et al; Prenatal Alcohol in SIDS and Stillbirth (PASS) Network.  Clinical sensitivity and specificity of meconium fatty acid ethyl ester, ethyl glucuronide, and ethyl sulfate for detecting maternal drinking during pregnancy.   Clin Chem. 2015;61(3):523-532. doi:10.1373/clinchem.2014.233718PubMedGoogle Scholar
34.
Dukes  K, Tripp  T, Willinger  M,  et al; PASS Network.  Drinking and smoking patterns during pregnancy: development of group-based trajectories in the Safe Passage Study.   Alcohol. 2017;62:49-60. doi:10.1016/j.alcohol.2017.03.001PubMedGoogle Scholar
35.
Brito  NH, Elliott  AJ, Isler  JR,  et al.  Neonatal EEG linked to individual differences in socioemotional outcomes and autism risk in toddlers.   Dev Psychobiol. 2019;61(8):1110-1119. doi:10.1002/dev.21870PubMedGoogle Scholar
36.
Elliott  P, Hawthorne  G.  Imputing missing repeated measures data: how should we proceed?   Aust N Z J Psychiatry. 2005;39(7):575-582. doi:10.1080/j.1440-1614.2005.01629.xPubMedGoogle Scholar
37.
Cover  TM, Hart  PE.  Nearest neighbor pattern classification.   IEEE Trans Inf Theory. 1967;13(1):21-27. doi:10.1109/TIT.1967.1053964Google Scholar
38.
Pini  N, Myers  MM, Elliott  AJ,  et al.  Cluster analysis of alcohol consumption during pregnancy in the Safe Passage Study.   Conf Proc IEEE Eng Med Biol Soc. 2019;2019:1338-1341. doi:10.1109/EMBC.2019.8857428PubMedGoogle Scholar
39.
Benjamini  Y, Hochberg  Y.  Controlling the false discovery rate: a practical and powerful approach to multiple testing.   J Royal Stat Soc B. 1995;57(1):289-300. doi:10.1111/j.2517-6161.1995.tb02031.xGoogle Scholar
40.
Kichko  TI, Lennerz  J, Eberhardt  M,  et al.  Bimodal concentration-response of nicotine involves the nicotinic acetylcholine receptor, transient receptor potential vanilloid type 1, and transient receptor potential ankyrin 1 channels in mouse trachea and sensory neurons.   J Pharmacol Exp Ther. 2013;347(2):529-539. doi:10.1124/jpet.113.205971PubMedGoogle Scholar
41.
Kim  BS, Kim  SJ, Kim  HJ,  et al.  Effects of nicotine on proliferation and osteoblast differentiation in human alveolar bone marrow-derived mesenchymal stem cells.   Life Sci. 2012;90(3-4):109-115. doi:10.1016/j.lfs.2011.10.019PubMedGoogle Scholar
42.
File  SE, Kenny  PJ, Ouagazzal  AM.  Bimodal modulation by nicotine of anxiety in the social interaction test: role of the dorsal hippocampus.   Behav Neurosci. 1998;112(6):1423-1429. doi:10.1037/0735-7044.112.6.1423PubMedGoogle Scholar
43.
Tucci  SA, Genn  RF, File  SE.  Methyllycaconitine (MLA) blocks the nicotine evoked anxiogenic effect and 5-HT release in the dorsal hippocampus: possible role of alpha7 receptors.   Neuropharmacology. 2003;44(3):367-373. doi:10.1016/S0028-3908(02)00391-XPubMedGoogle Scholar
44.
Roy  TS, Sabherwal  U.  Effects of gestational nicotine exposure on hippocampal morphology.   Neurotoxicol Teratol. 1998;20(4):465-473. doi:10.1016/S0892-0362(97)00137-2PubMedGoogle Scholar
45.
Blood-Siegfried  J, Rende  EK.  The long-term effects of prenatal nicotine exposure on neurologic development.   J Midwifery Womens Health. 2010;55(2):143-152. doi:10.1016/j.jmwh.2009.05.006PubMedGoogle Scholar
46.
Dwyer  JB, Broide  RS, Leslie  FM.  Nicotine and brain development.   Birth Defects Res C Embryo Today. 2008;84(1):30-44. doi:10.1002/bdrc.20118PubMedGoogle Scholar
47.
Quigley  ME, Sheehan  KL, Wilkes  MM, Yen  SS.  Effects of maternal smoking on circulating catecholamine levels and fetal heart rates.   Am J Obstet Gynecol. 1979;133(6):685-690. doi:10.1016/0002-9378(79)90019-XPubMedGoogle Scholar
48.
Longo  LD.  Carbon monoxide: effects on oxygenation of the fetus in utero.   Science. 1976;194(4264):523-525. doi:10.1126/science.973133PubMedGoogle Scholar
49.
Larsen  ZH, Chander  P, Joyner  JA, Floruta  CM, Demeter  TL, Weick  JP.  Effects of ethanol on cellular composition and network excitability of human pluripotent stem cell-derived neurons.   Alcohol Clin Exp Res. 2016;40(11):2339-2350. doi:10.1111/acer.13218PubMedGoogle Scholar
50.
Krawczyk  M, Ramani  M, Dian  J,  et al.  Hippocampal hyperexcitability in fetal alcohol spectrum disorder: pathological sharp waves and excitatory/inhibitory synaptic imbalance.   Exp Neurol. 2016;280:70-79. doi:10.1016/j.expneurol.2016.03.013PubMedGoogle Scholar
51.
Falgreen Eriksen  HL, Mortensen  EL, Kilburn  T,  et al.  The effects of low to moderate prenatal alcohol exposure in early pregnancy on IQ in 5-year-old children.   BJOG. 2012;119(10):1191-1200. doi:10.1111/j.1471-0528.2012.03394.xPubMedGoogle Scholar
52.
Hutchinson  D, Youssef  GJ, McCormack  C,  et al.  Prenatal alcohol exposure and infant gross motor development: a prospective cohort study.   BMC Pediatr. 2019;19(1):149. doi:10.1186/s12887-019-1516-5PubMedGoogle Scholar
53.
McCormack  C, Hutchinson  D, Burns  L,  et al.  Maternal and partner prenatal alcohol use and infant cognitive development.   Drug Alcohol Depend. 2018;185:330-338. doi:10.1016/j.drugalcdep.2017.12.038PubMedGoogle Scholar
54.
Montag  AC.  Fetal alcohol-spectrum disorders: identifying at-risk mothers.   Int J Womens Health. 2016;8:311-323. doi:10.2147/IJWH.S85403PubMedGoogle Scholar
Limit 200 characters
Limit 25 characters
Conflicts of Interest Disclosure

Identify all potential conflicts of interest that might be relevant to your comment.

Conflicts of interest comprise financial interests, activities, and relationships within the past 3 years including but not limited to employment, affiliation, grants or funding, consultancies, honoraria or payment, speaker's bureaus, stock ownership or options, expert testimony, royalties, donation of medical equipment, or patents planned, pending, or issued.

Err on the side of full disclosure.

If you have no conflicts of interest, check "No potential conflicts of interest" in the box below. The information will be posted with your response.

Not all submitted comments are published. Please see our commenting policy for details.

Limit 140 characters
Limit 3600 characters or approximately 600 words
    Original Investigation
    Pediatrics
    May 12, 2020

    Association Between Prenatal Exposure to Alcohol and Tobacco and Neonatal Brain Activity: Results From the Safe Passage Study

    Author Affiliations
    • 1Department of Psychiatry, Columbia University Irving Medical Center, New York, New York
    • 2Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, New York
    • 3Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
    • 4Department of Obstetrics and Gynaecology, Faculty of Medicine and Health Science, Stellenbosch University, Cape Town, Western Cape, South Africa
    • 5Center for Pediatric & Community Research, Avera Research Institute, Sioux Falls, South Dakota
    • 6Department of Pediatrics, University of South Dakota School of Medicine, Sioux Falls
    • 7Department of Pediatrics, University of North Dakota Medical School, Grand Forks
    JAMA Netw Open. 2020;3(5):e204714. doi:10.1001/jamanetworkopen.2020.4714
    Key Points español 中文 (chinese)

    Question  Are prenatal alcohol exposure (PAE) and prenatal tobacco exposure (PTE) associated with brain activity in newborns during natural sleep?

    Findings  In this cohort study of 1739 mother-newborn dyads, patterns of PAE and PTE were associated with neonatal electroencephalography power. PAE was associated with increased low-frequency brain activity at temporal electrode sites, whereas moderate or high continuous PTE was associated with decreased high-frequency brain activity at central electrode sites.

    Meaning  The findings suggest that any level of PAE or PTE is associated with newborn brain development, reaffirming the public health message that research has not yet determined a safe level of alcohol or tobacco use during pregnancy.

    Abstract

    Importance  Research to date has not determined a safe level of alcohol or tobacco use during pregnancy. Electroencephalography (EEG) is a noninvasive measure of cortical function that has previously been used to examine effects of in utero exposures and associations with neurodevelopment.

    Objective  To examine the association of prenatal exposure to alcohol (PAE) and tobacco smoking (PTE) with brain activity in newborns.

    Design, Setting, and Participants  This prospective cohort study enrolled mother-newborn dyads from December 2011 through August 2015, with data analyzed from June 2018 through June 2019. Pregnant women were recruited from clinical sites in Cape Town, South Africa, and the Northern Plains region of the US. Participants were a subset of newborns enrolled in the Safe Passage Study. Exclusions included birth at less than 37 or more than 41 weeks’ gestation, multiple birth, or maternal use of psychiatric medication during pregnancy.

    Exposures  PAE and PTE groups were determined by cluster analysis.

    Main Outcomes and Measures  Analyses of covariance were run on EEG spectral power at 12 scalp locations across the frequency spectrum from 1 to 45 Hz in 3-Hz bins by sleep state.

    Results  The final sample consisted of 1739 newborns (median [interquartile range] gestational age at birth, 39.29 [1.57] weeks; 886 [50.9%] were female; median [interquartile range] newborn age at assessment, 48.53 [44.96] hours). Newborns whose mothers were in the low continuous (95% CI, −0.379 to −0.031; P < .05; 95% CI, −0.379 to −0.045; P < .05), quit (95% CI, −0.419 to −0.127; P < .001; 95% CI, −0.398 to −0.106; P < .005), and moderate or high continuous (95% CI, −0.430 to −0.124; P < .001; 95% CI, −0.420 to −0.119; P < .005) PAE clusters had increased 4- to 6-Hz and 7- to 9-Hz left-temporal EEG power. Newborns with moderate or high continuous PTE had decreased 19- to 21-Hz (95% CI, 0.034 to 0.327; P < .05) and 22- to 24-Hz (95% CI, 0.022 to 0.316; P < .05) right-central EEG compared with newborns with no PTE. Newborns with moderate or high continuous PTE had significantly decreased 22- to 36-Hz right-central EEG power compared with the quit smoking group (22-24 Hz, 95% CI, 0.001 to 0.579; P < .05; 25-27 Hz, 95% CI, 0.008 to 0.586; P < .05; 28-30 Hz, 95% CI, 0.028 to 0.607; P < .05; 31-33 Hz, 95% CI, 0.038 to 0.617; P < .05; 34-36 Hz, 95% CI, 0.057 to 0.636; P < .05).

    Conclusions and Relevance  These findings suggest that even low levels of PAE or PTE are associated with changes in offspring brain development.

    ×