[Skip to Content]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 34.239.167.74. Please contact the publisher to request reinstatement.
[Skip to Content Landing]
1.
Link  BG, Phelan  J.  Social conditions as fundamental causes of disease.   J Health Soc Behav. 1995;(Spec No):80-94. doi:10.2307/2626958PubMedGoogle Scholar
2.
Phelan  JC, Link  BG, Tehranifar  P.  Social conditions as fundamental causes of health inequalities: theory, evidence, and policy implications.   J Health Soc Behav. 2010;51(suppl):S28-S40. doi:10.1177/0022146510383498PubMedGoogle ScholarCrossref
3.
Office of Disease Prevention and Health Promotion. Healthy People 2020: Social Determinants of Health. Updated May 7, 2020. Accessed September 30, 2019. https://www.healthypeople.gov/2020/topics-objectives/topic/social-determinants-of-health
4.
Anderson  NB.  Levels of analysis in health science. A framework for integrating sociobehavioral and biomedical research.   Ann N Y Acad Sci. 1998;840:563-576. doi:10.1111/j.1749-6632.1998.tb09595.xPubMedGoogle ScholarCrossref
5.
Frieden  TR.  A framework for public health action: the health impact pyramid.   Am J Public Health. 2010;100(4):590-595. doi:10.2105/AJPH.2009.185652PubMedGoogle ScholarCrossref
6.
Hill  CV, Pérez-Stable  EJ, Anderson  NA, Bernard  MA.  The National Institute on Aging Health Disparities Research Framework.   Ethn Dis. 2015;25(3):245-254. doi:10.18865/ed.25.3.245PubMedGoogle ScholarCrossref
7.
Kind  AJH, Buckingham  WR.  Making neighborhood-disadvantage metrics accessible—The Neighborhood Atlas.   N Engl J Med. 2018;378(26):2456-2458. doi:10.1056/NEJMp1802313PubMedGoogle ScholarCrossref
8.
University of Wisconsin School of Medicine and Public Health, Department of Medicine. Neighborhood Atlas. Accessed September 30, 2019. https://www.neighborhoodatlas.medicine.wisc.edu/
9.
National Institute on Aging. Health Disparities Framework. Accessed May 10, 2019. https://www.nia.nih.gov/research/osp/framework
10.
Alzheimer’s Association.  2019 Alzheimer’s disease facts and figures.   Alzheimers Dement. 2019;15(3):321-387. doi:10.1016/j.jalz.2019.01.010Google ScholarCrossref
11.
Barnes  LL, Bennett  DA.  Alzheimer’s disease in African Americans: risk factors and challenges for the future.   Health Aff (Millwood). 2014;33(4):580-586. doi:10.1377/hlthaff.2013.1353PubMedGoogle ScholarCrossref
12.
Cooper  C, Tandy  AR, Balamurali  TB, Livingston  G.  A systematic review and meta-analysis of ethnic differences in use of dementia treatment, care, and research.   Am J Geriatr Psychiatry. 2010;18(3):193-203. doi:10.1097/JGP.0b013e3181bf9cafPubMedGoogle ScholarCrossref
13.
Mayeda  ER, Glymour  MM, Quesenberry  CP, Whitmer  RA.  Inequalities in dementia incidence between six racial and ethnic groups over 14 years.   Alzheimers Dement. 2016;12(3):216-224. doi:10.1016/j.jalz.2015.12.007PubMedGoogle ScholarCrossref
14.
Yaffe  K, Falvey  C, Harris  TB,  et al; Health ABC Study.  Effect of socioeconomic disparities on incidence of dementia among biracial older adults: prospective study.   BMJ. 2013;347:f7051. doi:10.1136/bmj.f7051PubMedGoogle ScholarCrossref
15.
Zeki Al Hazzouri  A, Haan  MN, Kalbfleisch  JD, Galea  S, Lisabeth  LD, Aiello  AE.  Life-course socioeconomic position and incidence of dementia and cognitive impairment without dementia in older Mexican Americans: results from the Sacramento area Latino study on aging.   Am J Epidemiol. 2011;173(10):1148-1158. doi:10.1093/aje/kwq483PubMedGoogle ScholarCrossref
16.
What is precision medicine? Genetics Home Reference; U.S National Library of Madison. Published 2019. Updated April 16, 2019. Accessed April 25, 2019. https://ghr.nlm.nih.gov/primer/precisionmedicine/definition
17.
Chowkwanyun  M, Bayer  R, Galea  S.  “Precision” public health–between novelty and hype.   N Engl J Med. 2018;379(15):1398-1400. doi:10.1056/NEJMp1806634PubMedGoogle ScholarCrossref
18.
Khoury  MJ, Bowen  MS, Clyne  M,  et al.  From public health genomics to precision public health: a 20-year journey.   Genet Med. 2018;20(6):574-582. doi:10.1038/gim.2017.211PubMedGoogle ScholarCrossref
19.
Gilmore-Bykovskyi  AL, Jin  Y, Gleason  C,  et al.  Recruitment and retention of underrepresented populations in Alzheimer’s disease research: A systematic review.   Alzheimers Dement (N Y). 2019;5:751-770. doi:10.1016/j.trci.2019.09.018PubMedGoogle Scholar
20.
US Census Bureau. Glossary: block groups. Accessed May 11, 2020. https://www.census.gov/programs-surveys/geography/about/glossary.html#par_textimage_4
21.
Research Support Group at the National Alzheimer’s Coordinating Center.  NACC Researchers Data Dictionary: The Neuropathology (NP) Data Set. University of Washington; 2014.
22.
Polnaszek  B, Gilmore-Bykovskyi  A, Hovanes  M,  et al.  Overcoming the challenges of unstructured data in multisite, electronic medical record-based abstraction.   Med Care. 2016;54(10):e65-e72. doi:10.1097/MLR.0000000000000108PubMedGoogle ScholarCrossref
23.
Hassenstab  J, Monsell  SE, Mock  C,  et al.  Neuropsychological markers of cognitive decline in persons with Alzheimer disease neuropathology.   J Neuropathol Exp Neurol. 2015;74(11):1086-1092. doi:10.1097/NEN.0000000000000254PubMedGoogle ScholarCrossref
24.
Monsell  SE, Mock  C, Roe  CM,  et al.  Comparison of symptomatic and asymptomatic persons with Alzheimer disease neuropathology.   Neurology. 2013;80(23):2121-2129. doi:10.1212/WNL.0b013e318295d7a1PubMedGoogle ScholarCrossref
25.
Hyman  BT, Phelps  CH, Beach  TG,  et al.  National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease.   Alzheimers Dement. 2012;8(1):1-13. doi:10.1016/j.jalz.2011.10.007PubMedGoogle ScholarCrossref
26.
US Census Bureau. Data. Accessed May 11, 2020. https://www.census.gov/data.html
27.
Boxer  AL, Gold  M, Feldman  H,  et al.  New directions in clinical trials for frontotemporal lobar degeneration: Methods and outcome measures.   Alzheimers Dement. 2020;16(1):131-143. doi:10.1016/j.jalz.2019.06.4956PubMedGoogle ScholarCrossref
28.
King  G. Zeng  L.  Logistic regression in rare events data.   Polit Anal. 2001;9(2):137-163. doi:10.1093/oxfordjournals.pan.a004868Google ScholarCrossref
29.
National Institute on Aging. Alzheimer’s Disease Research Centers. Reviewed July 11, 2019. Accessed October 8, 2019. https://www.nia.nih.gov/health/alzheimers-disease-research-centers
30.
Popejoy  AB, Fullerton  SM.  Genomics is failing on diversity.   Nature. 2016;538(7624):161-164. doi:10.1038/538161aPubMedGoogle ScholarCrossref
31.
Grill  JD, Galvin  JE.  Facilitating Alzheimer disease research recruitment.   Alzheimer Dis Assoc Disord. 2014;28(1):1-8. doi:10.1097/WAD.0000000000000016PubMedGoogle ScholarCrossref
32.
Lyles  CR, Lunn  MR, Obedin-Maliver  J, Bibbins-Domingo  K.  The new era of precision population health: insights for the All of Us Research Program and beyond.   J Transl Med. 2018;16(1):211. doi:10.1186/s12967-018-1585-5PubMedGoogle ScholarCrossref
33.
Barnes  LL, Shah  RC, Aggarwal  NT, Bennett  DA, Schneider  JA.  The Minority Aging Research Study: ongoing efforts to obtain brain donation in African Americans without dementia.   Curr Alzheimer Res. 2012;9(6):734-745. doi:10.2174/156720512801322627PubMedGoogle ScholarCrossref
34.
Bennett  DA, Schneider  JA, Buchman  AS, Mendes de Leon  C, Bienias  JL, Wilson  RS.  The Rush Memory and Aging Project: study design and baseline characteristics of the study cohort.   Neuroepidemiology. 2005;25(4):163-175. doi:10.1159/000087446PubMedGoogle ScholarCrossref
35.
Howell  JC, Watts  KD, Parker  MW,  et al.  Race modifies the relationship between cognition and Alzheimer’s disease cerebrospinal fluid biomarkers.   Alzheimers Res Ther. 2017;9(1):88-88. doi:10.1186/s13195-017-0315-1PubMedGoogle ScholarCrossref
36.
Manly  JJ, Bell-McGinty  S, Tang  MX, Schupf  N, Stern  Y, Mayeux  R.  Implementing diagnostic criteria and estimating frequency of mild cognitive impairment in an urban community.   Arch Neurol. 2005;62(11):1739-1746. doi:10.1001/archneur.62.11.1739PubMedGoogle ScholarCrossref
37.
Morris  MC, Evans  DA, Bienias  JL,  et al.  Dietary intake of antioxidant nutrients and the risk of incident Alzheimer disease in a biracial community study.   JAMA. 2002;287(24):3230-3237. doi:10.1001/jama.287.24.3230PubMedGoogle ScholarCrossref
38.
Williams  MM, Meisel  MM, Williams  J, Morris  JC.  An interdisciplinary outreach model of African American recruitment for Alzheimer's disease research.   Gerontologist. 2011;51(suppl 1):S134-S141. doi:10.1093/geront/gnq098Google Scholar
39.
Dong  H, Csernansky  JG.  Effects of stress and stress hormones on amyloid-beta protein and plaque deposition.   J Alzheimers Dis. 2009;18(2):459-469. doi:10.3233/JAD-2009-1152PubMedGoogle ScholarCrossref
40.
Roh  JH, Huang  Y, Bero  AW,  et al.  Disruption of the sleep-wake cycle and diurnal fluctuation of β-amyloid in mice with Alzheimer’s disease pathology.   Sci Transl Med. 2012;4(150):150ra122. doi:10.1126/scitranslmed.3004291PubMedGoogle Scholar
41.
Berti  V, Walters  M, Sterling  J,  et al.  Mediterranean diet and 3-year Alzheimer brain biomarker changes in middle-aged adults.   Neurology. 2018;90(20):e1789-e1798. doi:10.1212/WNL.0000000000005527PubMedGoogle ScholarCrossref
42.
Adlard  PA, Perreau  VM, Pop  V, Cotman  CW.  Voluntary exercise decreases amyloid load in a transgenic model of Alzheimer’s disease.   J Neurosci. 2005;25(17):4217-4221. doi:10.1523/JNEUROSCI.0496-05.2005PubMedGoogle ScholarCrossref
43.
Calderón-Garcidueñas  L, Kavanaugh  M, Block  M,  et al.  Neuroinflammation, hyperphosphorylated tau, diffuse amyloid plaques, and down-regulation of the cellular prion protein in air pollution exposed children and young adults.   J Alzheimers Dis. 2012;28(1):93-107. doi:10.3233/JAD-2011-110722PubMedGoogle ScholarCrossref
44.
Gottesman  RF, Schneider  AL, Zhou  Y,  et al.  Association between midlife vascular risk factors and estimated brain amyloid deposition.   JAMA. 2017;317(14):1443-1450. doi:10.1001/jama.2017.3090PubMedGoogle ScholarCrossref
45.
Biessels  GJ, Staekenborg  S, Brunner  E, Brayne  C, Scheltens  P.  Risk of dementia in diabetes mellitus: a systematic review.   Lancet Neurol. 2006;5(1):64-74. doi:10.1016/S1474-4422(05)70284-2PubMedGoogle ScholarCrossref
Limit 200 characters
Limit 25 characters
Conflicts of Interest Disclosure

Identify all potential conflicts of interest that might be relevant to your comment.

Conflicts of interest comprise financial interests, activities, and relationships within the past 3 years including but not limited to employment, affiliation, grants or funding, consultancies, honoraria or payment, speaker's bureaus, stock ownership or options, expert testimony, royalties, donation of medical equipment, or patents planned, pending, or issued.

Err on the side of full disclosure.

If you have no conflicts of interest, check "No potential conflicts of interest" in the box below. The information will be posted with your response.

Not all submitted comments are published. Please see our commenting policy for details.

Limit 140 characters
Limit 3600 characters or approximately 600 words
    Original Investigation
    Public Health
    June 11, 2020

    Association of Neighborhood-Level Disadvantage With Alzheimer Disease Neuropathology

    Author Affiliations
    • 1Department of Medicine, Geriatrics Division, University of Wisconsin School of Medicine and Public Health, Madison
    • 2Health Services and Care Research Program, University of Wisconsin School of Medicine and Public Health, Madison
    • 3Department of Biostatistics & Medical Informatics, University of Wisconsin, Madison
    • 4Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison
    • 5Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison
    • 6Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison
    • 7Geriatric Research Education and Clinical Center (GRECC), William S. Middleton Hospital, United States Department of Veterans Affairs, Madison, Wisconsin
    • 8Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, Madison
    • 9Department of Neurosciences, University of California, San Diego
    • 10Shiley-Marcos Alzheimer's Disease Research Center, University of California, San Diego, La Jolla
    JAMA Netw Open. 2020;3(6):e207559. doi:10.1001/jamanetworkopen.2020.7559
    Key Points español 中文 (chinese)

    Question  Can neighborhood disadvantage, a social determinant of health, be incorporated into existing brain bank data to evaluate the risk of biological outcomes, such as Alzheimer disease neuropathology?

    Findings  In this cross-sectional study using autopsy samples from 447 decedents, living in a disadvantaged neighborhood at the time of death was associated with an increased risk of presence of Alzheimer disease neuropathology when adjusting for age, sex, and year of death.

    Meaning  These findings suggest that neighborhood disadvantage can be geolinked to brain bank repositories and may be a marker for Alzheimer disease neuropathology.

    Abstract

    Importance  Social determinants of health, such as income, education, housing quality, and employment, are associated with disparities in Alzheimer disease and health generally, yet these determinants are rarely incorporated within neuropathology research.

    Objective  To establish the feasibility of linking neuropathology data to social determinants of health exposures using neighborhood disadvantage metrics (the validated Area Deprivation Index) and to evaluate the association between neighborhood disadvantage and Alzheimer disease–related neuropathology.

    Design, Setting, and Participants  This cross-sectional study consisted of decedents with a known home address who donated their brains to 1 of 2 Alzheimer disease research center brain banks in California and Wisconsin between January 1, 1990, and December 31, 2016. Neither site had preexisting social metrics available for their decedents. Neuropathologic features were obtained from each site for data collected using the standardized Neuropathology Data Set form and from autopsy reports. Data were analyzed from June 7 to October 10, 2019.

    Exposures  Geocoded decedent addresses linked to neighborhood disadvantage as measured by the Area Deprivation Index calculated for the year of death.

    Main Outcomes and Measures  Presence of Alzheimer disease neuropathology. The association between neighborhood disadvantage and Alzheimer disease neuropathology was evaluated via logistic regression, adjusting for age, sex, and year of death.

    Results  The sample consisted of 447 decedents (249 men [56%]; mean [SD] age, 80.3 [9.5] years; median year of death, 2011) spanning 24 years of donation. Fewer decedents (n = 24 [5.4%]) originated from the top 20% most disadvantaged neighborhood contexts. Increasing neighborhood disadvantage was associated with an 8.1% increase in the odds of Alzheimer disease neuropathology for every decile change on the Area Deprivation Index (adjusted odds ratio, 1.08; 95% CI, 1.07-1.09). As such, living in the most disadvantaged neighborhood decile was associated with a 2.18 increased odds of Alzheimer disease neuropathology (adjusted odds ratio, 2.18; 95% CI, 1.99-2.39).

    Conclusions and Relevance  The findings of this cross-sectional study suggest that social determinants of health data can be linked to preexisting autopsy samples as a means to study sociobiological mechanisms involved in neuropathology. This novel technique has the potential to be applied to any brain bank within the United States. To our knowledge, this is the first time Alzheimer disease neuropathology has been associated with neighborhood disadvantage.

    ×