[Skip to Content]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 34.238.248.103. Please contact the publisher to request reinstatement.
[Skip to Content Landing]
1.
Lilja  G, Nielsen  N, Bro-Jeppesen  J,  et al.  Return to work and participation in society after out-of-hospital cardiac arrest.   Circ Cardiovasc Qual Outcomes. 2018;11(1):e003566. doi:10.1161/CIRCOUTCOMES.117.003566PubMedGoogle Scholar
2.
Elmer  J, Torres  C, Aufderheide  TP,  et al; Resuscitation Outcomes Consortium.  Association of early withdrawal of life-sustaining therapy for perceived neurological prognosis with mortality after cardiac arrest.   Resuscitation. 2016;102:127-135. doi:10.1016/j.resuscitation.2016.01.016PubMedGoogle ScholarCrossref
3.
Che  D, Li  L, Kopil  CM, Liu  Z, Guo  W, Neumar  RW.  Impact of therapeutic hypothermia onset and duration on survival, neurologic function, and neurodegeneration after cardiac arrest.   Crit Care Med. 2011;39(6):1423-1430. doi:10.1097/CCM.0b013e318212020aPubMedGoogle ScholarCrossref
4.
Hypothermia after Cardiac Arrest Study Group.  Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest.   N Engl J Med. 2002;346(8):549-556. doi:10.1056/NEJMoa012689PubMedGoogle ScholarCrossref
5.
Bernard  SA, Gray  TW, Buist  MD,  et al.  Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia.   N Engl J Med. 2002;346(8):557-563. doi:10.1056/NEJMoa003289PubMedGoogle ScholarCrossref
6.
Nielsen  N, Wetterslev  J, Cronberg  T,  et al; TTM Trial Investigators.  Targeted temperature management at 33 °C versus 36 °C after cardiac arrest.   N Engl J Med. 2013;369(23):2197-2206. doi:10.1056/NEJMoa1310519PubMedGoogle ScholarCrossref
7.
Donnino  MW, Andersen  LW, Berg  KM,  et al; ILCOR ALS Task Force.  Temperature management after cardiac arrest: an advisory statement by the Advanced Life Support Task Force of the International Liaison Committee on Resuscitation and the American Heart Association Emergency Cardiovascular Care Committee and the Council on Cardiopulmonary, Critical Care, Perioperative, and Resuscitation.   Circulation. 2015;132(25):2448-2456. doi:10.1161/CIR.0000000000000313PubMedGoogle ScholarCrossref
8.
Geocadin  RG, Wijdicks  E, Armstrong  MJ,  et al.  Practice guideline summary: reducing brain injury following cardiopulmonary resuscitation: report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology.   Neurology. 2017;88(22):2141-2149. doi:10.1212/WNL.0000000000003966PubMedGoogle ScholarCrossref
9.
Deye  N, Vincent  F, Michel  P,  et al; SRLF Trial Group.  Changes in cardiac arrest patients’ temperature management after the 2013 “TTM” trial: results from an international survey.   Ann Intensive Care. 2016;6(1):4. doi:10.1186/s13613-015-0104-6PubMedGoogle ScholarCrossref
10.
Bray  JE, Stub  D, Bloom  JE,  et al.  Changing target temperature from 33 °C to 36 °C in the ICU management of out-of-hospital cardiac arrest: a before and after study.   Resuscitation. 2017;113:39-43. doi:10.1016/j.resuscitation.2017.01.016PubMedGoogle ScholarCrossref
11.
Lascarrou  JB, Dumas  F, Bougouin  W,  et al; SDEC.  Temporal trends in the use of targeted temperature management after cardiac arrest and association with outcome: insights from the Paris Sudden Death Expertise Centre.   Crit Care. 2019;23(1):391. doi:10.1186/s13054-019-2677-1PubMedGoogle ScholarCrossref
12.
Lascarrou  JB, Merdji  H, Le Gouge  A,  et al; CRICS-TRIGGERSEP Group.  Targeted temperature management for cardiac arrest with nonshockable rhythm.   N Engl J Med. 2019;381(24):2327-2337. doi:10.1056/NEJMoa1906661PubMedGoogle ScholarCrossref
13.
Elmer  J, Callaway  CW, Chang  CH,  et al.  Long-term outcomes of out-of-hospital cardiac arrest care at regionalized centers.   Ann Emerg Med. 2019;73(1):29-39. doi:10.1016/j.annemergmed.2018.05.018PubMedGoogle ScholarCrossref
14.
Elmer  J, Rittenberger  JC, Coppler  PJ, Guyette  FX, Doshi  AA, Callaway  CW; Pittsburgh Post-Cardiac Arrest Service.  Long-term survival benefit from treatment at a specialty center after cardiac arrest.   Resuscitation. 2016;108:48-53. doi:10.1016/j.resuscitation.2016.09.008PubMedGoogle ScholarCrossref
15.
Rittenberger  JC, Guyette  FX, Tisherman  SA, DeVita  MA, Alvarez  RJ, Callaway  CW.  Outcomes of a hospital-wide plan to improve care of comatose survivors of cardiac arrest.   Resuscitation. 2008;79(2):198-204. doi:10.1016/j.resuscitation.2008.08.014PubMedGoogle ScholarCrossref
16.
Elmer  J, Gianakas  JJ, Rittenberger  JC,  et al; Pittsburgh Post-Cardiac Arrest Service.  Group-based trajectory modeling of suppression ratio after cardiac arrest.   Neurocrit Care. 2016;25(3):415-423. doi:10.1007/s12028-016-0263-9PubMedGoogle ScholarCrossref
17.
Metter  RB, Rittenberger  JC, Guyette  FX, Callaway  CW.  Association between a quantitative CT scan measure of brain edema and outcome after cardiac arrest.   Resuscitation. 2011;82(9):1180-1185. doi:10.1016/j.resuscitation.2011.04.001PubMedGoogle ScholarCrossref
18.
Callaway  CW.  Neuroprognostication postcardiac arrest: translating probabilities to individuals.   Curr Opin Crit Care. 2018;24(3):158-164. doi:10.1097/MCC.0000000000000500PubMedGoogle ScholarCrossref
19.
Sonder  P, Janssens  GN, Beishuizen  A,  et al.  Efficacy of different cooling technologies for therapeutic temperature management: a prospective intervention study.   Resuscitation. 2018;124:14-20. doi:10.1016/j.resuscitation.2017.12.026PubMedGoogle ScholarCrossref
20.
Rittenberger  JC, Raina  K, Holm  MB, Kim  YJ, Callaway  CW.  Association between cerebral performance category, Modified Rankin Scale, and discharge disposition after cardiac arrest.   Resuscitation. 2011;82(8):1036-1040. doi:10.1016/j.resuscitation.2011.03.034PubMedGoogle ScholarCrossref
21.
Cristia  C, Ho  ML, Levy  S,  et al.  The association between a quantitative computed tomography (CT) measurement of cerebral edema and outcomes in post-cardiac arrest-a validation study.   Resuscitation. 2014;85(10):1348-1353. doi:10.1016/j.resuscitation.2014.05.022PubMedGoogle ScholarCrossref
22.
Hofmeijer  J, Tjepkema-Cloostermans  MC, van Putten  MJ.  Burst-suppression with identical bursts: a distinct EEG pattern with poor outcome in postanoxic coma.   Clin Neurophysiol. 2014;125(5):947-954. doi:10.1016/j.clinph.2013.10.017PubMedGoogle ScholarCrossref
23.
Elmer  J, Rittenberger  JC, Faro  J,  et al; Pittsburgh Post-Cardiac Arrest Service.  Clinically distinct electroencephalographic phenotypes of early myoclonus after cardiac arrest.   Ann Neurol. 2016;80(2):175-184. doi:10.1002/ana.24697PubMedGoogle ScholarCrossref
24.
Rittenberger  JC, Tisherman  SA, Holm  MB, Guyette  FX, Callaway  CW.  An early, novel illness severity score to predict outcome after cardiac arrest.   Resuscitation. 2011;82(11):1399-1404. doi:10.1016/j.resuscitation.2011.06.024PubMedGoogle ScholarCrossref
25.
Coppler  PJ, Elmer  J, Calderon  L,  et al; Post Cardiac Arrest Service.  Validation of the Pittsburgh Cardiac Arrest Category illness severity score.   Resuscitation. 2015;89:86-92. doi:10.1016/j.resuscitation.2015.01.020PubMedGoogle ScholarCrossref
26.
McNutt  LA, Wu  C, Xue  X, Hafner  JP.  Estimating the relative risk in cohort studies and clinical trials of common outcomes.   Am J Epidemiol. 2003;157(10):940-943. doi:10.1093/aje/kwg074PubMedGoogle ScholarCrossref
27.
Legriel  S, Lemiale  V, Schenck  M,  et al; HYBERNATUS Study Group.  Hypothermia for neuroprotection in convulsive status epilepticus.   N Engl J Med. 2016;375(25):2457-2467. doi:10.1056/NEJMoa1608193PubMedGoogle ScholarCrossref
28.
Guluma  KZ, Oh  H, Yu  SW, Meyer  BC, Rapp  K, Lyden  PD.  Effect of endovascular hypothermia on acute ischemic edema: morphometric analysis of the ICTuS trial.   Neurocrit Care. 2008;8(1):42-47. doi:10.1007/s12028-007-9009-zPubMedGoogle ScholarCrossref
29.
Andrews  PJ, Sinclair  HL, Rodriguez  A,  et al; Eurotherm3235 Trial Collaborators.  Hypothermia for intracranial hypertension after traumatic brain injury.   N Engl J Med. 2015;373(25):2403-2412. doi:10.1056/NEJMoa1507581PubMedGoogle ScholarCrossref
30.
Bacher  A, Illievich  UM, Fitzgerald  R, Ihra  G, Spiss  CK.  Changes in oxygenation variables during progressive hypothermia in anesthetized patients.   J Neurosurg Anesthesiol. 1997;9(3):205-210. doi:10.1097/00008506-199707000-00001PubMedGoogle ScholarCrossref
31.
Steinberg  A, Callaway  CW, Arnold  RM,  et al.  Prognostication after cardiac arrest: results of an international, multi-professional survey.   Resuscitation. 2019;138:190-197. doi:10.1016/j.resuscitation.2019.03.016PubMedGoogle ScholarCrossref
32.
Dankiewicz  J, Cronberg  T, Lilja  G,  et al.  Targeted hypothermia versus targeted normothermia after out-of-hospital cardiac arrest (TTM2): a randomized clinical trial—rationale and design.   Am Heart J. 2019;217:23-31. doi:10.1016/j.ahj.2019.06.012PubMedGoogle ScholarCrossref
33.
Lopez-de-Sa  E, Rey  JR, Armada  E,  et al.  Hypothermia in comatose survivors from out-of-hospital cardiac arrest: pilot trial comparing 2 levels of target temperature.   Circulation. 2012;126(24):2826-2833. doi:10.1161/CIRCULATIONAHA.112.136408PubMedGoogle ScholarCrossref
34.
Okazaki  T, Hifumi  T, Kawakita  K, Kuroda  Y; Japanese Association for Acute Medicine out-of-hospital cardiac arrest (JAAM-OHCA) registry.  Targeted temperature management guided by the severity of hyperlactatemia for out-of-hospital cardiac arrest patients: a post hoc analysis of a nationwide, multicenter prospective registry.   Ann Intensive Care. 2019;9(1):127. doi:10.1186/s13613-019-0603-yPubMedGoogle ScholarCrossref
35.
Kirkegaard  H, Søreide  E, de Haas  I,  et al.  Targeted temperature management for 48 vs 24 hours and neurologic outcome after out-of-hospital cardiac arrest: a randomized clinical trial.   JAMA. 2017;318(4):341-350. doi:10.1001/jama.2017.8978PubMedGoogle ScholarCrossref
36.
Reynolds  JC, Rittenberger  JC, Toma  C, Callaway  CW; Post Cardiac Arrest Service.  Risk-adjusted outcome prediction with initial post-cardiac arrest illness severity: implications for cardiac arrest survivors being considered for early invasive strategy.   Resuscitation. 2014;85(9):1232-1239. doi:10.1016/j.resuscitation.2014.05.037PubMedGoogle ScholarCrossref
37.
Dumas  F, Bougouin  W, Cariou  A.  Cardiac arrest: prediction models in the early phase of hospitalization.   Curr Opin Crit Care. 2019;25(3):204-210. doi:10.1097/MCC.0000000000000613PubMedGoogle ScholarCrossref
Limit 200 characters
Limit 25 characters
Conflicts of Interest Disclosure

Identify all potential conflicts of interest that might be relevant to your comment.

Conflicts of interest comprise financial interests, activities, and relationships within the past 3 years including but not limited to employment, affiliation, grants or funding, consultancies, honoraria or payment, speaker's bureaus, stock ownership or options, expert testimony, royalties, donation of medical equipment, or patents planned, pending, or issued.

Err on the side of full disclosure.

If you have no conflicts of interest, check "No potential conflicts of interest" in the box below. The information will be posted with your response.

Not all submitted comments are published. Please see our commenting policy for details.

Limit 140 characters
Limit 3600 characters or approximately 600 words
    Views 4,191
    Citations 0
    Original Investigation
    Critical Care Medicine
    July 23, 2020

    Association of Initial Illness Severity and Outcomes After Cardiac Arrest With Targeted Temperature Management at 36 °C or 33 °C

    Author Affiliations
    • 1Pittsburgh Post–Cardiac Arrest Service, Department of Emergency Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
    JAMA Netw Open. 2020;3(7):e208215. doi:10.1001/jamanetworkopen.2020.8215
    Key Points español 中文 (chinese)

    Question  What is the optimal target temperature for targeted temperature management (TTM) in comatose patients after cardiac arrest?

    Findings  In a cohort study of 1319 patients, of whom 911 did not have severe cerebral edema or highly malignant electroencephalogram, TTM at 33 °C was associated with better survival than TTM at 36 °C for patients with the most severe post–cardiac arrest illness, but TTM at 36 °C was associated with better survival in patients with mild- to moderate-severity illness. Patients with severe cerebral edema or highly malignant electroencephalogram had poor outcomes regardless of TTM strategy.

    Meaning  The findings of this study suggest that measuring initial illness severity in patients resuscitated from cardiac arrest may guide selection of the optimal TTM strategy.

    Abstract

    Importance  It is uncertain what the optimal target temperature is for targeted temperature management (TTM) in patients who are comatose following cardiac arrest.

    Objective  To examine whether illness severity is associated with changes in the association between target temperature and patient outcome.

    Design, Setting, and Participants  This cohort study compared outcomes for 1319 patients who were comatose after cardiac arrest at a single center in Pittsburgh, Pennsylvania, from January 2010 to December 2018. Initial illness severity was based on coma and organ failure scores, presence of severe cerebral edema, and presence of highly malignant electroencephalogram (EEG) after resuscitation.

    Exposure  TTM at 36 °C or 33 °C.

    Main Outcomes and Measures  Primary outcome was survival to hospital discharge, and secondary outcomes were modified Rankin Scale and cerebral performance category.

    Results  Among 1319 patients, 728 (55.2%) had TTM at 33 °C (451 [62.0%] men; median [interquartile range] age, 61 [50-72] years) and 591 (44.8%) had TTM at 36 °C (353 [59.7%] men; median [interquartile range] age, 59 [48-69] years). Overall, 184 of 187 patients (98.4%) with severe cerebral edema died and 234 of 243 patients (96.3%) with highly malignant EEG died regardless of TTM strategy. Comparing TTM at 33 °C with TTM at 36 °C in 911 patients (69.1%) with neither severe cerebral edema nor highly malignant EEG, survival was lower in patients with mild to moderate coma and no shock (risk difference, –13.8%; 95% CI, –24.4% to –3.2%) but higher in patients with mild to moderate coma and cardiopulmonary failure (risk difference, 21.8%; 95% CI, 5.4% to 38.2%) or with severe coma (risk difference, 9.7%; 95% CI, 4.0% to 15.3%). Interactions were similar for functional outcomes. Most deaths (633 of 968 [65.4%]) resulted after withdrawal of life-sustaining therapies.

    Conclusions and Relevance  In this study, TTM at 33 °C was associated with better survival than TTM at 36 °C among patients with the most severe post–cardiac arrest illness but without severe cerebral edema or malignant EEG. However, TTM at 36 °C was associated with better survival among patients with mild- to moderate-severity illness.

    ×