Association of Acyl-Ghrelin With Posttraumatic Stress Disorder in Adolescents Who Experienced Severe Trauma | Adolescent Medicine | JAMA Network Open | JAMA Network
[Skip to Navigation]
Figure.  Association of Serum Acyl-Ghrelin With Posttraumatic Stress Disorder (PTSD) and Its Severity in Adolescents
Association of Serum Acyl-Ghrelin With Posttraumatic Stress Disorder (PTSD) and Its Severity in Adolescents

A and B, Each circle represents 1 participant. Vertical lines and error bars depict the median and interquartile range for each group. Corrected P values for Dunn multiple comparisons are shown. Dunn comparisons were used because the data were not normally distributed. C, The line represents the best-fit regression model (P < .001) of PTSD CheckList–Civilian Version (PCL-C) score by acyl-ghrelin concentration alone.

Table.  Characteristics of the Study Population Stratified by PTSD Diagnosis
Characteristics of the Study Population Stratified by PTSD Diagnosis
1.
van der Feltz-Cornelis  CM, Potters  EC, van Dam  A, Koorndijk  RPM, Elfeddali  I, van Eck van der Sluijs  JF.  Adverse childhood experiences (ACE) in outpatients with anxiety and depressive disorders and their association with psychiatric and somatic comorbidity and revictimization: cross-sectional observational study.   J Affect Disord. 2019;246:458-464. doi:10.1016/j.jad.2018.12.096PubMedGoogle ScholarCrossref
2.
Yousufzai  MIUA, Harmatz  ES, Shah  M, Malik  MO, Goosens  KA.  Ghrelin is a persistent biomarker for chronic stress exposure in adolescent rats and humans.   Transl Psychiatry. 2018;8(1):74. doi:10.1038/s41398-018-0135-5PubMedGoogle ScholarCrossref
3.
Meyer  RM, Burgos-Robles  A, Liu  E, Correia  SS, Goosens  KA.  A ghrelin-growth hormone axis drives stress-induced vulnerability to enhanced fear.   Mol Psychiatry. 2014;19(12):1284-1294. doi:10.1038/mp.2013.135PubMedGoogle ScholarCrossref
4.
Mani  BK, Zigman  JM.  Ghrelin as a survival hormone.   Trends Endocrinol Metab. 2017;28(12):843-854. doi:10.1016/j.tem.2017.10.001PubMedGoogle ScholarCrossref
5.
Harmatz  ES, Stone  L, Lim  SH,  et al.  Central ghrelin resistance permits the overconsolidation of fear memory.   Biol Psychiatry. 2017;81(12):1003-1013. doi:10.1016/j.biopsych.2016.11.009PubMedGoogle ScholarCrossref
6.
Cui  H, López  M, Rahmouni  K.  The cellular and molecular bases of leptin and ghrelin resistance in obesity.   Nat Rev Endocrinol. 2017;13(6):338-351. doi:10.1038/nrendo.2016.222PubMedGoogle ScholarCrossref
Limit 200 characters
Limit 25 characters
Conflicts of Interest Disclosure

Identify all potential conflicts of interest that might be relevant to your comment.

Conflicts of interest comprise financial interests, activities, and relationships within the past 3 years including but not limited to employment, affiliation, grants or funding, consultancies, honoraria or payment, speaker's bureaus, stock ownership or options, expert testimony, royalties, donation of medical equipment, or patents planned, pending, or issued.

Err on the side of full disclosure.

If you have no conflicts of interest, check "No potential conflicts of interest" in the box below. The information will be posted with your response.

Not all submitted comments are published. Please see our commenting policy for details.

Limit 140 characters
Limit 3600 characters or approximately 600 words
    Research Letter
    Psychiatry
    August 20, 2020

    Association of Acyl-Ghrelin With Posttraumatic Stress Disorder in Adolescents Who Experienced Severe Trauma

    Author Affiliations
    • 1Department of Physiology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
    • 2Department of Psychiatry, Friedman Brain Institute, Center for Affective Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
    JAMA Netw Open. 2020;3(8):e2013946. doi:10.1001/jamanetworkopen.2020.13946
    Introduction

    Chronic stress, the occurrence of trauma and its adverse consequences over a prolonged period, is associated with the development of posttraumatic stress disorder (PTSD), even when many years have elapsed since the initial stress exposure.1 Acyl-ghrelin levels increase in rodents and humans during chronic stress exposure.2,3 Elevated acyl-ghrelin remains long after the primary stressful event ceases (months in rodents, years in humans). Acyl-ghrelin, which is released mostly by the gut during times of energy depletion,4 is the only form of ghrelin that can bind to the ghrelin receptor. In rodents, stress-related increases in acyl-ghrelin underlie a long-term vulnerability to excessive fear.3,5 Here, we sought to determine whether elevated levels of acyl-ghrelin were associated with the development of PTSD or its severity in adolescents who experienced severe trauma.

    Methods

    This study was approved by the institutional review board of Khyber Medical University. All participants and their respective caregivers gave written informed consent. This study followed the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) reporting guidelines.

    We conducted a cross-sectional study on 49 adolescents who experienced severe trauma and 39 healthy, matched control participants. Adolescents in the trauma group experienced a terror attack and were injured, or lost a parent, relative, or close friend. Adolescents in the control group had no terror-associated losses or injuries. Blood and saliva samples were collected for analyses of acyl-ghrelin and cortisol, respectively, and all participants were administered the PTSD CheckList–Civilian Version (PCL-C).

    Statistical analyses were performed with Prism statistical software version 6.0 (GraphPad Software) and JMP Pro statistical software version 14 (SAS Institute). Statistical significance was determined by the Kruskal-Wallis test, Mann-Whitney U test, one-way ANOVA, Pearson χ2 test, or Dunn multiple comparisons, as appropriate. For all tests, testing was 2-sided and adjusted P < .05 was considered significant. Recruitment began December 2014, and data collection was completed in July 2015. Statistical analyses were performed February 2019 to May 2020. Further details of the experiment and analyses are included in the eAppendix in the Supplement.

    Results

    The 88 study participants had a mean (SD) age of 14.31 (2.81) years; 85 (96%) were male. Within the trauma group, 14 adolescents (36%) did not meet the criteria for PTSD; no adolescents met the criteria for PTSD in the control group (Table). In the trauma group, adolescents with or without PTSD did not differ from controls or each other, except for body mass index. Adolescents in the trauma group without PTSD had levels of acyl-ghrelin (mean [SD], 61.36 [26.22] pg/mL [to convert acyl-ghrelin to picomoles per liter, multiply by 0.3]) (Figure, panel A, and Table) and cortisol (mean [SD], 43.34 [25.79] ng/mL [to convert cortisol to micromoles per liter, multiply by 2.7]) (Table) that were statistically indistinguishable from those of adolescents in the control group (75.13 [47.38] pg/mL acyl-ghrelin and 41.52 [29.01] ng/mL cortisol), whereas adolescents in the trauma group with PTSD had higher levels of both hormones (acyl-ghrelin: mean [SD], 166.1 [93.19] pg/mL and cortisol: mean [SD], 140.4 [158.5] ng/mL; median [interquartile range] of 65 [32.5-185]). The PCL-C scores of adolescents with trauma but without PTSD (mean [SD], 38.71 [5.73]) were higher than those of adolescents in the control group (mean [SD], 19.67 [2.20]), but lower than those of adolescents with trauma and PTSD (mean [SD], 55.03 [6.42]) (Figure, panel B). Acyl-ghrelin alone accounted for 76.3% of the variability in PCL-C score (Figure, panel C). A regression analysis of the PCL-C scores in the trauma group that included acyl-ghrelin, morning cortisol, body mass index, age, and their 2-way interactions (F10,36 = 9.52; P < .001) accounted for only an additional 2.24% of the variability in PCL-C scores; only acyl-ghrelin retained a significant association with PCL-C score (B, 26.77; 95% CI, 18.16-34.68; P < .001). There was a significantly elevated risk of PTSD when comparing adolescents with trauma and low levels of acyl-ghrelin with those with moderately elevated levels (Figure, panel C) (odds ratio, 7.94; 95% CI, 1.60-39.42; χ2 = 6.43; P = .01). All adolescents in the trauma group with high levels of acyl-ghrelin had PTSD.

    Discussion

    We observed an association between acyl-ghrelin and PTSD symptom severity in adolescents who experienced severe trauma. These data motivate additional research to investigate the mechanisms underlying trauma-associated elevation of acyl-ghrelin; these data also suggest that blood banks collecting samples from patients with PTSD should use methods that preserve acyl-ghrelin for analysis. This study’s limitations include the low number of female adolescents and the assessment of acyl-ghrelin at only a single posttrauma time point. It is unknown whether the adolescents who experienced severe trauma without PTSD never displayed trauma-associated elevation of acyl-ghrelin or whether acyl-ghrelin decreased over time since the initial trauma. It is also of interest to determine whether obesity, which dysregulates acyl-ghrelin,6 alters the role of acyl-ghrelin in stress and trauma.

    Back to top
    Article Information

    Accepted for Publication: June 6, 2020.

    Published: August 20, 2020. doi:10.1001/jamanetworkopen.2020.13946

    Open Access: This is an open access article distributed under the terms of the CC-BY License. © 2020 Malik MO et al. JAMA Network Open.

    Corresponding Authors: Mohsin Shah, PhD, Department of Physiology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan (mohsin.ibms@kmu.edu.pk); Ki Ann Goosens, PhD, Department of Psychiatry, Friedman Brain Institute, Center for Affective Neuroscience Icahn School of Medicine at Mount Sinai, One Gustave Levy Pl, Annenberg 22-76A, New York, NY 10029 (ki.goosens@mssm.edu).

    Author Contributions: Drs Shah and Goosens had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. Drs Malik and Shah contributed equally to this work.

    Concept and design: Shah, Goosens.

    Acquisition, analysis, or interpretation of data: All authors.

    Drafting of the manuscript: Shah, Goosens.

    Critical revision of the manuscript for important intellectual content: All authors.

    Statistical analysis: Malik, Shah, Ul Akbar Yousufzai, Burgess, Goosens.

    Obtained funding: Shah, Goosens.

    Administrative, technical, or material support: Shah, Goosens.

    Supervision: Shah.

    Conflict of Interest Disclosures: Dr Goosens reported receiving a patent to use of antagonists of ghrelin or ghrelin receptor to prevent or treat stress-sensitive psychiatric illness issued. No other disclosures were reported.

    Funding/Support: This study was funded by the Organization of Research Innovation and Commercialization of Khyber Medical University to Dr Muhammad Irfan ul Akbar Yousufzai and by grant W911NF-10-1-0059 from the US Army Research Office and Defense Advanced Research Projects Agency and the Icahn School of Medicine at Mount Sinai to Dr Goosens.

    Role of the Funder/Sponsor: The funders had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

    Additional Contributions: Asad Ullah Jan, MBBS (Department of Psychiatry, Combined Military Hospital, Peshawar, Pakistan), helped with translating questionnaires and organizing data; Dr Jan did not receive compensation for this work. We thank all the families who participated in this study.

    References
    1.
    van der Feltz-Cornelis  CM, Potters  EC, van Dam  A, Koorndijk  RPM, Elfeddali  I, van Eck van der Sluijs  JF.  Adverse childhood experiences (ACE) in outpatients with anxiety and depressive disorders and their association with psychiatric and somatic comorbidity and revictimization: cross-sectional observational study.   J Affect Disord. 2019;246:458-464. doi:10.1016/j.jad.2018.12.096PubMedGoogle ScholarCrossref
    2.
    Yousufzai  MIUA, Harmatz  ES, Shah  M, Malik  MO, Goosens  KA.  Ghrelin is a persistent biomarker for chronic stress exposure in adolescent rats and humans.   Transl Psychiatry. 2018;8(1):74. doi:10.1038/s41398-018-0135-5PubMedGoogle ScholarCrossref
    3.
    Meyer  RM, Burgos-Robles  A, Liu  E, Correia  SS, Goosens  KA.  A ghrelin-growth hormone axis drives stress-induced vulnerability to enhanced fear.   Mol Psychiatry. 2014;19(12):1284-1294. doi:10.1038/mp.2013.135PubMedGoogle ScholarCrossref
    4.
    Mani  BK, Zigman  JM.  Ghrelin as a survival hormone.   Trends Endocrinol Metab. 2017;28(12):843-854. doi:10.1016/j.tem.2017.10.001PubMedGoogle ScholarCrossref
    5.
    Harmatz  ES, Stone  L, Lim  SH,  et al.  Central ghrelin resistance permits the overconsolidation of fear memory.   Biol Psychiatry. 2017;81(12):1003-1013. doi:10.1016/j.biopsych.2016.11.009PubMedGoogle ScholarCrossref
    6.
    Cui  H, López  M, Rahmouni  K.  The cellular and molecular bases of leptin and ghrelin resistance in obesity.   Nat Rev Endocrinol. 2017;13(6):338-351. doi:10.1038/nrendo.2016.222PubMedGoogle ScholarCrossref
    ×