[Skip to Content]
Sign In
Individual Sign In
Create an Account
Institutional Sign In
OpenAthens Shibboleth
[Skip to Content Landing]
Visual Abstract. Effect of Benchmark Prevalence Data in Spine Image Reports on Health Care Utilization Among Adults
Effect of Benchmark Prevalence Data in Spine Image Reports on Health Care Utilization Among Adults
Figure 1.  CONSORT Stepped-Wedge Allocation of Trial Subjects
CONSORT Stepped-Wedge Allocation of Trial Subjects

For clinics under the control condition, intervention indicates the intervention text was mistakenly included in the image report. For clinics under the intervention condition, intervention indicates that the intervention text was successfully included in the image report and no intervention indicates that the intervention text was not included.

aTwo small clinics randomized to groups 2 and 5 were dropped before the first data submission because of clinic closure and are not included in the clinic counts.

bBy pretrial design, for 1 clinic, step 0 extended through May 2014, and step 1 began June 1, 2014.

Figure 2.  Model Results for Spine-Related Relative Value Units (RVUs) at 1 Year
Model Results for Spine-Related Relative Value Units (RVUs) at 1 Year

All models adjust for health system, clinic size, age range (ie, 18-39, 40-60, and ≥61 years), sex, imaging modality, Charlson Comorbidity Index category (ie, 0, 1, 2, and ≥3), and health system specific time trends. Models include hierarchical random effects for clinic (intercept and treatment) and primary care professional (intercept only). P values for subgroup models (ie, index imaging type and image finding type) are for Wald tests for effect modification. CI indicates clinically important, CT, computed tomography; RG, radiograph; and MR, magnetic resonance.

Figure 3.  Model Results for Opioid Prescriptions Within 12 months
Model Results for Opioid Prescriptions Within 12 months

All models adjust for health system, clinic size, age range (ie, 18-39, 40-60, and ≥61 years), sex, imaging modality, Charlson Comorbidity Index category (ie, 0, 1, 2, and ≥3), prior opioid use, and health system specific time trends. Models include hierarchical random effects for clinic (intercept and treatment) and primary care professional (intercept only). Prior opioid prescription is defined as having 1 or more prescriptions in the 120 days prior to index imaging. A Lumbar Imaging with Reporting of Epidemiology (LIRE) source is any health care professional who ordered an index lumbar spine image for 1 or more participants in the LIRE trial. It need not be the same individual who ordered the patient’s index image. A non-LIRE source is any other health care professional. Any source includes both LIRE and non-LIRE clinicians. NA indicates not applicable.

Figure 4.  Safety Outcomes
Safety Outcomes

All models adjust for health system, clinic size, age range (ie, 18-39, 40-60, and ≥61 years), sex, imaging modality, Charlson Comorbidity Index category (ie, 0, 1, 2, and ≥3), seasonality, and health system specific time trends. The emergency department (ED) visit model includes hierarchical random effects for clinic (intercept and treatment) and primary care professional (intercept only). The mortality model uses general estimating equations with clustering on clinic.

Table.  Baseline Characteristics
Baseline Characteristics
1.
Jarvik  JJ, Hollingworth  W, Heagerty  P, Haynor  DR, Deyo  RA.  The Longitudinal Assessment of Imaging and Disability of the Back (LAIDBack) Study: baseline data.   Spine (Phila Pa 1976). 2001;26(10):1158-1166. doi:10.1097/00007632-200105150-00014PubMedGoogle ScholarCrossref
2.
Brinjikji  W, Luetmer  PH, Comstock  B,  et al.  Systematic literature review of imaging features of spinal degeneration in asymptomatic populations.   AJNR Am J Neuroradiol. 2015;36(4):811-816.PubMedGoogle ScholarCrossref
3.
Jarvik  JG, Gold  LS, Comstock  BA,  et al.  Association of early imaging for back pain with clinical outcomes in older adults.   JAMA. 2015;313(11):1143-1153. doi:10.1001/jama.2015.1871PubMedGoogle ScholarCrossref
4.
Graves  JM, Fulton-Kehoe  D, Jarvik  JG, Franklin  GM.  Health care utilization and costs associated with adherence to clinical practice guidelines for early magnetic resonance imaging among workers with acute occupational low back pain.   Health Serv Res. 2014;49(2):645-665. doi:10.1111/1475-6773.12098PubMedGoogle ScholarCrossref
5.
Roland  M, van Tulder  M.  Should radiologists change the way they report plain radiography of the spine?   Lancet. 1998;352(9123):229-230. doi:10.1016/S0140-6736(97)11499-4PubMedGoogle ScholarCrossref
6.
McCullough  BJ, Johnson  GR, Martin  BI, Jarvik  JG.  Lumbar MR imaging and reporting epidemiology: do epidemiologic data in reports affect clinical management?   Radiology. 2012;262(3):941-946. doi:10.1148/radiol.11110618PubMedGoogle ScholarCrossref
7.
Fried  JG, Andrew  AS, Ring  NY, Pastel  DA.  Changes in primary care health care utilization after inclusion of epidemiologic data in lumbar spine MR imaging reports for uncomplicated low back pain.   Radiology. 2018;287(2):563-569. doi:10.1148/radiol.2017170722PubMedGoogle ScholarCrossref
8.
Karran  EL, Yau  YH, Hillier  SL, Moseley  GL.  The reassuring potential of spinal imaging results: development and testing of a brief, psycho-education intervention for patients attending secondary care.   Eur Spine J. 2018;27(1):101-108. doi:10.1007/s00586-017-5389-8PubMedGoogle ScholarCrossref
9.
Medalian  Y, Moseley  GL, Karran  EL.  An online investigation into the impact of adding epidemiological information to imaging reports for low back pain.   Scand J Pain. 2019;19(3):629-633. doi:10.1515/sjpain-2019-0023PubMedGoogle ScholarCrossref
10.
Hsiao  WC, Braun  P, Dunn  D, Becker  ER.  Resource-based relative values: an overview.   JAMA. 1988;260(16):2347-2353. doi:10.1001/jama.1988.03410160021004PubMedGoogle ScholarCrossref
11.
Hsiao  WC, Braun  P, Yntema  D, Becker  ER.  Estimating physicians’ work for a resource-based relative-value scale.   N Engl J Med. 1988;319(13):835-841. doi:10.1056/NEJM198809293191305PubMedGoogle ScholarCrossref
12.
American Medical Association. CPT (Current Procedural Terminology). Accessed August 4, 2020. https://www.ama-assn.org/amaone/cpt-current-procedural-terminology
13.
Jarvik  JG, Comstock  BA, James  KT,  et al.  Lumbar Imaging With Reporting Of Epidemiology (LIRE)—protocol for a pragmatic cluster randomized trial.   Contemp Clin Trials. 2015;45(Pt B):157-163. doi:10.1016/j.cct.2015.10.003PubMedGoogle ScholarCrossref
14.
Johnson  KE, Neta  G, Dember  LM,  et al.  Use of PRECIS ratings in the National Institutes of Health (NIH) Health Care Systems Research Collaboratory.   Trials. 2016;17:32. doi:10.1186/s13063-016-1158-yPubMedGoogle ScholarCrossref
15.
Brinjikji  W, Diehn  FE, Jarvik  JG,  et al.  MRI findings of disc degeneration are more prevalent in adults with low back pain than in asymptomatic controls: a systematic review and meta-analysis.   AJNR Am J Neuroradiol. 2015;36(12):2394-2399. doi:10.3174/ajnr.A4498PubMedGoogle ScholarCrossref
16.
World Health Organization.  International Classification of Diseases, Ninth Revision (ICD-9). World Health Organization; 1977.
17.
World Health Organization.  International Statistical Classification of Diseases, Tenth Revision (ICD-10). World Health Organization; 1992.
18.
Martin  B, Mirza  SK, Lurie  JD, Tosteson  ANA, Deyo  RA. Validation of an administrative coding algorithm to identify back-related degenerative diagnoses. Paper presented at: International Society for the Study of the Lumbar Spine (ISSLS); May 14, 2013; Scottsdale, AZ.
19.
Martin  BI, Mirza  SK, Franklin  GM, Lurie  JD, MacKenzie  TA, Deyo  RA.  Hospital and surgeon variation in complications and repeat surgery following incident lumbar fusion for common degenerative diagnoses.   Health Serv Res. 2013;48(1):1-25. doi:10.1111/j.1475-6773.2012.01434.xPubMedGoogle ScholarCrossref
20.
Tan  WK, Hassanpour  S, Heagerty  PJ,  et al.  Comparison of natural language processing rules-based and machine-learning systems to identify lumbar spine imaging findings related to low back pain.   Acad Radiol. 2018;25(11):1422-1432. doi:10.1016/j.acra.2018.03.008PubMedGoogle ScholarCrossref
21.
Jarvik  JG, Hollingworth  W, Heagerty  PJ, Haynor  DR, Boyko  EJ, Deyo  RA.  Three-year incidence of low back pain in an initially asymptomatic cohort: clinical and imaging risk factors.   Spine (Phila Pa 1976). 2005;30(13):1541-1548. doi:10.1097/01.brs.0000167536.60002.87PubMedGoogle ScholarCrossref
22.
Turner  JA, Shortreed  SM, Saunders  KW, LeResche  L, Von Korff  M.  Association of levels of opioid use with pain and activity interference among patients initiating chronic opioid therapy: a longitudinal study.   Pain. 2016;157(4):849-857. doi:10.1097/j.pain.0000000000000452PubMedGoogle ScholarCrossref
23.
Charlson  M, Szatrowski  TP, Peterson  J, Gold  J.  Validation of a combined comorbidity index.   J Clin Epidemiol. 1994;47(11):1245-1251. doi:10.1016/0895-4356(94)90129-5PubMedGoogle ScholarCrossref
24.
Quan  H, Li  B, Couris  CM,  et al.  Updating and validating the Charlson comorbidity index and score for risk adjustment in hospital discharge abstracts using data from 6 countries.   Am J Epidemiol. 2011;173(6):676-682. doi:10.1093/aje/kwq433PubMedGoogle ScholarCrossref
25.
Dember  LM, Lacson  E  Jr, Brunelli  SM,  et al.  The TiME trial: a fully embedded, cluster-randomized, pragmatic trial of hemodialysis session duration.   J Am Soc Nephrol. 2019;30(5):890-903. doi:10.1681/ASN.2018090945PubMedGoogle ScholarCrossref
26.
Huang  SS, Septimus  E, Kleinman  K,  et al; ABATE Infection Trial Team.  Chlorhexidine versus routine bathing to prevent multidrug-resistant organisms and all-cause bloodstream infections in general medical and surgical units (ABATE Infection trial): a cluster-randomised trial.   Lancet. 2019;393(10177):1205-1215. doi:10.1016/S0140-6736(18)32593-5PubMedGoogle ScholarCrossref
27.
Coronado  GD, Petrik  AF, Vollmer  WM,  et al.  Effectiveness of a mailed colorectal cancer screening outreach program in community health clinics: the STOP CRC cluster randomized clinical trial.   JAMA Intern Med. 2018;178(9):1174-1181. doi:10.1001/jamainternmed.2018.3629PubMedGoogle ScholarCrossref
28.
Pezalla  EJ, Rosen  D, Erensen  JG, Haddox  JD, Mayne  TJ.  Secular trends in opioid prescribing in the USA.   J Pain Res. 2017;10:383-387. doi:10.2147/JPR.S129553PubMedGoogle ScholarCrossref
29.
Patel  NK, Moses  RA, Martin  BI, Lurie  JD, Mirza  SK.  Validation of using claims data to measure safety of lumbar fusion surgery.   Spine (Phila Pa 1976). 2017;42(9):682-691. doi:10.1097/BRS.0000000000001879PubMedGoogle ScholarCrossref
30.
Horwitz  JR.  Making profits and providing care: comparing nonprofit, for-profit, and government hospitals.   Health Aff (Millwood). 2005;24(3):790-801. doi:10.1377/hlthaff.24.3.790PubMedGoogle ScholarCrossref
Limit 200 characters
Limit 25 characters
Conflicts of Interest Disclosure

Identify all potential conflicts of interest that might be relevant to your comment.

Conflicts of interest comprise financial interests, activities, and relationships within the past 3 years including but not limited to employment, affiliation, grants or funding, consultancies, honoraria or payment, speaker's bureaus, stock ownership or options, expert testimony, royalties, donation of medical equipment, or patents planned, pending, or issued.

Err on the side of full disclosure.

If you have no conflicts of interest, check "No potential conflicts of interest" in the box below. The information will be posted with your response.

Not all submitted comments are published. Please see our commenting policy for details.

Limit 140 characters
Limit 3600 characters or approximately 600 words
    Views 1,886
    Citations 0
    Original Investigation
    Imaging
    September 4, 2020

    The Effect of Including Benchmark Prevalence Data of Common Imaging Findings in Spine Image Reports on Health Care Utilization Among Adults Undergoing Spine Imaging: A Stepped-Wedge Randomized Clinical Trial

    Author Affiliations
    • 1Department of Radiology, University of Washington, Seattle
    • 2Department of Neurological Surgery, University of Washington, Seattle
    • 3Department of Health Services, University of Washington, Seattle
    • 4Comparative Effectiveness, Cost, and Outcomes Research Center, University of Washington, Seattle
    • 5Department of Biostatistics, University of Washington, Seattle
    • 6Center for Biomedical Statistics, University of Washington, Seattle
    • 7Flatiron Health, New York, New York
    • 8Rehabilitation Care Services, VA Puget Sound Health Care System, Seattle, Washington
    • 9Department of Rehabilitation Medicine, University of Washington, Seattle
    • 10Department of Radiology, Mayo Clinic, Rochester, Minnesota
    • 11Kaiser Permanente Washington, Seattle
    • 12Departments of Family Medicine and Internal Medicine, Oregon Health and Science University, Portland
    • 13Department of Radiology, Henry Ford Hospital, Detroit, Michigan
    • 14Department of Radiology, Stanford University School of Medicine, Palo Alto, California
    • 15Division of Research, Kaiser Permanente Northern California, Oakland, California
    • 16Surgical Outcomes Research Center, University of Washington, Seattle
    • 17Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle
    JAMA Netw Open. 2020;3(9):e2015713. doi:10.1001/jamanetworkopen.2020.15713
    Key Points español 中文 (chinese)

    Question  What is the impact of including benchmark prevalence data of common findings in reports of spinal imaging ordered by primary care clinicians?

    Findings  In this randomized clinical trial that included 250 401 adults, no overall decrease in subsequent spine-related health care utilization after the intervention was observed. However, there was a significant decrease in opioid prescriptions at 1 year in the intervention group compared with the control group.

    Meaning  The findings of this study suggest that including epidemiological benchmarks on spinal imaging reports has little impact on subsequent spine-related utilization overall but may reduce subsequent opioid prescriptions.

    Abstract

    Importance  Lumbar spine imaging frequently reveals findings that may seem alarming but are likely unrelated to pain. Prior work has suggested that inserting data on the prevalence of imaging findings among asymptomatic individuals into spine imaging reports may reduce unnecessary subsequent interventions.

    Objective  To evaluate the impact of including benchmark prevalence data in routine spinal imaging reports on subsequent spine-related health care utilization and opioid prescriptions.

    Design, Setting, and Participants  This stepped-wedge, pragmatic randomized clinical trial included 250 401 adult participants receiving care from 98 primary care clinics at 4 large health systems in the United States. Participants had imaging of their backs between October 2013 and September 2016 without having had spine imaging in the prior year. Data analysis was conducted from November 2018 to October 2019.

    Interventions  Either standard lumbar spine imaging reports (control group) or reports containing age-appropriate prevalence data for common imaging findings in individuals without back pain (intervention group).

    Main Outcomes and Measures  Health care utilization was measured in spine-related relative value units (RVUs) within 365 days of index imaging. The number of subsequent opioid prescriptions written by a primary care clinician was a secondary outcome, and prespecified subgroup analyses examined results by imaging modality.

    Results  We enrolled 250 401 participants (of whom 238 886 [95.4%] met eligibility for this analysis, with 137 373 [57.5%] women and 105 497 [44.2%] aged >60 years) from 3278 primary care clinicians. A total of 117 455 patients (49.2%) were randomized to the control group, and 121 431 patients (50.8%) were randomized to the intervention group. There was no significant difference in cumulative spine-related RVUs comparing intervention and control conditions through 365 days. The adjusted median (interquartile range) RVU for the control group was 3.56 (2.71-5.12) compared with 3.53 (2.68-5.08) for the intervention group (difference, −0.7%; 95% CI, −2.9% to 1.5%; P = .54). Rates of subsequent RVUs did not differ between groups by specific clinical findings in the report but did differ by type of index imaging (eg, computed tomography: difference, −29.3%; 95% CI, −42.1% to −13.5%; magnetic resonance imaging: difference, −3.4%; 95% CI, −8.3% to 1.8%). We observed a small but significant decrease in the likelihood of opioid prescribing from a study clinician within 1 year of the intervention (odds ratio, 0.95; 95% CI, 0.91 to 1.00; P = .04).

    Conclusions and Relevance  In this study, inserting benchmark prevalence information in lumbar spine imaging reports did not decrease subsequent spine-related RVUs but did reduce subsequent opioid prescriptions. The intervention text is simple, inexpensive, and easily implemented.

    Trial Registration  ClinicalTrials.gov Identifier: NCT02015455

    Introduction

    Spine imaging often reveals incidental findings among individuals without back pain,1,2 which can lead to unnecessary and possibly harmful tests and treatments.3,4 Roland and van Tulder5 proposed adding statements to plain film reports describing the prevalence of degenerative findings in people without back pain. In small observational studies, we and others6,7 have found that primary care patients undergoing lumbar spine imaging were less likely to receive certain subsequent diagnostic and therapeutic interventions if imaging reports contained information describing the prevalence of common imaging findings among individuals without back pain. These results suggest that benchmark information may reassure both patients and physicians, resulting in fewer downstream interventions. Since beginning our trial, others have published research suggesting that contextualizing imaging information can affect both health care professionals and patients.7-9

    We now report the results of a large, prospective randomized clinical trial of this intervention, the Lumbar Imaging with Reporting of Epidemiology (LIRE) trial. Our primary hypothesis was that patients of primary care professionals (PCPs) who received lumbar spine imaging reports with age-appropriate and imaging modality–appropriate benchmark prevalence data would have less spine-related health care utilization, as measured by our primary outcome, spine-related relative value units (RVUs) (eAppendix 1 in Supplement 1).10,11 RVUs are based on Current Procedural Terminology (CPT)12 and provide a common metric for comparing health care utilization resulting from physician services.10 We also report the impact of the intervention on the prespecified secondary outcome of subsequent opioid prescriptions and prespecified subgroup analyses examining initial (index) imaging type and index report findings.

    Methods
    Study Design

    We conducted a multicenter, stepped-wedge, cluster randomized clinical trial assigning primary care clinics at 4 large health systems to when they would begin receiving lumbar spine imaging reports containing age-appropriate and modality-appropriate epidemiological benchmarks for common imaging findings. We previously published our study protocol, and it is available in Supplement 2.13 We designed LIRE to be highly pragmatic (eAppendix 2 in Supplement 1)14 to measure effects in routine care settings. We chose clinic-level cluster randomization because of the strong concern regarding contamination from intervention PCPs to control PCPs. We chose a stepped-wedge randomization because of the appeal of all clusters receiving the intervention by the end of the trial, facilitating implementation and the ability to perform both within-cluster (ie, before and after) and between-cluster comparisons.

    Each health care system’s institutional review board or ethics committee reviewed the project, and all institutional review boards classified our study as minimal risk, granting waivers of both informed consent and Health Insurance Portability and Accountability Act authorization. This study followed the Consolidated Standards of Reporting Trials (CONSORT) reporting guideline.

    Participants

    We enrolled clinics and their patients at 4 integrated health care systems: Kaiser Permanente Northern California; Henry Ford Health System in Michigan; Kaiser Permanente Washington; and Mayo Clinic Health System in Minnesota and Wisconsin. These systems have comprehensive electronic medical record (EMR) systems to capture health care utilization data.

    Clinic, PCP, and Patient Eligibility Criteria

    At each system, we identified adult primary care clinics and their physicians in family medicine, general internal medicine, and associated mid-level clinicians. We defined a LIRE clinician as a PCP whose main practice was at 1 clinic providing primary care13 and who ordered at least 1 qualifying imaging examination during the study period. We enrolled patients aged 18 years and older whose PCP from an eligible clinic ordered an imaging test of the lumbar spine between October 1, 2013, and September 30, 2016. We included all patients receiving eligible imaging studies at participating clinics who had not had lumbar spine imaging within the prior 12 months. We excluded only those patients who had opted out of research studies.

    Patient Identification

    We identified eligible patients and PCPs using the electronic ordering systems. When a PCP ordered an eligible examination, the system automatically determined whether the patient, PCP, and clinic were eligible.

    Randomization

    We used a stepped-wedge randomization scheme, randomly assigning clinics in each system to begin receiving the intervention at 1 of 5 dates at 6-month intervals from April 2014 through April 2016. We classified clinics in tertiles by their number of PCPs. The data coordinating center randomly selected clinics using urn-based randomization (without replacement) stratified by system and clinic size stratified by tertile (small, medium, and large). Clinic sizes were represented equally in each randomization wave. Because of the stepped-wedge temporal randomization scheme, we labeled clinics control if inclusion of the intervention text had not started and intervention after starting inclusion of the intervention text. Masking of the participating clinics was not feasible because of the nature of the intervention. Except for the biostatistician who received and cleaned the data, all investigators at the data coordinating center remained masked to clinic and participant assignment until the final stages of data analysis.

    Procedures

    The intervention text consisted of age-specific and modality-specific epidemiological benchmarks indicating the prevalence of common findings from imaging in people without back pain (eAppendix 3 in Supplement 1).5,6,15 Using an automated approach through either the radiology information system or the EMR, we inserted the intervention text into lumbar spine imaging reports at intervention clinics. PCPs in control clinics received usual imaging reports.

    Data and Collection Methods

    We collected all data passively from the EMR and electronic administrative data systems. We performed 2 types of data queries from each system. To verify that the systems deployed the intervention appropriately, we queried systems 2 to 4 weeks after the start of each randomization wave for all patients who received an eligible lumbar imaging study. Text matching verified that the reports contained the correct intervention text. One year after the first randomization wave and then every 6 months thereafter, we performed an additional query that included safety and outcome variables. Systems submitted both types of queries as limited data sets (deidentified except for dates of service) to the data coordinating center, providing unique study identifiers for each patient.

    We collected diagnosis and utilization data for patients 12 months before index imaging to characterize the cohort at the patient level. Each health system provided prescription data using national drug code or a similar classification from their pharmacy databases. This National Institutes of Health–sponsored trial required the collection of race and ethnicity data, which we obtained through the EMR.

    Outcomes

    Our primary outcome was the cumulative spine-related RVUs 365 days after index imaging. Spine-related RVUs are a composite measure of back pain interventions that combine the overall intensity of resource utilization for back pain care in a single metric.12 Our summary spine-related RVU incorporated procedures (CPT codes), diagnoses (International Classification of Diseases, Ninth Revision, Clinical Modification [ICD-9-CM]16 and International Statistical Classification of Diseases, Tenth Revision, Clinical Modification [ICD-10-CM]17 codes), PCP visits, and inpatient hospitalizations and was based on a validated algorithm.18 eAppendix 1 in Supplement 1 provides examples of spine-related procedures and associated RVUs. To obtain a spine-related summary RVU from CPT and ICD-9-CM and ICD-10-CM codes, we used an existing validated algorithm when possible and used a modified version for codes not accounted for by the algorithm.18,19 We aggregated relevant CPT codes through 1 year after the index imaging test to obtain total spine-related RVUs. The data coordinating center performed all calculations for assessing spine-related RVUs.

    We listed the following prespecified secondary outcomes in our published protocol: (1) an indicator of opioid prescribing after the index imaging; (2) cumulative spine-related total RVUs 2 years after index imaging; (3) subsequent advanced imaging (ie, number of magnetic resonance imaging [MRI] or computed tomography [CT] studies) within 90 days and 12 months after index imaging study; (4) spine injections and spine surgeries; and (5) other back-related medical costs during 2 years. In our original study protocol, the opioid outcome was the number of patients with a subsequent opioid prescription written by a study PCP. However, following discussions among the study team, we concluded that the total morphine equivalent dose (MED) prescribed per patient would be a better metric and thus included the number of MEDs prescribed per patient as the opioid outcome in our protocol paper. However, we were unable to obtain the necessary data for this detailed calculation. Instead, we analyzed whether patients had received an opioid prescription from a LIRE PCP within 1 year of index imaging; this was the outcome in our pilot project.6 We also report whether an opioid prescription was received within 90 days of index imaging, an outcome not prespecified on ClinicalTrials.gov.

    Extracting Imaging Results

    We used machine learning natural language processing to extract imaging findings from radiology text reports.20 We identified common imaging findings that are likely less clinically important (eg, disc bulge, disc space narrowing) vs likely more important (eg, moderate to severe spinal canal stenosis, nerve root compression (eAppendix 4 in Supplement 1).1,21

    Statistical Analysis

    To evaluate the impact of the intervention, we used multilevel linear mixed-effects models or generalized linear mixed models that cluster on clinic and then PCP within clinic, coupled with the use of robust standard errors for all primary and secondary outcome measures (Supplement 2). In secondary analyses, we used generalized estimating equations, adopting simple exchangeable correlation models at the clinic level to determine whether conclusions were sensitive to model specification (eAppendix 5 in Supplement 1). All analyses used the intention-to-treat principle.13

    We used a log transformation of RVU [log(RVU + 1)] in primary outcome models to address right skew of the utilization data. A constant (ie, 1) was added to RVU prior to transformation so that participants with 0 RVUs could be included in the analyses. We conducted sensitivity analyses that varied the constant added to RVU before the transformation (eAppendix 5 in Supplement 1). We also constructed a model examining subsequent RVUs in a subgroup of patients from clinics in which patients were less likely to have sought outside care who had utilization within their system through at least 12 months to address the issue of care received out of system.

    We used a similar analytic approach for opioid prescriptions as we used for spine-related RVUs but adapted generalized linear models to use logistic regression for this binary outcome. Realizing the potential importance of confounding due to secular trends in opioid prescribing, we conducted additional post hoc opioid analyses exploring sensitivity to alternative modeling of time. We also performed analyses on an outcome that incorporated opioid prescriptions from both LIRE and non-LIRE PCPs.

    We had 2 prespecified subgroup analyses.13 We used findings extracted from the reports to determine whether the findings in the imaging report influenced the effects of the intervention. We also examined whether the intervention effect was modified by modality of index imaging. We tested these hypotheses as interaction terms using the Wald test.

    A post hoc subgroup analysis distinguished between those patients who were and were not prior opioid users because the intervention might have been more likely to prevent opioid prescriptions from being written for opioid-naive patients. We defined prior use as at least 1 opioid prescription written within 120 days before the index imaging date, and we included an interaction term of prior opioid prescription status with intervention status in those models.22 We used model results and patient covariates to calculate predicted RVUs and predicted probability of opioid prescription for each participant under both the control and intervention conditions and aggregated the results to report median adjusted RVUs and adjusted opioid prescriptions by intervention status and subgroups.

    We used SAS software version 9.4 (SAS Institute) for all analyses. Statistical significance was set at P < .05, and all tests were 2-tailed.

    Power for Primary Outcome

    We calculated statistical power for the primary outcome, spine-related RVUs.13 The study had 89% power to detect reductions of 5.0% or greater.

    Data Safety Monitoring

    Two external safety officers monitored emergency department visits within 90 days and deaths within 6 months of index imaging. The safety officers used absolute relative risk ratio monitoring thresholds of 1.15 and 1.10 for comparing 90-day emergency department visit and death rates by intervention group, with adjustment for patient-specific characteristics (ie, age, sex, Charlson comorbidity index23), health care system, image modality, time, season, and clinic size.24

    Results

    We randomly allocated intervention start dates to 98 clinics with 3278 PCPs and 250 401 patients. A total of 11 515 patients were excluded for the following reasons: prior lumbar spine image within 12 months (11 149 [96.8%]), imaging report finalization date more than 4 days after image completion date (354 [3.1%]), image completion date prior to report finalization date (3 [<0.1%]), and unable to link to utilization data (9 [0.1%]). This resulted in a final sample of 238 886 patients (95.4%; 137 373 [57.5%] women; 105 497 [44.2%] aged >60 years) with 3257 PCPs (99.4%). Three health systems were of comparable size and enrolled 41 882 patients (17.5%) from 936 PCPs (28.7%) while the fourth health system enrolled 197 004 patients (82.5%) from 2321 PCPs (71.3%) (Figure 1). We did not observe any substantial differences in the baseline characteristics between the control and intervention groups (Table).

    Our primary outcome, 12-month spine-related RVU, was not significantly different for the intervention group compared with the control group (adjusted median [interquartile range], 3.53 [2.68-5.08] vs 3.56 [2.71-5.12]; difference, −0.7%; 95% CI, −2.9% to 1.5%; P = .54) (Figure 2). Injections and surgery accounted for a higher proportion of subsequent spine-related RVUs for patients who had magnetic resonance imaging or computed tomography for their index examination compared with radiographs, while physical therapy and imaging were proportionally higher for patients who had radiographs as the index imaging test (eAppendix 7 in Supplement 1).

    Our prespecified secondary outcome, opioid prescriptions by a LIRE PCP within 1 year of index imaging, demonstrated a small but statistically significant reduction in the odds of receiving at least 1 prescription for an opioid for patients in the intervention group compared with patients in the control group (adjusted opioid proportion, 36.2% vs 37.0%; odds ratio, 0.95; 95% CI, 0.91-1.00; P = .04) (Figure 3). Sensitivity analyses with alternative modeling of time yielded similar results (Figure 3). Comparison of opioid prescribing between control and intervention groups within 90 days following index imaging showed a similar small reduction in the odds of receiving an opioid prescription for the intervention group compared with the control group (adjusted opioid proportion, 28.9% vs 29.8%; odds ratio, 0.95; 95% CI, 0.90-0.99; P = .02) (eAppendix 6 in Supplement 1). Safety monitoring demonstrated no evidence of increased deaths or emergency department visits in the intervention vs control group within 6 months of the index test (adjusted emergency department visit rate, 11.1% vs 11.3%; OR, 0.98; 95% CI, 0.94-1.01) (Figure 4).

    The prespecified subgroup analysis of whether the intervention differentially affected spine-related RVUs by imaging modality revealed that the small number of patients (943 [0.4%]) of patients who had computed tomography as the index imaging had markedly lower subsequent median RVUs if exposed to the intervention (mean difference, −29.3%; 95% CI,−42.1% to −13.5%). The nearly 20% of patients (45 508 [19.1%]) who had magnetic resonance imaging had lower subsequent RVUs in the intervention group (difference, −3.4%; 95% CI, −8.3% to 1.8%), although this was not statistically significant (Figure 2). The second prespecified subgroup analysis that examined whether image finding type differentially affected spine-related RVUs revealed no differences in subsequent median RVUs in the intervention compared with the control group (Figure 2).

    In a post hoc subgroup analysis, the adjusted proportion of control patients without a prior opioid prescription who received an opioid prescription from a LIRE PCP within 1 year following index imaging was 25% compared with 72% for control patients with a prior opioid prescription. However, there was no intervention effect modification by prior opioid prescription status (test for effect modification, P = .58) (Figure 3). When we included prescriptions from non-LIRE PCPs who were not exposed to the intervention in the 1-year opioid outcome, the intervention effect was attenuated (adjusted opioid proportion, 47.1% intervention vs 47.5% control; OR, 0.98; 95% CI, 0.94-1.02; P = .27) (Figure 3).

    Discussion

    The LIRE intervention did not reduce subsequent spine-related RVUs for the population as a whole. However, patients in the intervention group were less likely (OR, 0.95; 95% CI, 0.90-0.99; P = .02) to receive a subsequent opioid prescription compared with patients not receiving the intervention. The intervention also reduced subsequent spine-related RVUs for the small proportion of patients with CT as the index imaging.

    Pragmatic trials must be simple to implement and the populations relatively unselected. Thus, a negative primary result is not unusual.25-27 This suggests the likely importance of heterogeneous intervention effects, prespecified subgroup analyses, and prespecified secondary outcomes.

    An explanation for the differential effect by imaging modality is that patients undergoing CT for their index imaging were more likely to receive back pain interventions than patients receiving other modalities, and thus, the intervention was more effective at reducing subsequent interventions in patients who were most likely to receive those interventions in the first place (eAppendix 7 in Supplement 1).

    Our finding of no greater subsequent emergency department visits and deaths in the intervention group provides reassurance that the intervention did not cause deleterious undertreatment. Given the climate of overdiagnosis and overtreatment of back pain in the United States, undertreatment may be less likely to occur in the United States than elsewhere. Our intervention provided an opportunity to increase the knowledge of patients and health care professionals. Because we did not detect any harm of the intervention and we did detect a possible benefit, including the intervention should safely allow patients and health care professionals to make better informed decisions.

    Finally, our primary null result may have been different if we had studied different health systems. For example, if we had enrolled clinics with higher baseline utilization of tests for back pain patients, we may have found a positive result.

    Limitations

    This study has limitations. Opioid prescribing decreased in the United States during our study.28 Although we made multiple efforts to account for this potential confounding in our modeling, residual confounding may exist.

    Because we did not collect patient-reported outcomes, we cannot comment on outcomes such as functional status, pain, or psychosocial functioning. The decision not to collect patient-reported data was deliberate, based on the recognition that it could jeopardize the feasibility of this large pragmatic trial of more than 250 000 patients.

    We also did not capture patient care not included in the EMRs. However, we found similar results to those of our primary analysis when we examined subsequent RVUs from patients less likely to seek outside care (eAppendix 5 in Supplement 1). Previous studies have shown high degrees of accuracy when EMR data were validated by manual medical record reviews.29

    All of our participating health systems were integrated delivery systems and nonprofit. There is evidence that nonprofit hospitals may be less responsive to the type of intervention that we tested than for-profit hospitals.30 However, this conservative bias emphasizes the robustness of the positive impact that we observed with respect to opioid prescribing. Our findings may also not be generalizable to systems having greater restrictions on advanced imaging. We do not know the indication for imaging, including whether the patient had a red flag, so we cannot comment on the appropriateness.

    Conclusions

    In this study, adding benchmark prevalence information for spine imaging findings did not reduce subsequent spine-related RVUs, but it slightly reduced the likelihood of subsequent opioid prescribing, an important prespecified secondary outcome. Reporting benchmark information is a fundamental change to the imaging reporting paradigm that may be relevant for other conditions and could easily be applied to other diagnostic tests (eg, other imaging tests, genetic testing). Finally, unmeasured benefits of the intervention may result from patients and health care professionals having a better understanding of the clinical meaning of imaging findings.

    Back to top
    Article Information

    Accepted for Publication: June 12, 2020.

    Published: September 4, 2020. doi:10.1001/jamanetworkopen.2020.15713

    Open Access: This is an open access article distributed under the terms of the CC-BY License. © 2020 Jarvik JG et al. JAMA Network Open.

    Corresponding Author: Jeffrey G. Jarvik, MD, MPH, Department of Radiology, University of Washington, 325 Ninth Ave, Box 359728, Seattle, WA 98104-2499 (jarvikj@uw.edu).

    Author Contributions: Dr Jarvik had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

    Concept and design: Jarvik, Kallmes, Deyo, Comstock, Turner, Bresnahan, Heagerty.

    Acquisition, analysis, or interpretation of data: Jarvik, Meier, James, Gold, Tan, Kessler, Suri, Cherkin, Sherman, Halabi, Comstock, Luetmer, Avins, Rundell, Griffith, Friedly, Lavallee, Stephens, Turner, Bresnahan, Heagerty.

    Drafting of the manuscript: Jarvik, Meier, Gold, Suri, Lavallee, Stephens, Turner, Heagerty.

    Critical revision of the manuscript for important intellectual content: Jarvik, Meier, James, Gold, Tan, Kessler, Suri, Kallmes, Cherkin, Deyo, Sherman, Halabi, Comstock, Luetmer, Avins, Rundell, Griffith, Friedly, Turner, Bresnahan, Heagerty.

    Statistical analysis: Jarvik, Meier, Gold, Tan, Kessler, Comstock, Stephens, Heagerty.

    Obtained funding: Jarvik, Comstock, Avins, Heagerty.

    Administrative, technical, or material support: Jarvik, James, Tan, Suri, Cherkin, Deyo, Halabi, Luetmer, Lavallee, Stephens, Heagerty.

    Supervision: Jarvik, James, Kessler, Kallmes, Luetmer, Lavallee, Heagerty.

    Conflict of Interest Disclosures: Dr Jarvik reported receiving royalties from Springer Publishing and Wolters/Kluwer/UpToDate and receiving travel reimbursement from GE–Association of University Radiologists outside the submitted work. Dr Tan reported being employed by Flatiron Health and owning stock in Roche outside the submitted work. Dr Deyo reported having an endowed professorship funded by Kaiser Permanente and receiving personal fees from UpToDate outside the submitted work. Dr Rundell reported receiving grants from the Institute of Translational Health Sciences, the Center for Large Data Research and Data Sharing in Rehabilitation, the Center on Health Services Training and Research, and the Scan│Design Foundation; having a contract with the Agency for Healthcare Research and Quality; and receiving personal fees from the Department of Defense and ATI Physical Therapy outside the submitted work. Dr Friedly reported receiving grants from the Department of Defense and salary support from the American Academy of Physical Medicine and Rehabilitation for serving as editor in chief outside the submitted work. No other disclosures were reported.

    Funding/Support: This work was supported within the National Institutes of Health (NIH) Health Care Systems Research Collaboratory by the NIH Common Fund through cooperative agreement U24AT009676 from the Office of Strategic Coordination within the Office of the NIH Director and cooperative agreements UH2AT007766 and UH3AR066795 from the National Institute of Arthritis and Musculoskeletal and Skin Diseases. It was also supported by the University of Washington Clinical Learning, Evidence, And Research Center for Musculoskeletal Disorders funded by NIH/National Institute of Arthritis and Musculoskeletal and Skin Diseases grant P30AR072572.

    Role of the Funder/Sponsor: The NIH Healthcare Systems Collaboratory provided oversight of the design and conduct of the study, the collection, management, analysis, and interpretation of the data. They did not participate in the preparation, review, or approval of the manuscript, nor the decision to submit the manuscript for publication.

    Disclaimer: The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

    Data Sharing Statement: See Supplement 3.

    References
    1.
    Jarvik  JJ, Hollingworth  W, Heagerty  P, Haynor  DR, Deyo  RA.  The Longitudinal Assessment of Imaging and Disability of the Back (LAIDBack) Study: baseline data.   Spine (Phila Pa 1976). 2001;26(10):1158-1166. doi:10.1097/00007632-200105150-00014PubMedGoogle ScholarCrossref
    2.
    Brinjikji  W, Luetmer  PH, Comstock  B,  et al.  Systematic literature review of imaging features of spinal degeneration in asymptomatic populations.   AJNR Am J Neuroradiol. 2015;36(4):811-816.PubMedGoogle ScholarCrossref
    3.
    Jarvik  JG, Gold  LS, Comstock  BA,  et al.  Association of early imaging for back pain with clinical outcomes in older adults.   JAMA. 2015;313(11):1143-1153. doi:10.1001/jama.2015.1871PubMedGoogle ScholarCrossref
    4.
    Graves  JM, Fulton-Kehoe  D, Jarvik  JG, Franklin  GM.  Health care utilization and costs associated with adherence to clinical practice guidelines for early magnetic resonance imaging among workers with acute occupational low back pain.   Health Serv Res. 2014;49(2):645-665. doi:10.1111/1475-6773.12098PubMedGoogle ScholarCrossref
    5.
    Roland  M, van Tulder  M.  Should radiologists change the way they report plain radiography of the spine?   Lancet. 1998;352(9123):229-230. doi:10.1016/S0140-6736(97)11499-4PubMedGoogle ScholarCrossref
    6.
    McCullough  BJ, Johnson  GR, Martin  BI, Jarvik  JG.  Lumbar MR imaging and reporting epidemiology: do epidemiologic data in reports affect clinical management?   Radiology. 2012;262(3):941-946. doi:10.1148/radiol.11110618PubMedGoogle ScholarCrossref
    7.
    Fried  JG, Andrew  AS, Ring  NY, Pastel  DA.  Changes in primary care health care utilization after inclusion of epidemiologic data in lumbar spine MR imaging reports for uncomplicated low back pain.   Radiology. 2018;287(2):563-569. doi:10.1148/radiol.2017170722PubMedGoogle ScholarCrossref
    8.
    Karran  EL, Yau  YH, Hillier  SL, Moseley  GL.  The reassuring potential of spinal imaging results: development and testing of a brief, psycho-education intervention for patients attending secondary care.   Eur Spine J. 2018;27(1):101-108. doi:10.1007/s00586-017-5389-8PubMedGoogle ScholarCrossref
    9.
    Medalian  Y, Moseley  GL, Karran  EL.  An online investigation into the impact of adding epidemiological information to imaging reports for low back pain.   Scand J Pain. 2019;19(3):629-633. doi:10.1515/sjpain-2019-0023PubMedGoogle ScholarCrossref
    10.
    Hsiao  WC, Braun  P, Dunn  D, Becker  ER.  Resource-based relative values: an overview.   JAMA. 1988;260(16):2347-2353. doi:10.1001/jama.1988.03410160021004PubMedGoogle ScholarCrossref
    11.
    Hsiao  WC, Braun  P, Yntema  D, Becker  ER.  Estimating physicians’ work for a resource-based relative-value scale.   N Engl J Med. 1988;319(13):835-841. doi:10.1056/NEJM198809293191305PubMedGoogle ScholarCrossref
    12.
    American Medical Association. CPT (Current Procedural Terminology). Accessed August 4, 2020. https://www.ama-assn.org/amaone/cpt-current-procedural-terminology
    13.
    Jarvik  JG, Comstock  BA, James  KT,  et al.  Lumbar Imaging With Reporting Of Epidemiology (LIRE)—protocol for a pragmatic cluster randomized trial.   Contemp Clin Trials. 2015;45(Pt B):157-163. doi:10.1016/j.cct.2015.10.003PubMedGoogle ScholarCrossref
    14.
    Johnson  KE, Neta  G, Dember  LM,  et al.  Use of PRECIS ratings in the National Institutes of Health (NIH) Health Care Systems Research Collaboratory.   Trials. 2016;17:32. doi:10.1186/s13063-016-1158-yPubMedGoogle ScholarCrossref
    15.
    Brinjikji  W, Diehn  FE, Jarvik  JG,  et al.  MRI findings of disc degeneration are more prevalent in adults with low back pain than in asymptomatic controls: a systematic review and meta-analysis.   AJNR Am J Neuroradiol. 2015;36(12):2394-2399. doi:10.3174/ajnr.A4498PubMedGoogle ScholarCrossref
    16.
    World Health Organization.  International Classification of Diseases, Ninth Revision (ICD-9). World Health Organization; 1977.
    17.
    World Health Organization.  International Statistical Classification of Diseases, Tenth Revision (ICD-10). World Health Organization; 1992.
    18.
    Martin  B, Mirza  SK, Lurie  JD, Tosteson  ANA, Deyo  RA. Validation of an administrative coding algorithm to identify back-related degenerative diagnoses. Paper presented at: International Society for the Study of the Lumbar Spine (ISSLS); May 14, 2013; Scottsdale, AZ.
    19.
    Martin  BI, Mirza  SK, Franklin  GM, Lurie  JD, MacKenzie  TA, Deyo  RA.  Hospital and surgeon variation in complications and repeat surgery following incident lumbar fusion for common degenerative diagnoses.   Health Serv Res. 2013;48(1):1-25. doi:10.1111/j.1475-6773.2012.01434.xPubMedGoogle ScholarCrossref
    20.
    Tan  WK, Hassanpour  S, Heagerty  PJ,  et al.  Comparison of natural language processing rules-based and machine-learning systems to identify lumbar spine imaging findings related to low back pain.   Acad Radiol. 2018;25(11):1422-1432. doi:10.1016/j.acra.2018.03.008PubMedGoogle ScholarCrossref
    21.
    Jarvik  JG, Hollingworth  W, Heagerty  PJ, Haynor  DR, Boyko  EJ, Deyo  RA.  Three-year incidence of low back pain in an initially asymptomatic cohort: clinical and imaging risk factors.   Spine (Phila Pa 1976). 2005;30(13):1541-1548. doi:10.1097/01.brs.0000167536.60002.87PubMedGoogle ScholarCrossref
    22.
    Turner  JA, Shortreed  SM, Saunders  KW, LeResche  L, Von Korff  M.  Association of levels of opioid use with pain and activity interference among patients initiating chronic opioid therapy: a longitudinal study.   Pain. 2016;157(4):849-857. doi:10.1097/j.pain.0000000000000452PubMedGoogle ScholarCrossref
    23.
    Charlson  M, Szatrowski  TP, Peterson  J, Gold  J.  Validation of a combined comorbidity index.   J Clin Epidemiol. 1994;47(11):1245-1251. doi:10.1016/0895-4356(94)90129-5PubMedGoogle ScholarCrossref
    24.
    Quan  H, Li  B, Couris  CM,  et al.  Updating and validating the Charlson comorbidity index and score for risk adjustment in hospital discharge abstracts using data from 6 countries.   Am J Epidemiol. 2011;173(6):676-682. doi:10.1093/aje/kwq433PubMedGoogle ScholarCrossref
    25.
    Dember  LM, Lacson  E  Jr, Brunelli  SM,  et al.  The TiME trial: a fully embedded, cluster-randomized, pragmatic trial of hemodialysis session duration.   J Am Soc Nephrol. 2019;30(5):890-903. doi:10.1681/ASN.2018090945PubMedGoogle ScholarCrossref
    26.
    Huang  SS, Septimus  E, Kleinman  K,  et al; ABATE Infection Trial Team.  Chlorhexidine versus routine bathing to prevent multidrug-resistant organisms and all-cause bloodstream infections in general medical and surgical units (ABATE Infection trial): a cluster-randomised trial.   Lancet. 2019;393(10177):1205-1215. doi:10.1016/S0140-6736(18)32593-5PubMedGoogle ScholarCrossref
    27.
    Coronado  GD, Petrik  AF, Vollmer  WM,  et al.  Effectiveness of a mailed colorectal cancer screening outreach program in community health clinics: the STOP CRC cluster randomized clinical trial.   JAMA Intern Med. 2018;178(9):1174-1181. doi:10.1001/jamainternmed.2018.3629PubMedGoogle ScholarCrossref
    28.
    Pezalla  EJ, Rosen  D, Erensen  JG, Haddox  JD, Mayne  TJ.  Secular trends in opioid prescribing in the USA.   J Pain Res. 2017;10:383-387. doi:10.2147/JPR.S129553PubMedGoogle ScholarCrossref
    29.
    Patel  NK, Moses  RA, Martin  BI, Lurie  JD, Mirza  SK.  Validation of using claims data to measure safety of lumbar fusion surgery.   Spine (Phila Pa 1976). 2017;42(9):682-691. doi:10.1097/BRS.0000000000001879PubMedGoogle ScholarCrossref
    30.
    Horwitz  JR.  Making profits and providing care: comparing nonprofit, for-profit, and government hospitals.   Health Aff (Millwood). 2005;24(3):790-801. doi:10.1377/hlthaff.24.3.790PubMedGoogle ScholarCrossref
    ×