Comparison of Antifungal Prophylaxis Drugs in Patients With Hematological Disease or Undergoing Hematopoietic Stem Cell Transplantation: A Systematic Review and Network Meta-analysis | Stem Cell Transplantation | JAMA Network Open | JAMA Network
[Skip to Navigation]
Sign In
Figure 1.  Schematic of the Network of Evidence Used in Network Meta-analysis for Invasive Fungal Infections
Schematic of the Network of Evidence Used in Network Meta-analysis for Invasive Fungal Infections

AMB indicates conventional amphotericin B; AMBL, liposomal amphotericin B; KTCZ, ketoconazole; FLCZ, fluconazole; ITCZ, itraconazole; VOCZ, voriconazole; POCZ, posaconazole; CASP, caspofungin; and MCFG, micafungin.

Figure 2.  Forest Plot of Invasive Fungal Infections
Forest Plot of Invasive Fungal Infections

The dotted line indicates null effect; diamonds, relative risk (RR); and black whiskers, 95% CI; red whiskers, 95% predicted interval (PrI); AMB, conventional amphotericin B; AMBL, liposomal amphotericin B; KTCZ, ketoconazole; FLCZ, fluconazole; ITCZ, itraconazole; VOCZ, voriconazole; POCZ, posaconazole; CASP, caspofungin; and MCFG, micafungin.

Table 1.  Basic Characteristics of Included Studies
Basic Characteristics of Included Studies
Table 2.  SUCRA Values and Mean Rank for All Outcomes
SUCRA Values and Mean Rank for All Outcomes
Table 3.  Tests for Inconsistency, Heterogeneity, and Small-Study Effects
Tests for Inconsistency, Heterogeneity, and Small-Study Effects
1.
Maertens  JA, Girmenia  C, Brüggemann  RJ,  et al; European Conference on Infections in Leukaemia (ECIL), a joint venture of the European Group for Blood and Marrow Transplantation (EBMT), the European Organization for Research and Treatment of Cancer (EORTC), the Immunocompromised Host Society (ICHS) and; European Conference on Infections in Leukaemia (ECIL), a joint venture of the European Group for Blood and Marrow Transplantation (EBMT), the European Organization for Research and Treatment of Cancer (EORTC), the Immunocompromised Host Society (ICHS) and the European LeukemiaNet (ELN).  European guidelines for primary antifungal prophylaxis in adult haematology patients: summary of the updated recommendations from the European Conference on Infections in Leukaemia.   J Antimicrob Chemother. 2018;73(12):3221-3230. doi:10.1093/jac/dky286 PubMedGoogle Scholar
2.
Wang  J, Zhan  P, Zhou  R,  et al.  Prophylaxis with itraconazole is more effective than prophylaxis with fluconazole in neutropenic patients with hematological malignancies: a meta-analysis of randomized-controlled trials.   Med Oncol. 2010;27(4):1082-1088. doi:10.1007/s12032-009-9339-0 PubMedGoogle ScholarCrossref
3.
Xu  SX, Shen  JL, Tang  XF, Feng  B, Xu  HQ.  Newer antifungal agents micafungin and voriconazole for fungal infection prevention during hematopoietic cell transplantation: a meta-analysis.   Eur Rev Med Pharmacol Sci. 2016;20(2):381-390.PubMedGoogle Scholar
4.
Bow  EJ, Vanness  DJ, Slavin  M,  et al.  Systematic review and mixed treatment comparison meta-analysis of randomized clinical trials of primary oral antifungal prophylaxis in allogeneic hematopoietic cell transplant recipients.   BMC Infect Dis. 2015;15:128. doi:10.1186/s12879-015-0855-6 PubMedGoogle ScholarCrossref
5.
Cipriani  A, Higgins  JP, Geddes  JR, Salanti  G.  Conceptual and technical challenges in network meta-analysis.   Ann Intern Med. 2013;159(2):130-137. doi:10.7326/0003-4819-159-2-201307160-00008 PubMedGoogle ScholarCrossref
6.
Hutton  B, Salanti  G, Caldwell  DM,  et al.  The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: checklist and explanations.   Ann Intern Med. 2015;162(11):777-784. doi:10.7326/M14-2385PubMedGoogle ScholarCrossref
7.
Sterne  JAC, Savović  J, Page  MJ,  et al.  RoB 2: a revised tool for assessing risk of bias in randomised trials.   BMJ. 2019;366:l4898. doi:10.1136/bmj.l4898 PubMedGoogle ScholarCrossref
8.
Chaimani  A, Higgins  JP, Mavridis  D, Spyridonos  P, Salanti  G.  Graphical tools for network meta-analysis in STATA.   PLoS One. 2013;8(10):e76654. doi:10.1371/journal.pone.0076654 PubMedGoogle Scholar
9.
White  IR.  Multivariate random-effects meta-regression: updates to mvmeta.   The Stata Journal 2011;11:255-70. doi:10.1177/1536867X1101100206 Google ScholarCrossref
10.
Salanti  G, Ades  AE, Ioannidis  JP.  Graphical methods and numerical summaries for presenting results from multiple-treatment meta-analysis: an overview and tutorial.   J Clin Epidemiol. 2011;64(2):163-171. doi:10.1016/j.jclinepi.2010.03.016 PubMedGoogle ScholarCrossref
11.
Higgins  JP, Jackson  D, Barrett  JK, Lu  G, Ades  AE, White  IR.  Consistency and inconsistency in network meta-analysis: concepts and models for multi-arm studies.   Res Synth Methods. 2012;3(2):98-110. doi:10.1002/jrsm.1044 PubMedGoogle ScholarCrossref
12.
Shim  S, Yoon  BH, Shin  IS, Bae  JM.  Network meta-analysis: application and practice using Stata.   Epidemiol Health. 2017;39:e2017047. doi:10.4178/epih.e2017047 PubMedGoogle Scholar
13.
Turner  RM, Davey  J, Clarke  MJ, Thompson  SG, Higgins  JP.  Predicting the extent of heterogeneity in meta-analysis, using empirical data from the Cochrane Database of Systematic Reviews.   Int J Epidemiol. 2012;41(3):818-827. doi:10.1093/ije/dys041 PubMedGoogle ScholarCrossref
14.
Akiyama  H, Mori  S, Tanikawa  S, Sakamaki  H, Onozawa  Y.  Fluconazole versus oral amphotericin B in preventing fungal infection in chemotherapy-induced neutropenic patients with haematological malignancies.   Mycoses. 1993;36(11-12):373-378. doi:10.1111/j.1439-0507.1993.tb00725.x PubMedGoogle ScholarCrossref
15.
Annaloro  C, Oriana  A, Tagliaferri  E,  et al.  Efficacy of different prophylactic antifungal regimens in bone marrow transplantation.   Haematologica. 1995;80(6):512-517.PubMedGoogle Scholar
16.
Behre  GF, Schwartz  S, Lenz  K,  et al.  Aerosol amphotericin B inhalations for prevention of invasive pulmonary aspergillosis in neutropenic cancer patients.   Ann Hematol. 1995;71(6):287-291. doi:10.1007/BF01697981 PubMedGoogle ScholarCrossref
17.
Benhamou  E, Hartmann  O, Noguès  C, Maraninchi  D, Valteau  D, Lemerle  J.  Does ketoconazole prevent fungal infection in children treated with high dose chemotherapy and bone marrow transplantation: results of a randomized placebo-controlled trial.   Bone Marrow Transplant. 1991;7(2):127-131.PubMedGoogle Scholar
18.
Bodey  GP, Anaissie  EJ, Elting  LS, Estey  E, O’Brien  S, Kantarjian  H.  Antifungal prophylaxis during remission induction therapy for acute leukemia fluconazole versus intravenous amphotericin B.   Cancer. 1994;73(8):2099-2106. doi:10.1002/1097-0142(19940415)73:8<2099::AID-CNCR2820730814>3.0.CO;2-N PubMedGoogle ScholarCrossref
19.
Boogaerts  M, Maertens  J, van Hoof  A,  et al.  Itraconazole versus amphotericin B plus nystatin in the prophylaxis of fungal infections in neutropenic cancer patients.   J Antimicrob Chemother. 2001;48(1):97-103. doi:10.1093/jac/48.1.97 PubMedGoogle ScholarCrossref
20.
Brincker  H.  Prophylactic treatment with miconazole in patients highly predisposed to fungal infection: a placebo-controlled double-blind study.   Acta Med Scand. 1978;204(1-2):123-128. doi:10.1111/j.0954-6820.1978.tb08410.xPubMedGoogle Scholar
21.
Brincker  H.  Prevention of mycosis in granulocytopenic patients with prophylactic ketoconazole treatment.   Mykosen. 1983;26(5):242-247. doi:10.1111/j.1439-0507.1983.tb03203.x PubMedGoogle ScholarCrossref
22.
Chaftari  AM, Hachem  RY, Ramos  E,  et al.  Comparison of posaconazole versus weekly amphotericin B lipid complex for the prevention of invasive fungal infections in hematopoietic stem-cell transplantation.   Transplantation. 2012;94(3):302-308. doi:10.1097/TP.0b013e3182577485 PubMedGoogle ScholarCrossref
23.
Chandrasekar  PH, Gatny  CM; Bone Marrow Transplantation Team.  The effect of fluconazole prophylaxis on fungal colonization in neutropenic cancer patients.   J Antimicrob Chemother. 1994;33(2):309-318. doi:10.1093/jac/33.2.309 PubMedGoogle ScholarCrossref
24.
Choi  SM, Lee  DG, Choi  JH,  et al.  Itraconazole oral solution versus fluconazole syrup for prevention of invasive fungal infections in patients receiving hematopoietic stem cell transplantation: prospective, randomized, comparative clinical trial.   Infect Chemother. 2005;37(2):71-78.Google Scholar
25.
Cornely  OA, Maertens  J, Winston  DJ,  et al.  Posaconazole vs fluconazole or itraconazole prophylaxis in patients with neutropenia.   N Engl J Med. 2007;356(4):348-359. doi:10.1056/NEJMoa061094 PubMedGoogle ScholarCrossref
26.
Donnelly  JP, Starke  ID, Galton  DA, Catovsky  D, Goldman  JM, Darrell  JH.  Oral ketoconazole and amphotericin B for the prevention of yeast colonization in patients with acute leukaemia.   J Hosp Infect. 1984;5(1):83-91. doi:10.1016/0195-6701(84)90105-1 PubMedGoogle ScholarCrossref
27.
Egger  T, Gratwohl  A, Tichelli  A,  et al.  Comparison of fluconazole with oral polyenes in the prevention of fungal infections in neutropenic patients: a prospective, randomized, single-center study.   Support Care Cancer. 1995;3(2):139-146. doi:10.1007/BF00365855 PubMedGoogle ScholarCrossref
28.
Ellis  ME, Clink  H, Ernst  P,  et al.  Controlled study of fluconazole in the prevention of fungal infections in neutropenic patients with haematological malignancies and bone marrow transplant recipients.   Eur J Clin Microbiol Infect Dis. 1994;13(1):3-11. doi:10.1007/BF02026116 PubMedGoogle ScholarCrossref
29.
Epstein  DJ, Seo  SK, Huang  YT,  et al.  Micafungin versus posaconazole prophylaxis in acute leukemia or myelodysplastic syndrome: a randomized study.   J Infect. 2018;77(3):227-234. doi:10.1016/j.jinf.2018.03.015 PubMedGoogle ScholarCrossref
30.
Estey  E, Maksymiuk  A, Smith  T,  et al.  Infection prophylaxis in acute leukemia: comparative effectiveness of sulfamethoxazole and trimethoprim, ketoconazole, and a combination of the two.   Arch Intern Med. 1984;144(8):1562-1568. doi:10.1001/archinte.1984.00350200054006 PubMedGoogle ScholarCrossref
31.
Fisher  BT, Zaoutis  T, Dvorak  CC,  et al.  Effect of caspofungin vs fluconazole prophylaxis on invasive fungal disease among children and young adults with acute myeloid leukemia: a randomized clinical trial.   JAMA. 2019;322(17):1673-1681. doi:10.1001/jama.2019.15702 PubMedGoogle ScholarCrossref
32.
Glasmacher  A, Cornely  O, Ullmann  AJ,  et al; Itraconazole Research Group of Germany.  An open-label randomized trial comparing itraconazole oral solution with fluconazole oral solution for primary prophylaxis of fungal infections in patients with haematological malignancy and profound neutropenia.   J Antimicrob Chemother. 2006;57(2):317-325. doi:10.1093/jac/dki440 PubMedGoogle ScholarCrossref
33.
Goodman  JL, Winston  DJ, Greenfield  RA,  et al.  A controlled trial of fluconazole to prevent fungal infections in patients undergoing bone marrow transplantation.   N Engl J Med. 1992;326(13):845-851. doi:10.1056/NEJM199203263261301 PubMedGoogle ScholarCrossref
34.
Hansen  RM, Reinerio  N, Sohnle  PG,  et al.  Ketoconazole in the prevention of candidiasis in patients with cancer: a prospective, randomized, controlled, double-blind study.   Arch Intern Med. 1987;147(4):710-712. doi:10.1001/archinte.1987.00370040092016 PubMedGoogle ScholarCrossref
35.
Harousseau  JL, Dekker  AW, Stamatoullas-Bastard  A,  et al.  Itraconazole oral solution for primary prophylaxis of fungal infections in patients with hematological malignancy and profound neutropenia: a randomized, double-blind, double-placebo, multicenter trial comparing itraconazole and amphotericin B.   Antimicrob Agents Chemother. 2000;44(7):1887-1893. doi:10.1128/AAC.44.7.1887-1893.2000 PubMedGoogle ScholarCrossref
36.
Hayashi  Y, Kanda  Y, Nakamae  H,  et al  Voriconazole vs itraconazole for antifungal prophylaxis in patients with GVHD: a randomized trial.   Biol Blood Marrow Transplant. 2014; 20(2):S91. doi:10.1016/j.bbmt.2013.12.117 Google ScholarCrossref
37.
Hiemenz  J, Cagnoni  P, Simpson  D,  et al.  Pharmacokinetic and maximum tolerated dose study of micafungin in combination with fluconazole versus fluconazole alone for prophylaxis of fungal infections in adult patients undergoing a bone marrow or peripheral stem cell transplant.   Antimicrob Agents Chemother. 2005;49(4):1331-1336. doi:10.1128/AAC.49.4.1331-1336.2005 PubMedGoogle ScholarCrossref
38.
Hiramatsu  Y, Maeda  Y, Fujii  N,  et al; West-Japan Hematology and Oncology Group (West-JHOG).  Use of micafungin versus fluconazole for antifungal prophylaxis in neutropenic patients receiving hematopoietic stem cell transplantation.   Int J Hematol. 2008;88(5):588-595. doi:10.1007/s12185-008-0196-y PubMedGoogle ScholarCrossref
39.
Huang  X, Chen  H, Han  M,  et al.  Multicenter, randomized, open-label study comparing the efficacy and safety of micafungin versus itraconazole for prophylaxis of invasive fungal infections in patients undergoing hematopoietic stem cell transplant.   Biol Blood Marrow Transplant. 2012;18(10):1509-1516. doi:10.1016/j.bbmt.2012.03.014 PubMedGoogle ScholarCrossref
40.
Huijgens  PC, Simoons-Smit  AM, van Loenen  AC,  et al.  Fluconazole versus itraconazole for the prevention of fungal infections in haemato-oncology.   J Clin Pathol. 1999;52(5):376-380. doi:10.1136/jcp.52.5.376 PubMedGoogle ScholarCrossref
41.
Ito  Y, Ohyashiki  K, Yoshida  I,  et al.  The prophylactic effect of itraconazole capsules and fluconazole capsules for systemic fungal infections in patients with acute myeloid leukemia and myelodysplastic syndromes: a Japanese multicenter randomized, controlled study.   Int J Hematol. 2007;85(2):121-127. doi:10.1532/IJH97.06079 PubMedGoogle ScholarCrossref
42.
Kaptan  K, Ural  AU, Cetin  T, Avcu  F, Beyan  C, Yalçin  A.  Itraconazole is not effective for the prophylaxis of fungal infections in patients with neutropenia.   J Infect Chemother. 2003;9(1):40-45. doi:10.1007/s10156-002-0207-5 PubMedGoogle ScholarCrossref
43.
Kelsey  SM, Goldman  JM, McCann  S,  et al.  Liposomal amphotericin (AmBisome) in the prophylaxis of fungal infections in neutropenic patients: a randomised, double-blind, placebo-controlled study.   Bone Marrow Transplant. 1999;23(2):163-168. doi:10.1038/sj.bmt.1701543 PubMedGoogle Scholar
44.
Kern  W, Behre  G, Rudolf  T,  et al; German AML Cooperative Group.  Failure of fluconazole prophylaxis to reduce mortality or the requirement of systemic amphotericin B therapy during treatment for refractory acute myeloid leukemia: results of a prospective randomized phase III study.   Cancer. 1998;83(2):291-301. doi:10.1002/(SICI)1097-0142(19980715)83:2<291::AID-CNCR13>3.0.CO;2-O PubMedGoogle Scholar
45.
Koh  LP, Kurup  A, Goh  YT, Fook-Chong  SM, Tan  PH.  Randomized trial of fluconazole versus low-dose amphotericin B in prophylaxis against fungal infections in patients undergoing hematopoietic stem cell transplantation.   Am J Hematol. 2002;71(4):260-267. doi:10.1002/ajh.10234 PubMedGoogle Scholar
46.
Lass-Flörl  C, Gunsilius  E, Gastl  G,  et al.  Fungal colonization in neutropenic patients: a randomized study comparing itraconazole solution and amphotericin B solution.   Ann Hematol. 2003;82(9):565-569. doi:10.1007/s00277-003-0666-5 PubMedGoogle Scholar
47.
Laverdière  M, Rotstein  C, Bow  EJ,  et al.  Impact of fluconazole prophylaxis on fungal colonization and infection rates in neutropenic patients: the Canadian Fluconazole Study.   J Antimicrob Chemother. 2000;46(6):1001-1008. doi:10.1093/jac/46.6.1001 PubMedGoogle Scholar
48.
Mahmoud  AM.  Micafungin as a Prophylactic Antifungal During Induction Phase of Chemotherapy for Pediatric Acute Lymphoblastic Leukemia. Master’s thesis. Cairo University; 2016.
49.
Marks  DI, Pagliuca  A, Kibbler  CC,  et al; IMPROVIT Study Group.  Voriconazole versus itraconazole for antifungal prophylaxis following allogeneic haematopoietic stem-cell transplantation.   Br J Haematol. 2011;155(3):318-327. doi:10.1111/j.1365-2141.2011.08838.x PubMedGoogle Scholar
50.
Marr  KA, Crippa  F, Leisenring  W,  et al.  Itraconazole versus fluconazole for prevention of fungal infections in patients receiving allogeneic stem cell transplants.   Blood. 2004;103(4):1527-1533. doi:10.1182/blood-2003-08-2644 PubMedGoogle Scholar
51.
Mattiuzzi  GN, Estey  E, Raad  I,  et al.  Liposomal amphotericin B versus the combination of fluconazole and itraconazole as prophylaxis for invasive fungal infections during induction chemotherapy for patients with acute myelogenous leukemia and myelodysplastic syndrome.   Cancer. 2003;97(2):450-456. doi:10.1002/cncr.11094 PubMedGoogle Scholar
52.
Mattiuzzi  GN, Alvarado  G, Giles  FJ,  et al.  Open-label, randomized comparison of itraconazole versus caspofungin for prophylaxis in patients with hematologic malignancies.   Antimicrob Agents Chemother. 2006;50(1):143-147. doi:10.1128/AAC.50.1.143-147.2006 PubMedGoogle Scholar
53.
Mattiuzzi  GN, Cortes  J, Alvarado  G,  et al.  Efficacy and safety of intravenous voriconazole and intravenous itraconazole for antifungal prophylaxis in patients with acute myelogenous leukemia or high-risk myelodysplastic syndrome.   Support Care Cancer. 2011;19(1):19-26. doi:10.1007/s00520-009-0783-3 PubMedGoogle Scholar
54.
Menichetti  F, Del Favero  A, Martino  P,  et al; GIMEMA Infection Program, Gruppo Italiano Malattie Ematologiche dell’ Adulto.  Itraconazole oral solution as prophylaxis for fungal infections in neutropenic patients with hematologic malignancies: a randomized, placebo-controlled, double-blind, multicenter trial.   Clin Infect Dis. 1999;28(2):250-255. doi:10.1086/515129 PubMedGoogle Scholar
55.
Morgenstern  GR, Prentice  AG, Prentice  HG, Ropner  JE, Schey  SA, Warnock  DW; U.K. Multicentre Antifungal Prophylaxis Study Group.  A randomized controlled trial of itraconazole versus fluconazole for the prevention of fungal infections in patients with haematological malignancies.   Br J Haematol. 1999;105(4):901-911. doi:10.1046/j.1365-2141.1999.01465.x PubMedGoogle Scholar
56.
Nucci  M, Biasoli  I, Akiti  T,  et al.  A double-blind, randomized, placebo-controlled trial of itraconazole capsules as antifungal prophylaxis for neutropenic patients.   Clin Infect Dis. 2000;30(2):300-305. doi:10.1086/313654 PubMedGoogle Scholar
57.
Oren  I, Rowe  JM, Sprecher  H,  et al.  A prospective randomized trial of itraconazole vs fluconazole for the prevention of fungal infections in patients with acute leukemia and hematopoietic stem cell transplant recipients.   Bone Marrow Transplant. 2006;38(2):127-134. doi:10.1038/sj.bmt.1705418 PubMedGoogle Scholar
58.
Palmblad  J, Lönnqvist  B, Carlsson  B,  et al.  Oral ketoconazole prophylaxis for Candida infections during induction therapy for acute leukaemia in adults: more bacteraemias.   J Intern Med. 1992;231(4):363-370. doi:10.1111/j.1365-2796.1992.tb00945.x PubMedGoogle Scholar
59.
Park  S, Kim  K, Jang  JH,  et al.  Randomized trial of micafungin versus fluconazole as prophylaxis against invasive fungal infections in hematopoietic stem cell transplant recipients.   J Infect. 2016;73(5):496-505. doi:10.1016/j.jinf.2016.06.011 PubMedGoogle Scholar
60.
Penack  O, Schwartz  S, Martus  P,  et al.  Low-dose liposomal amphotericin B in the prevention of invasive fungal infections in patients with prolonged neutropenia: results from a randomized, single-center trial.   Ann Oncol. 2006;17(8):1306-1312. doi:10.1093/annonc/mdl128 PubMedGoogle Scholar
61.
Perfect  JR, Klotman  ME, Gilbert  CC,  et al.  Prophylactic intravenous amphotericin B in neutropenic autologous bone marrow transplant recipients.   J Infect Dis. 1992;165(5):891-897. doi:10.1093/infdis/165.5.891 PubMedGoogle Scholar
62.
Philpott-Howard  JN, Wade  JJ, Mufti  GJ, Brammer  KW, Ehninger  G; Multicentre Study Group.  Randomized comparison of oral fluconazole versus oral polyenes for the prevention of fungal infection in patients at risk of neutropenia.   J Antimicrob Chemother. 1993;31(6):973-984. doi:10.1093/jac/31.6.973 PubMedGoogle Scholar
63.
Rijnders  BJ, Cornelissen  JJ, Slobbe  L,  et al.  Aerosolized liposomal amphotericin B for the prevention of invasive pulmonary aspergillosis during prolonged neutropenia: a randomized, placebo-controlled trial.   Clin Infect Dis. 2008;46(9):1401-1408. doi:10.1086/586739 PubMedGoogle Scholar
64.
Riley  DK, Pavia  AT, Beatty  PG,  et al.  The prophylactic use of low-dose amphotericin B in bone marrow transplant patients.   Am J Med. 1994;97(6):509-514. doi:10.1016/0002-9343(94)90345-X PubMedGoogle Scholar
65.
Rotstein  C, Bow  EJ, Laverdiere  M, Ioannou  S, Carr  D, Moghaddam  N; The Canadian Fluconazole Prophylaxis Study Group.  Randomized placebo-controlled trial of fluconazole prophylaxis for neutropenic cancer patients: benefit based on purpose and intensity of cytotoxic therapy.   Clin Infect Dis. 1999;28(2):331-340. doi:10.1086/515128 PubMedGoogle Scholar
66.
Sawada  A, Sakata  N, Higuchi  B,  et al.  Comparison of micafungin and fosfluconazole as prophylaxis for invasive fungal infection during neutropenia in children undergoing chemotherapy and hematopoietic stem cell transplantation.  Article in Japanese.  Rinsho Ketsueki. 2009;50(12):1692-1699.PubMedGoogle Scholar
67.
Schaffner  A, Schaffner  M.  Effect of prophylactic fluconazole on the frequency of fungal infections, amphotericin B use, and health care costs in patients undergoing intensive chemotherapy for hematologic neoplasias.   J Infect Dis. 1995;172(4):1035-1041. doi:10.1093/infdis/172.4.1035 PubMedGoogle Scholar
68.
Schwartz  S, Behre  G, Heinemann  V,  et al.  Aerosolized amphotericin B inhalations as prophylaxis of invasive aspergillus infections during prolonged neutropenia: results of a prospective randomized multicenter trial.   Blood. 1999;93(11):3654-3661.PubMedGoogle Scholar
69.
Shen  Y, Huang  XJ, Wang  JX,  et al.  Posaconazole vs. fluconazole as invasive fungal infection prophylaxis in China: a multicenter, randomized, open-label study.   Int J Clin Pharmacol Ther. 2013;51(9):738-745. doi:10.5414/CP201880 PubMedGoogle Scholar
70.
Slavin  MA, Osborne  B, Adams  R,  et al.  Efficacy and safety of fluconazole prophylaxis for fungal infections after marrow transplantation: a prospective, randomized, double-blind study.   J Infect Dis. 1995;171(6):1545-1552. doi:10.1093/infdis/171.6.1545 PubMedGoogle Scholar
71.
Tollemar  J, Ringdén  O, Andersson  S, Sundberg  B, Ljungman  P, Tydén  G.  Randomized double-blind study of liposomal amphotericin B (Ambisome) prophylaxis of invasive fungal infections in bone marrow transplant recipients.   Bone Marrow Transplant. 1993;12(6):577-582.PubMedGoogle Scholar
72.
Ullmann  AJ, Lipton  JH, Vesole  DH,  et al.  Posaconazole or fluconazole for prophylaxis in severe graft-versus-host disease.   N Engl J Med. 2007;356(4):335-347. doi:10.1056/NEJMoa061098 PubMedGoogle Scholar
73.
van Burik  JA, Ratanatharathorn  V, Stepan  DE,  et al; National Institute of Allergy and Infectious Diseases Mycoses Study Group.  Micafungin versus fluconazole for prophylaxis against invasive fungal infections during neutropenia in patients undergoing hematopoietic stem cell transplantation.   Clin Infect Dis. 2004;39(10):1407-1416. doi:10.1086/422312 PubMedGoogle Scholar
74.
Vehreschild  JJ, Böhme  A, Buchheidt  D,  et al.  A double-blind trial on prophylactic voriconazole (VRC) or placebo during induction chemotherapy for acute myelogenous leukaemia (AML).   J Infect. 2007;55(5):445-449. doi:10.1016/j.jinf.2007.07.003 PubMedGoogle Scholar
75.
Vreugdenhil  G, Van Dijke  BJ, Donnelly  JP,  et al.  Efficacy of itraconazole in the prevention of fungal infections among neutropenic patients with hematologic malignancies and intensive chemotherapy: a double blind, placebo controlled study.   Leuk Lymphoma. 1993;11(5-6):353-358. doi:10.3109/10428199309067926 PubMedGoogle Scholar
76.
Wingard  JR, Vaughan  WP, Braine  HG, Merz  WG, Saral  R.  Prevention of fungal sepsis in patients with prolonged neutropenia: a randomized, double-blind, placebo-controlled trial of intravenous miconazole.   Am J Med. 1987;83(6):1103-1110. doi:10.1016/0002-9343(87)90949-1 PubMedGoogle Scholar
77.
Wingard  JR, Carter  SL, Walsh  TJ,  et al; Blood and Marrow Transplant Clinical Trials Network.  Randomized, double-blind trial of fluconazole versus voriconazole for prevention of invasive fungal infection after allogeneic hematopoietic cell transplantation.   Blood. 2010;116(24):5111-5118. doi:10.1182/blood-2010-02-268151 PubMedGoogle Scholar
78.
Winston  DJ, Chandrasekar  PH, Lazarus  HM,  et al.  Fluconazole prophylaxis of fungal infections in patients with acute leukemia: results of a randomized placebo-controlled, double-blind, multicenter trial.   Ann Intern Med. 1993;118(7):495-503. doi:10.7326/0003-4819-118-7-199304010-00003 PubMedGoogle Scholar
79.
Winston  DJ, Maziarz  RT, Chandrasekar  PH,  et al.  Intravenous and oral itraconazole versus intravenous and oral fluconazole for long-term antifungal prophylaxis in allogeneic hematopoietic stem-cell transplant recipients: a multicenter, randomized trial.   Ann Intern Med. 2003;138(9):705-713. doi:10.7326/0003-4819-138-9-200305060-00006 PubMedGoogle Scholar
80.
Wolff  SN, Fay  J, Stevens  D,  et al.  Fluconazole vs low-dose amphotericin B for the prevention of fungal infections in patients undergoing bone marrow transplantation: a study of the North American Marrow Transplant Group.   Bone Marrow Transplant. 2000;25(8):853-859. doi:10.1038/sj.bmt.1702233 PubMedGoogle Scholar
81.
Yamaç  K, Senol  E, Haznedar  R.  Prophylactic use of fluconazole in neutropenic cancer patients.   Postgrad Med J. 1995;71(835):284-286. doi:10.1136/pgmj.71.835.284 PubMedGoogle Scholar
82.
Young  GA, Bosly  A, Gibbs  DL, Durrant  S; Antifungal Prophylaxis Study Group.  A double-blind comparison of fluconazole and nystatin in the prevention of candidiasis in patients with leukaemia.   Eur J Cancer. 1999;35(8):1208-1213. doi:10.1016/S0959-8049(99)00102-1 PubMedGoogle Scholar
83.
Mellinghoff  SC, Panse  J, Alakel  N,  et al.  Primary prophylaxis of invasive fungal infections in patients with haematological malignancies: 2017 update of the recommendations of the Infectious Diseases Working Party (AGIHO) of the German Society for Haematology and Medical Oncology (DGHO).   Ann Hematol. 2018;97(2):197-207. doi:10.1007/s00277-017-3196-2 PubMedGoogle Scholar
84.
Keating  GM.  Posaconazole.   Drugs. 2005;65(11):1553-1567. doi:10.2165/00003495-200565110-00007 PubMedGoogle Scholar
85.
Guarascio  AJ, Slain  D.  Review of the new delayed-release oral tablet and intravenous dosage forms of posaconazole.   Pharmacotherapy. 2015;35(2):208-219. doi:10.1002/phar.1533 PubMedGoogle Scholar
86.
Pappas  PG, Kauffman  CA, Andes  DR,  et al.  Clinical practice guideline for the management of candidiasis: 2016 update by the Infectious Diseases Society of America.   Clin Infect Dis. 2016;62(4):e1-e50. doi:10.1093/cid/civ1194 PubMedGoogle Scholar
87.
Patterson  TF, Thompson  GR  III, Denning  DW,  et al.  Practice guidelines for the diagnosis and management of aspergillosis: 2016 update by the Infectious Diseases Society of America.   Clin Infect Dis. 2016;63(4):e1-e60. doi:10.1093/cid/ciw326 PubMedGoogle Scholar
88.
Leonart  LP, Tonin  FS, Ferreira  VL,  et al.  A network meta-analysis of primary prophylaxis for invasive fungal infection in haematological patients.   J Clin Pharm Ther. 2017;42(5):530-538. doi:10.1111/jcpt.12579 PubMedGoogle Scholar
89.
Zhao  YJ, Khoo  AL, Tan  G,  et al.  Network meta-analysis and pharmacoeconomic evaluation of fluconazole, itraconazole, posaconazole, and voriconazole in invasive fungal infection prophylaxis.   Antimicrob Agents Chemother. 2015;60(1):376-386. doi:10.1128/AAC.01985-15 PubMedGoogle Scholar
90.
Lee  CH, Lin  C, Ho  CL, Lin  JC.  Primary fungal prophylaxis in hematological malignancy: a network meta-analysis of randomized controlled trials.   Antimicrob Agents Chemother. 2018;62(8):e00355-e18. doi:10.1128/AAC.00355-18 PubMedGoogle Scholar
91.
Blyth  CC, Gilroy  NM, Guy  SD,  et al.  Consensus guidelines for the treatment of invasive mould infections in haematological malignancy and haemopoietic stem cell transplantation, 2014.   Intern Med J. 2014;44(12b):1333-1349. doi:10.1111/imj.12598 PubMedGoogle Scholar
92.
Ninane  J; Multicentre Study Group.  A multicentre study of fluconazole versus oral polyenes in the prevention of fungal infection in children with hematological or oncological malignancies.   Eur J Clin Microbiol Infect Dis. 1994;13(4):330-337. doi:10.1007/BF01974614 PubMedGoogle Scholar
93.
Ioannidis  JP.  Integration of evidence from multiple meta-analyses: a primer on umbrella reviews, treatment networks and multiple treatments meta-analyses.   CMAJ. 2009;181(8):488-493. doi:10.1503/cmaj.081086 PubMedGoogle Scholar
94.
Trinquart  L, Attiche  N, Bafeta  A, Porcher  R, Ravaud  P.  Uncertainty in treatment rankings: reanalysis of network meta-analyses of randomized trials.   Ann Intern Med. 2016;164(10):666-673. doi:10.7326/M15-2521 PubMedGoogle Scholar
95.
Mills  EJ, Kanters  S, Thorlund  K, Chaimani  A, Veroniki  AA, Ioannidis  JP.  The effects of excluding treatments from network meta-analyses: survey.   BMJ. 2013;347:f5195. doi:10.1136/bmj.f5195 PubMedGoogle Scholar
Limit 200 characters
Limit 25 characters
Conflicts of Interest Disclosure

Identify all potential conflicts of interest that might be relevant to your comment.

Conflicts of interest comprise financial interests, activities, and relationships within the past 3 years including but not limited to employment, affiliation, grants or funding, consultancies, honoraria or payment, speaker's bureaus, stock ownership or options, expert testimony, royalties, donation of medical equipment, or patents planned, pending, or issued.

Err on the side of full disclosure.

If you have no conflicts of interest, check "No potential conflicts of interest" in the box below. The information will be posted with your response.

Not all submitted comments are published. Please see our commenting policy for details.

Limit 140 characters
Limit 3600 characters or approximately 600 words
    Views 7,195
    Citations 0
    Original Investigation
    Infectious Diseases
    October 8, 2020

    Comparison of Antifungal Prophylaxis Drugs in Patients With Hematological Disease or Undergoing Hematopoietic Stem Cell Transplantation: A Systematic Review and Network Meta-analysis

    Author Affiliations
    • 1Department of Hematology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
    • 2The Pq Laboratory of Micro/Nano BiomeDx, Department of Biomedical Engineering, Binghamton University – SUNY, Binghamton, New York
    JAMA Netw Open. 2020;3(10):e2017652. doi:10.1001/jamanetworkopen.2020.17652
    Key Points

    Question  What primary antifungal prophylaxis drugs for patients with hematological disease or undergoing hematopoietic stem cell transplantation perform best in randomized clinical trials?

    Findings  In this systematic review and network meta-analysis of 69 randomized clinical trials that performed comparisons of individual antifungal agents in 14 789 patients, voriconazole was recommended for patients undergoing HSCT and posaconazole was recommended for patients with acute myeloid leukemia or myelodysplastic syndrome.

    Meaning  These findings may help clinicians to make antifungal prophylaxis treatment decisions.

    Abstract

    Importance  Several antifungal drugs are available for antifungal prophylaxis in patients with hematological disease or who are undergoing hematopoietic stem cell transplantation (HSCT).

    Objective  To summarize the evidence on the efficacy and adverse effects of antifungal agents using an integrated comparison.

    Data Sources  Medline, EMBASE, and the Cochrane Central Register of Controlled Clinical Trials were searched to collect all relevant evidence published in randomized clinical trials that assessed antifungal prophylaxis in patients with hematological disease. Sources were search from inception up to October 2019.

    Study Selection  Studies that compared any antifungal agent with a placebo, no antifungal agent, or another antifungal agent among patients with hematological disease or undergoing HSCT were included. Of 39 709 studies identified, 69 met the criteria for inclusion.

    Data Extraction and Synthesis  The outcome from each study was estimated using the relative risk (RR) with 95% CIs. The Mantel–Haenszel random-effects model was used. The reliability and validity of the networks were estimated by addressing inconsistencies in the evidence from comparative studies of different treatments. Data were analyzed from December 2019 to February 2020. Reporting followed the Preferred Reporting Items for Systematic Reviews and Meta-analyses for Network Meta-analysis (PRISMA-NMA) guideline.

    Main Outcomes and Measures  The primary outcomes were invasive fungal infections (IFIs) and mortality. The secondary outcomes were fungal infections, proven IFIs, invasive candidiasis, invasive aspergillosis, fungi-related death, and withdrawal owing to adverse effects of the drug.

    Results  We identified 69 randomized clinical trials that reported comparisons of 12 treatments with at total of 14 789 patients. Posaconazole was the treatment associated with the best probability of success against IFIs (surface under the cumulative ranking curve, 86.7%; mean rank, 2.5). Posaconazole treatment was associated with a significant reduction in IFIs (RR, 0.57; 95% CI, 0.42-0.79) and invasive aspergillosis (RR, 0.36; 95% CI, 0.15-0.85) compared with placebo. Voriconazole was associated with a significant reduction in invasive candidiasis (RR, 0.15; 95% CI, 0.09-0.26) compared with placebo. However, posaconazole was associated with a higher incidence of withdrawal because of the adverse effects of the drug (surface under the cumulative ranking curve, 17.5%; mean rank, 9.2). In subgroup analyses considering efficacy and tolerance, voriconazole might be the best choice for patients undergoing HSCT, especially allogenic HSCT; however, posaconazole was ranked as the best choice for patients with acute myeloid leukemia or myelodysplastic syndrome.

    Conclusions and Relevance  These findings suggest that voriconazole may be the best prophylaxis option for patients undergoing HSCT, and posaconazole may be the best prophylaxis option for patients with acute myeloid leukemia or myelodysplastic syndrome.

    Introduction

    Invasive fungal infections (IFIs) have emerged as important causes of morbidity and mortality in patients receiving myelosuppressive chemotherapy, immunosuppressive therapy, or hematopoietic stem cell transplantation (HSCT). Because of the difficulty in obtaining a timely diagnosis as well as the high morbidity and mortality associated with IFIs, antifungal prophylaxis remains a high priority in these populations at high risk of IFIs.1 Over the past decade, clinical benefits from antifungal prophylaxis have been demonstrated.2-4 However, there is no clear consensus on antifungal prophylaxis treatment between different centers and groups, particularly in the choice of the antifungal prophylaxis agents. Conventional pairwise meta-analyses based on a direct comparison are relatively limited and difficult to use to investigate antifungal prophylaxis agents. We performed a systematic review and network meta-analysis5 to gain a better understanding of the outcomes associated with and tolerance to current antifungal agents.

    Methods
    Protocol and Registration

    This systematic review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analyses for Network Meta-analysis (PRISMA-NMA) reporting guideline.6 This protocol has been registered at PROSPERO under registration number CRD42020161748.

    Literature Search

    Medline, EMBASE, and the Cochrane Central Register of Controlled Clinical Trials were searched to collect all published evidence from randomized clinical trials from inception to October 2019 that assessed primary antifungal prophylaxis in patients with hematological disease or undergoing HSCT. The search strategy is detailed in the eAppendix in the Supplement. The reference lists from all included studies and reviews were screened to identify potentially relevant evidence.

    Study Inclusion Criteria

    All available randomized clinical trials that aimed to compare any antifungal agent with a placebo, no antifungal agent, or another antifungal agent for prophylaxis in patients with hematological disease or undergoing HSCT were included. In this analysis, we assumed that there was no difference between placebo and no antifungal agent.

    Data Extraction

    From each relevant study, the following data were extracted: authors’ names, year of publication, number of patients, age, use and dosage of drugs, categories of disease. Extracted outcomes included (1) incidence of fungal infections (superficial and IFI); (2) incidence of IFIs (possible, probable, and proven IFIs); (3) incidence of proven IFIs (positive histological results on biopsy from deep tissue); (4) incidence of invasive candidiasis; (5) incidence of invasive aspergillosis; (6) fungi-related death; and (7) withdrawal because of adverse effects of the drug.

    Quality Assessment

    Two of us (M.Z. and J.-Y.X.) independently participated in the quality assessment, and disagreements were resolved by a third reviewer (B.C.) until consensus was obtained. The quality of the evidence was assessed using the revised tool for risk of bias in randomized trials.7

    Statistical Analysis

    We compared different agents through network meta-analyses performed under a frequentist framework using a random-effects model. The analysis was performed using the network and mvmeta packages in Stata statistical software version 14.0 (StateCorp).8,9 We estimated the outcome from each study using the relative risk (RR) with 95% CIs. A 95% CI of an RR not covering 1 indicated a statistically significant association. Forest plots and league tables were used to visually present the results of the network meta-analysis. For each outcome, the surface under the cumulative ranking curve (SUCRA) was used to separately rank each agent.10 The larger the SUCRA value, the better the rank. The reliability and validity of the networks were estimated by addressing the inconsistencies and heterogeneity in the evidence from comparative studies of different treatments.11 The overall and loop inconsistencies were evaluated.8,12 Heterogeneity was estimated by the restricted maximum likelihood method. A τ2 value less than 0.1 indicated a very low level of heterogeneity, and a τ2 value from 0.1 to 0.5 indicated a reasonable level; a τ2 value greater than 0.5 was considered to indicate high heterogeneity.13 Additional subgroup analyses were performed restricted to data from different patient populations. Small-study effects were described with a funnel plot. Each funnel plot was tested using the Begg test to assess the small-study effects. A 2-sided P < .05 was considered statistically significant. Data were analyzed from December 2019 to February 2020.

    Results
    Characteristics of the Studies

    The flowchart of study selection for this network meta-analysis is shown in eFigure 1 in the Supplement. In total, 69 trials with 14 789 patients were included,14-82 including 12 groups: placebo, polyene, conventional amphotericin B, liposomal amphotericin B, miconazole, ketoconazole, fluconazole, itraconazole, voriconazole, posaconazole, caspofungin, and micafungin. The basic characteristics of the included studies are summarized in Table 1. The randomization process and selection of the reported results were not reported clearly in most trials (eFigure 2 in the Supplement).

    Network Geometry and Synthesis of Results

    The network geometry for each outcome is shown in eFigure 3 in the Supplement: fungal infections included 12 groups, 69 studies, and 14 789 patients; IFIs included 12 groups (Figure 1), 64 studies, and 12 943 patients; proven IFIs included 11 groups, 37 studies, and 7179 patients; invasive candidiasis included 12 groups, 45 studies, and 9838 patients; invasive aspergillosis included 12 groups, 40 studies, and 7958 patients; mortality included 12 groups, 69 studies, and 14 789 patients; fungi-related deaths included 12 groups, 45 studies, and 8636 patients; and withdrawal included 11 groups, 39 studies, and 9056 patients. Indirect and mixed-treatment comparisons are shown as forest plots (eFigure 4 in the Supplement).

    The SUCRA value and rank of each agent for each outcome are shown in Table 2. Regarding IFIs, posaconazole was the approach with the highest ranking (SUCRA, 86.7%; mean rank, 2.5). The 2 approaches with the next-highest rankings were caspofungin (SUCRA, 84.2%) and micafungin (SUCRA, 76.4%). Posaconazole was associated with a significant reduction in IFIs (RR, 0.57; 95% CI, 0.42-0.79) and invasive aspergillosisus infections (RR, 0.36; 95% CI, 0.15-0.85) compared with placebo (Figure 2). Regarding mortality, the treatment ranked highest was micafungin (SUCRA, 90.0%; mean rank, 2.1). Voriconazole ranked second (SUCRA, 73.8%), and posaconazole ranked third (SUCRA, 68.5%).

    Caspofungin (SUCRA, 84.9%) treatment ranked the highest for reducing fungal infections. Posaconazole ranked highest in preventing invasive aspergillosis (SUCRA, 87.8%). Caspofungin was ranked highest for preventing invasive candidiasis (SUCRA, 88.5%), and liposomal amphotericin B ranked the highest for reducing fungi-related deaths (SUCRA, 78.8%). Voriconazole was associated with a significant reduction in invasive candidiasis (RR, 0.15; 95% CI, 0.09-0.26) compared with placebo (eFigure 5 in the Supplement). Voriconazole was ranked highest for having the lowest incidence of withdrawal (SUCRA, 78.1%). Posaconazole was associated with a higher incidence of withdrawal because of the adverse effects of the drug (SUCRA, 17.5%; mean rank, 9.2) (eFigure 6 in the Supplement).

    Subgroup Analyses

    Because extensive categories of patients were included, we evaluated whether the prophylactic outcomes and tolerance of agents varied in different patient populations (patients with acute myeloid leukemia [AML] or myelodysplastic syndrome [MDS] or undergoing HSCT or allo-HSCT). Considering efficacy and tolerance, voriconazole was ranked as the best choice for patients undergoing HSCT; this result was also found in the allo-HSCT population. However, posaconazole was ranked as the best choice for patients with AML or MDS.

    Heterogeneity, Inconsistency, and Small-Study Effects

    Heterogeneity and inconsistency are shown in Table 3. Heterogeneity was low for IFIs and mortality. In contrast, heterogeneity was reasonable for the other outcomes (τ2 values from 0.1 to 0.4). Loop inconsistency for placebo, amphotericin B, and fluconazole was found for invasive candidiasis (indirect effect estimate, 2.53; 95% CI, 1.07-3.98; P = .001) (eFigure 7 in the Supplement). We used a funnel plot to visually demonstrate small-study effects (eFigure 8 in the Supplement).

    Discussion

    In this systematic review and network meta-analysis, we combined direct and indirect evidence to compare antifungal prophylaxis options for patients with hematological disease or undergoing HSCT. Our analysis may provide some important information for clinical decision-making for antifungal prophylaxis in these patients. We derived 2 principal findings from our analysis: voriconazole may be the best choice for patients undergoing HSCT, and posaconazole may be the best prophylactic option for patients with AML or MDS. Posaconazole is recommended for IFIs during remission induction chemotherapy for AML and MDS, according to the Guidelines from the Infectious Diseases Working Party of the German Society for Haematology and Medical Oncology.83 Overall, posaconazole and voriconazole are recommended as the most reasonable options for the prevention of IFIs. The difference between agents may be meaningful and is not available from single trials, to our knowledge. For instance, voriconazole has not been directly compared with other drugs except for placebo, fluconazole, and itraconazole; however, this network meta-analysis compared voriconazole, as well as posaconazole, with other drugs indirectly.

    Posaconazole is recommended for the prevention of IFIs regardless of tolerance. The most commonly reported treatment-related adverse effects of oral posaconazole were digestive tract symptoms, including nausea, vomiting, and gastrointestinal upset.84 The most common cause for discontinuation was severe nausea or gastrointestinal upset.85 We noticed that the incidence of withdrawal was different in patients with AML or MDS and patients undergoing HSCT. We assumed that in patients undergoing HSCT, especially allo-HSCT, a high-dose pretreatment scheme, the use of cyclosporin and the incidence of gastrointestinal acute graft-vs-host disease (GVHD) would decrease the tolerance of posaconazole. The rate of adverse events that led to the discontinuation of posaconazole was 40% in the study by Chatter et al.22 In the posaconazole group, the rate of diarrhea was 67%, of nausea was 67%, and of vomiting was 29%. The rate of gastrointestinal adverse events was similar between the liposomal amphotericin B and posaconazole groups. A new route of administration through injection may be an option for patients who are unable to swallow or are intolerant of oral posaconazole.

    Caspofungin is recommended to prevent invasive candidiasis, and the same results were confirmed in patients with AML or MDS. There were no relevant data from patients undergoing HSCT. An echinocandin drug is recommended as the initial therapy for candidemia, according to the clinical practice guidelines for the management of candidiasis from the Infectious Diseases Society of America.86 In our analysis, posaconazole was ranked the best choice for preventing invasive Aspergillus infections, followed by caspofungin. According to the guidelines for the diagnosis and management of aspergillosis from the Infectious Diseases Society of America, posaconazole, voriconazole, and micafungin are recommended for invasive aspergillosis prevention.87 However, in our analysis, it appeared that caspofungin treatment was associated with a better outcome than micafungin and voriconazole in preventing aspergillosis. Concerning the prevention of fungi-related death, treatment with liposomal amphotericin B might be associated with a better outcome, followed by posaconazole and voriconazole. There was no significant difference in fungi-related death with posaconazole.

    Some previous studies have summarized the data from the literature on antifungal prophylaxis in hematological disease.88-90 These network meta-analyses did not take into account antifungal prophylaxis in other high-risk groups, such as patients with GVHD.91 With regard to GVHD, the risk of IFIs appears particularly prominent in patients with high-grade acute GVHD or steroid-dependent chronic GVHD.91 Our network meta-analysis has taken into account antifungal prophylaxis in patients with GVHD. A high number of patients with solid tumor without HSCT therapy were included in previous network meta-analyses. In the study by Ninane et al,92 solid tumors were present in more than 20% of patients. We did not consider this study appropriate for a network meta-analysis for antifungal prophylaxis, as routine antifungal prophylaxis is not recommended in patients with solid tumors.91 The evidence shown by Leonart et al88 focused on double-blind trials, and the study by Zhao et al89 focused on triazole agents. Therefore, the conclusions of the comparisons in those reports cannot be compared with the results in this meta-analysis.

    Inconsistency refers to the differences between direct and various indirect effect estimates for the same comparison. Stata tests for inconsistency have 2 levels12: overall inconsistency, in which the level of inconsistency is computed according to the type of between-treatment comparison for all cases and a local approach, in which each treatment is individually examined. Local inconsistency because of loop inconsistency in placebo, amphotericin B, and fluconazole was found for invasive candidiasis in our analysis. There are 4 causes of inconsistency: chance, bias in head-to-head comparisons, bias in indirect comparisons, and genuine diversity.93 According to Higgins et al11 loop inconsistency refers to a difference between direct and indirect comparisons. The study by Behre et al16 may be the source of the loop inconsistency because aerosol amphotericin B inhalation treatment was used. When this study was excluded from the analysis, the difference between direct and indirect comparisons of the treatments for invasive candidiasis was not significant.

    The interpretations of the results were based on SUCRA values and ranking in our study. Although rankings are appealing, they may be incorrectly emphasize particular treatments as being clinically useful. The uncertainty present in the rankings may be neglected in considering the best treatment, and the rankings may give a false sense that some interventions are superior to others. A PRISMA-NMA statement has suggested that more attention should be paid to the relative effect estimates, rather than the rankings, because a good rank does not necessarily translate to a clinically relevant effect.6 Although the usefulness of rankings is currently debated, rankings will probably continue to be reported. Reporting all probabilities for each intervention with each possible rank is one way to convey the uncertainty in the rank ordering.94 The treatment effects and rankings also depend on the number of treatments and trials in the network.95

    Limitations

    Our study has some limitations. First, an improved understanding of antifungal pharmacology, pharmacokinetics, and pharmacodynamics has resulted in therapeutic drug monitoring becoming a valuable adjunct to the administration of some antifungal agents. We could not perform an analysis of therapeutic drug monitoring to evaluate the efficacy and adverse effects of antifungal prophylaxis or justify why therapeutic drug monitoring should not be performed with antifungal prophylaxis if it is strongly recommended with antifungal treatment because of the limited data. Second, the follow-up time of most studies was too short to determine the survival benefits from antifungal prophylaxis. Third, a limited number of head-to-head trials have investigated posaconazole and voriconazole. Fourth, the characteristics of patients and treatments were heterogeneous among the various randomized clinical trials. Although our subgroup analyses found different results among different patient populations, the data did not allow us to perform more detailed analyses, such as those for different ages and races/ethnicities. We also could not perform a more stratified analysis taking into consideration the dosage form and dose of agents. Therefore, the evidence derived from this meta-analysis should be used with caution for shared decision-making. However, our study provides important data from which future practice-changing prospective trials can be designed.

    Conclusions

    This network meta-analysis assessed the performance of various antifungal prophylaxis treatment in patients with hematological disease or undergoing HSCT. Our findings suggest that, in terms of the prevention of IFIs and tolerance, voriconazole may be the best prophylactic option for patients undergoing HSCT, and posaconazole may be the best prophylactic option for patients with AML or MDS.

    Back to top
    Article Information

    Accepted for Publication: July 3, 2020.

    Published: October 8, 2020. doi:10.1001/jamanetworkopen.2020.17652

    Open Access: This is an open access article distributed under the terms of the CC-BY License. © 2020 Wang J et al. JAMA Network Open.

    Corresponding Authors: Bing Chen, MD, PhD, Department of Hematology, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Rd, Nanjing, 210008, China (chenbing2004@126.com); Yuan Wan, PhD, The Pq Laboratory of Micro/Nano BiomeDx, Department of Biomedical Engineering, Binghamton University – SUNY, Binghamton, Biotechnology Building, 65 Murray Hill Rd, Vestal, NY 13850 (ywan@binghamton.edu).

    Author Contributions: Drs Wang and Wan had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

    Concept and design: Chen, Wan.

    Acquisition, analysis, or interpretation of data: Wang, M. Zhou, Xu, R.-F. Zhou, Wan.

    Drafting of the manuscript: M. Zhou, Wan.

    Critical revision of the manuscript for important intellectual content: Wang, Xu, R.-F. Zhou, Chen, Wan.

    Statistical analysis: Wang, M. Zhou, Wan.

    Obtained funding: M. Zhou, Xu, Wan.

    Administrative, technical, or material support: Wang, Xu, R.-F. Zhou, Wan.

    Supervision: Chen, Wan.

    Conflict of Interest Disclosures: None reported.

    Funding/Support: This work was partially supported by Binghamton University Faculty Start-up Fund (grant No. 910252-35), Binghamton University S3IP Award (No. ADLG195), and Nanjing Medical Science and Technique Development Foundation (grant Nos. YKK15068 and YKK17074).

    Role of the Funder/Sponsor: The funders had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

    References
    1.
    Maertens  JA, Girmenia  C, Brüggemann  RJ,  et al; European Conference on Infections in Leukaemia (ECIL), a joint venture of the European Group for Blood and Marrow Transplantation (EBMT), the European Organization for Research and Treatment of Cancer (EORTC), the Immunocompromised Host Society (ICHS) and; European Conference on Infections in Leukaemia (ECIL), a joint venture of the European Group for Blood and Marrow Transplantation (EBMT), the European Organization for Research and Treatment of Cancer (EORTC), the Immunocompromised Host Society (ICHS) and the European LeukemiaNet (ELN).  European guidelines for primary antifungal prophylaxis in adult haematology patients: summary of the updated recommendations from the European Conference on Infections in Leukaemia.   J Antimicrob Chemother. 2018;73(12):3221-3230. doi:10.1093/jac/dky286 PubMedGoogle Scholar
    2.
    Wang  J, Zhan  P, Zhou  R,  et al.  Prophylaxis with itraconazole is more effective than prophylaxis with fluconazole in neutropenic patients with hematological malignancies: a meta-analysis of randomized-controlled trials.   Med Oncol. 2010;27(4):1082-1088. doi:10.1007/s12032-009-9339-0 PubMedGoogle ScholarCrossref
    3.
    Xu  SX, Shen  JL, Tang  XF, Feng  B, Xu  HQ.  Newer antifungal agents micafungin and voriconazole for fungal infection prevention during hematopoietic cell transplantation: a meta-analysis.   Eur Rev Med Pharmacol Sci. 2016;20(2):381-390.PubMedGoogle Scholar
    4.
    Bow  EJ, Vanness  DJ, Slavin  M,  et al.  Systematic review and mixed treatment comparison meta-analysis of randomized clinical trials of primary oral antifungal prophylaxis in allogeneic hematopoietic cell transplant recipients.   BMC Infect Dis. 2015;15:128. doi:10.1186/s12879-015-0855-6 PubMedGoogle ScholarCrossref
    5.
    Cipriani  A, Higgins  JP, Geddes  JR, Salanti  G.  Conceptual and technical challenges in network meta-analysis.   Ann Intern Med. 2013;159(2):130-137. doi:10.7326/0003-4819-159-2-201307160-00008 PubMedGoogle ScholarCrossref
    6.
    Hutton  B, Salanti  G, Caldwell  DM,  et al.  The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: checklist and explanations.   Ann Intern Med. 2015;162(11):777-784. doi:10.7326/M14-2385PubMedGoogle ScholarCrossref
    7.
    Sterne  JAC, Savović  J, Page  MJ,  et al.  RoB 2: a revised tool for assessing risk of bias in randomised trials.   BMJ. 2019;366:l4898. doi:10.1136/bmj.l4898 PubMedGoogle ScholarCrossref
    8.
    Chaimani  A, Higgins  JP, Mavridis  D, Spyridonos  P, Salanti  G.  Graphical tools for network meta-analysis in STATA.   PLoS One. 2013;8(10):e76654. doi:10.1371/journal.pone.0076654 PubMedGoogle Scholar
    9.
    White  IR.  Multivariate random-effects meta-regression: updates to mvmeta.   The Stata Journal 2011;11:255-70. doi:10.1177/1536867X1101100206 Google ScholarCrossref
    10.
    Salanti  G, Ades  AE, Ioannidis  JP.  Graphical methods and numerical summaries for presenting results from multiple-treatment meta-analysis: an overview and tutorial.   J Clin Epidemiol. 2011;64(2):163-171. doi:10.1016/j.jclinepi.2010.03.016 PubMedGoogle ScholarCrossref
    11.
    Higgins  JP, Jackson  D, Barrett  JK, Lu  G, Ades  AE, White  IR.  Consistency and inconsistency in network meta-analysis: concepts and models for multi-arm studies.   Res Synth Methods. 2012;3(2):98-110. doi:10.1002/jrsm.1044 PubMedGoogle ScholarCrossref
    12.
    Shim  S, Yoon  BH, Shin  IS, Bae  JM.  Network meta-analysis: application and practice using Stata.   Epidemiol Health. 2017;39:e2017047. doi:10.4178/epih.e2017047 PubMedGoogle Scholar
    13.
    Turner  RM, Davey  J, Clarke  MJ, Thompson  SG, Higgins  JP.  Predicting the extent of heterogeneity in meta-analysis, using empirical data from the Cochrane Database of Systematic Reviews.   Int J Epidemiol. 2012;41(3):818-827. doi:10.1093/ije/dys041 PubMedGoogle ScholarCrossref
    14.
    Akiyama  H, Mori  S, Tanikawa  S, Sakamaki  H, Onozawa  Y.  Fluconazole versus oral amphotericin B in preventing fungal infection in chemotherapy-induced neutropenic patients with haematological malignancies.   Mycoses. 1993;36(11-12):373-378. doi:10.1111/j.1439-0507.1993.tb00725.x PubMedGoogle ScholarCrossref
    15.
    Annaloro  C, Oriana  A, Tagliaferri  E,  et al.  Efficacy of different prophylactic antifungal regimens in bone marrow transplantation.   Haematologica. 1995;80(6):512-517.PubMedGoogle Scholar
    16.
    Behre  GF, Schwartz  S, Lenz  K,  et al.  Aerosol amphotericin B inhalations for prevention of invasive pulmonary aspergillosis in neutropenic cancer patients.   Ann Hematol. 1995;71(6):287-291. doi:10.1007/BF01697981 PubMedGoogle ScholarCrossref
    17.
    Benhamou  E, Hartmann  O, Noguès  C, Maraninchi  D, Valteau  D, Lemerle  J.  Does ketoconazole prevent fungal infection in children treated with high dose chemotherapy and bone marrow transplantation: results of a randomized placebo-controlled trial.   Bone Marrow Transplant. 1991;7(2):127-131.PubMedGoogle Scholar
    18.
    Bodey  GP, Anaissie  EJ, Elting  LS, Estey  E, O’Brien  S, Kantarjian  H.  Antifungal prophylaxis during remission induction therapy for acute leukemia fluconazole versus intravenous amphotericin B.   Cancer. 1994;73(8):2099-2106. doi:10.1002/1097-0142(19940415)73:8<2099::AID-CNCR2820730814>3.0.CO;2-N PubMedGoogle ScholarCrossref
    19.
    Boogaerts  M, Maertens  J, van Hoof  A,  et al.  Itraconazole versus amphotericin B plus nystatin in the prophylaxis of fungal infections in neutropenic cancer patients.   J Antimicrob Chemother. 2001;48(1):97-103. doi:10.1093/jac/48.1.97 PubMedGoogle ScholarCrossref
    20.
    Brincker  H.  Prophylactic treatment with miconazole in patients highly predisposed to fungal infection: a placebo-controlled double-blind study.   Acta Med Scand. 1978;204(1-2):123-128. doi:10.1111/j.0954-6820.1978.tb08410.xPubMedGoogle Scholar
    21.
    Brincker  H.  Prevention of mycosis in granulocytopenic patients with prophylactic ketoconazole treatment.   Mykosen. 1983;26(5):242-247. doi:10.1111/j.1439-0507.1983.tb03203.x PubMedGoogle ScholarCrossref
    22.
    Chaftari  AM, Hachem  RY, Ramos  E,  et al.  Comparison of posaconazole versus weekly amphotericin B lipid complex for the prevention of invasive fungal infections in hematopoietic stem-cell transplantation.   Transplantation. 2012;94(3):302-308. doi:10.1097/TP.0b013e3182577485 PubMedGoogle ScholarCrossref
    23.
    Chandrasekar  PH, Gatny  CM; Bone Marrow Transplantation Team.  The effect of fluconazole prophylaxis on fungal colonization in neutropenic cancer patients.   J Antimicrob Chemother. 1994;33(2):309-318. doi:10.1093/jac/33.2.309 PubMedGoogle ScholarCrossref
    24.
    Choi  SM, Lee  DG, Choi  JH,  et al.  Itraconazole oral solution versus fluconazole syrup for prevention of invasive fungal infections in patients receiving hematopoietic stem cell transplantation: prospective, randomized, comparative clinical trial.   Infect Chemother. 2005;37(2):71-78.Google Scholar
    25.
    Cornely  OA, Maertens  J, Winston  DJ,  et al.  Posaconazole vs fluconazole or itraconazole prophylaxis in patients with neutropenia.   N Engl J Med. 2007;356(4):348-359. doi:10.1056/NEJMoa061094 PubMedGoogle ScholarCrossref
    26.
    Donnelly  JP, Starke  ID, Galton  DA, Catovsky  D, Goldman  JM, Darrell  JH.  Oral ketoconazole and amphotericin B for the prevention of yeast colonization in patients with acute leukaemia.   J Hosp Infect. 1984;5(1):83-91. doi:10.1016/0195-6701(84)90105-1 PubMedGoogle ScholarCrossref
    27.
    Egger  T, Gratwohl  A, Tichelli  A,  et al.  Comparison of fluconazole with oral polyenes in the prevention of fungal infections in neutropenic patients: a prospective, randomized, single-center study.   Support Care Cancer. 1995;3(2):139-146. doi:10.1007/BF00365855 PubMedGoogle ScholarCrossref
    28.
    Ellis  ME, Clink  H, Ernst  P,  et al.  Controlled study of fluconazole in the prevention of fungal infections in neutropenic patients with haematological malignancies and bone marrow transplant recipients.   Eur J Clin Microbiol Infect Dis. 1994;13(1):3-11. doi:10.1007/BF02026116 PubMedGoogle ScholarCrossref
    29.
    Epstein  DJ, Seo  SK, Huang  YT,  et al.  Micafungin versus posaconazole prophylaxis in acute leukemia or myelodysplastic syndrome: a randomized study.   J Infect. 2018;77(3):227-234. doi:10.1016/j.jinf.2018.03.015 PubMedGoogle ScholarCrossref
    30.
    Estey  E, Maksymiuk  A, Smith  T,  et al.  Infection prophylaxis in acute leukemia: comparative effectiveness of sulfamethoxazole and trimethoprim, ketoconazole, and a combination of the two.   Arch Intern Med. 1984;144(8):1562-1568. doi:10.1001/archinte.1984.00350200054006 PubMedGoogle ScholarCrossref
    31.
    Fisher  BT, Zaoutis  T, Dvorak  CC,  et al.  Effect of caspofungin vs fluconazole prophylaxis on invasive fungal disease among children and young adults with acute myeloid leukemia: a randomized clinical trial.   JAMA. 2019;322(17):1673-1681. doi:10.1001/jama.2019.15702 PubMedGoogle ScholarCrossref
    32.
    Glasmacher  A, Cornely  O, Ullmann  AJ,  et al; Itraconazole Research Group of Germany.  An open-label randomized trial comparing itraconazole oral solution with fluconazole oral solution for primary prophylaxis of fungal infections in patients with haematological malignancy and profound neutropenia.   J Antimicrob Chemother. 2006;57(2):317-325. doi:10.1093/jac/dki440 PubMedGoogle ScholarCrossref
    33.
    Goodman  JL, Winston  DJ, Greenfield  RA,  et al.  A controlled trial of fluconazole to prevent fungal infections in patients undergoing bone marrow transplantation.   N Engl J Med. 1992;326(13):845-851. doi:10.1056/NEJM199203263261301 PubMedGoogle ScholarCrossref
    34.
    Hansen  RM, Reinerio  N, Sohnle  PG,  et al.  Ketoconazole in the prevention of candidiasis in patients with cancer: a prospective, randomized, controlled, double-blind study.   Arch Intern Med. 1987;147(4):710-712. doi:10.1001/archinte.1987.00370040092016 PubMedGoogle ScholarCrossref
    35.
    Harousseau  JL, Dekker  AW, Stamatoullas-Bastard  A,  et al.  Itraconazole oral solution for primary prophylaxis of fungal infections in patients with hematological malignancy and profound neutropenia: a randomized, double-blind, double-placebo, multicenter trial comparing itraconazole and amphotericin B.   Antimicrob Agents Chemother. 2000;44(7):1887-1893. doi:10.1128/AAC.44.7.1887-1893.2000 PubMedGoogle ScholarCrossref
    36.
    Hayashi  Y, Kanda  Y, Nakamae  H,  et al  Voriconazole vs itraconazole for antifungal prophylaxis in patients with GVHD: a randomized trial.   Biol Blood Marrow Transplant. 2014; 20(2):S91. doi:10.1016/j.bbmt.2013.12.117 Google ScholarCrossref
    37.
    Hiemenz  J, Cagnoni  P, Simpson  D,  et al.  Pharmacokinetic and maximum tolerated dose study of micafungin in combination with fluconazole versus fluconazole alone for prophylaxis of fungal infections in adult patients undergoing a bone marrow or peripheral stem cell transplant.   Antimicrob Agents Chemother. 2005;49(4):1331-1336. doi:10.1128/AAC.49.4.1331-1336.2005 PubMedGoogle ScholarCrossref
    38.
    Hiramatsu  Y, Maeda  Y, Fujii  N,  et al; West-Japan Hematology and Oncology Group (West-JHOG).  Use of micafungin versus fluconazole for antifungal prophylaxis in neutropenic patients receiving hematopoietic stem cell transplantation.   Int J Hematol. 2008;88(5):588-595. doi:10.1007/s12185-008-0196-y PubMedGoogle ScholarCrossref
    39.
    Huang  X, Chen  H, Han  M,  et al.  Multicenter, randomized, open-label study comparing the efficacy and safety of micafungin versus itraconazole for prophylaxis of invasive fungal infections in patients undergoing hematopoietic stem cell transplant.   Biol Blood Marrow Transplant. 2012;18(10):1509-1516. doi:10.1016/j.bbmt.2012.03.014 PubMedGoogle ScholarCrossref
    40.
    Huijgens  PC, Simoons-Smit  AM, van Loenen  AC,  et al.  Fluconazole versus itraconazole for the prevention of fungal infections in haemato-oncology.   J Clin Pathol. 1999;52(5):376-380. doi:10.1136/jcp.52.5.376 PubMedGoogle ScholarCrossref
    41.
    Ito  Y, Ohyashiki  K, Yoshida  I,  et al.  The prophylactic effect of itraconazole capsules and fluconazole capsules for systemic fungal infections in patients with acute myeloid leukemia and myelodysplastic syndromes: a Japanese multicenter randomized, controlled study.   Int J Hematol. 2007;85(2):121-127. doi:10.1532/IJH97.06079 PubMedGoogle ScholarCrossref
    42.
    Kaptan  K, Ural  AU, Cetin  T, Avcu  F, Beyan  C, Yalçin  A.  Itraconazole is not effective for the prophylaxis of fungal infections in patients with neutropenia.   J Infect Chemother. 2003;9(1):40-45. doi:10.1007/s10156-002-0207-5 PubMedGoogle ScholarCrossref
    43.
    Kelsey  SM, Goldman  JM, McCann  S,  et al.  Liposomal amphotericin (AmBisome) in the prophylaxis of fungal infections in neutropenic patients: a randomised, double-blind, placebo-controlled study.   Bone Marrow Transplant. 1999;23(2):163-168. doi:10.1038/sj.bmt.1701543 PubMedGoogle Scholar
    44.
    Kern  W, Behre  G, Rudolf  T,  et al; German AML Cooperative Group.  Failure of fluconazole prophylaxis to reduce mortality or the requirement of systemic amphotericin B therapy during treatment for refractory acute myeloid leukemia: results of a prospective randomized phase III study.   Cancer. 1998;83(2):291-301. doi:10.1002/(SICI)1097-0142(19980715)83:2<291::AID-CNCR13>3.0.CO;2-O PubMedGoogle Scholar
    45.
    Koh  LP, Kurup  A, Goh  YT, Fook-Chong  SM, Tan  PH.  Randomized trial of fluconazole versus low-dose amphotericin B in prophylaxis against fungal infections in patients undergoing hematopoietic stem cell transplantation.   Am J Hematol. 2002;71(4):260-267. doi:10.1002/ajh.10234 PubMedGoogle Scholar
    46.
    Lass-Flörl  C, Gunsilius  E, Gastl  G,  et al.  Fungal colonization in neutropenic patients: a randomized study comparing itraconazole solution and amphotericin B solution.   Ann Hematol. 2003;82(9):565-569. doi:10.1007/s00277-003-0666-5 PubMedGoogle Scholar
    47.
    Laverdière  M, Rotstein  C, Bow  EJ,  et al.  Impact of fluconazole prophylaxis on fungal colonization and infection rates in neutropenic patients: the Canadian Fluconazole Study.   J Antimicrob Chemother. 2000;46(6):1001-1008. doi:10.1093/jac/46.6.1001 PubMedGoogle Scholar
    48.
    Mahmoud  AM.  Micafungin as a Prophylactic Antifungal During Induction Phase of Chemotherapy for Pediatric Acute Lymphoblastic Leukemia. Master’s thesis. Cairo University; 2016.
    49.
    Marks  DI, Pagliuca  A, Kibbler  CC,  et al; IMPROVIT Study Group.  Voriconazole versus itraconazole for antifungal prophylaxis following allogeneic haematopoietic stem-cell transplantation.   Br J Haematol. 2011;155(3):318-327. doi:10.1111/j.1365-2141.2011.08838.x PubMedGoogle Scholar
    50.
    Marr  KA, Crippa  F, Leisenring  W,  et al.  Itraconazole versus fluconazole for prevention of fungal infections in patients receiving allogeneic stem cell transplants.   Blood. 2004;103(4):1527-1533. doi:10.1182/blood-2003-08-2644 PubMedGoogle Scholar
    51.
    Mattiuzzi  GN, Estey  E, Raad  I,  et al.  Liposomal amphotericin B versus the combination of fluconazole and itraconazole as prophylaxis for invasive fungal infections during induction chemotherapy for patients with acute myelogenous leukemia and myelodysplastic syndrome.   Cancer. 2003;97(2):450-456. doi:10.1002/cncr.11094 PubMedGoogle Scholar
    52.
    Mattiuzzi  GN, Alvarado  G, Giles  FJ,  et al.  Open-label, randomized comparison of itraconazole versus caspofungin for prophylaxis in patients with hematologic malignancies.   Antimicrob Agents Chemother. 2006;50(1):143-147. doi:10.1128/AAC.50.1.143-147.2006 PubMedGoogle Scholar
    53.
    Mattiuzzi  GN, Cortes  J, Alvarado  G,  et al.  Efficacy and safety of intravenous voriconazole and intravenous itraconazole for antifungal prophylaxis in patients with acute myelogenous leukemia or high-risk myelodysplastic syndrome.   Support Care Cancer. 2011;19(1):19-26. doi:10.1007/s00520-009-0783-3 PubMedGoogle Scholar
    54.
    Menichetti  F, Del Favero  A, Martino  P,  et al; GIMEMA Infection Program, Gruppo Italiano Malattie Ematologiche dell’ Adulto.  Itraconazole oral solution as prophylaxis for fungal infections in neutropenic patients with hematologic malignancies: a randomized, placebo-controlled, double-blind, multicenter trial.   Clin Infect Dis. 1999;28(2):250-255. doi:10.1086/515129 PubMedGoogle Scholar
    55.
    Morgenstern  GR, Prentice  AG, Prentice  HG, Ropner  JE, Schey  SA, Warnock  DW; U.K. Multicentre Antifungal Prophylaxis Study Group.  A randomized controlled trial of itraconazole versus fluconazole for the prevention of fungal infections in patients with haematological malignancies.   Br J Haematol. 1999;105(4):901-911. doi:10.1046/j.1365-2141.1999.01465.x PubMedGoogle Scholar
    56.
    Nucci  M, Biasoli  I, Akiti  T,  et al.  A double-blind, randomized, placebo-controlled trial of itraconazole capsules as antifungal prophylaxis for neutropenic patients.   Clin Infect Dis. 2000;30(2):300-305. doi:10.1086/313654 PubMedGoogle Scholar
    57.
    Oren  I, Rowe  JM, Sprecher  H,  et al.  A prospective randomized trial of itraconazole vs fluconazole for the prevention of fungal infections in patients with acute leukemia and hematopoietic stem cell transplant recipients.   Bone Marrow Transplant. 2006;38(2):127-134. doi:10.1038/sj.bmt.1705418 PubMedGoogle Scholar
    58.
    Palmblad  J, Lönnqvist  B, Carlsson  B,  et al.  Oral ketoconazole prophylaxis for Candida infections during induction therapy for acute leukaemia in adults: more bacteraemias.   J Intern Med. 1992;231(4):363-370. doi:10.1111/j.1365-2796.1992.tb00945.x PubMedGoogle Scholar
    59.
    Park  S, Kim  K, Jang  JH,  et al.  Randomized trial of micafungin versus fluconazole as prophylaxis against invasive fungal infections in hematopoietic stem cell transplant recipients.   J Infect. 2016;73(5):496-505. doi:10.1016/j.jinf.2016.06.011 PubMedGoogle Scholar
    60.
    Penack  O, Schwartz  S, Martus  P,  et al.  Low-dose liposomal amphotericin B in the prevention of invasive fungal infections in patients with prolonged neutropenia: results from a randomized, single-center trial.   Ann Oncol. 2006;17(8):1306-1312. doi:10.1093/annonc/mdl128 PubMedGoogle Scholar
    61.
    Perfect  JR, Klotman  ME, Gilbert  CC,  et al.  Prophylactic intravenous amphotericin B in neutropenic autologous bone marrow transplant recipients.   J Infect Dis. 1992;165(5):891-897. doi:10.1093/infdis/165.5.891 PubMedGoogle Scholar
    62.
    Philpott-Howard  JN, Wade  JJ, Mufti  GJ, Brammer  KW, Ehninger  G; Multicentre Study Group.  Randomized comparison of oral fluconazole versus oral polyenes for the prevention of fungal infection in patients at risk of neutropenia.   J Antimicrob Chemother. 1993;31(6):973-984. doi:10.1093/jac/31.6.973 PubMedGoogle Scholar
    63.
    Rijnders  BJ, Cornelissen  JJ, Slobbe  L,  et al.  Aerosolized liposomal amphotericin B for the prevention of invasive pulmonary aspergillosis during prolonged neutropenia: a randomized, placebo-controlled trial.   Clin Infect Dis. 2008;46(9):1401-1408. doi:10.1086/586739 PubMedGoogle Scholar
    64.
    Riley  DK, Pavia  AT, Beatty  PG,  et al.  The prophylactic use of low-dose amphotericin B in bone marrow transplant patients.   Am J Med. 1994;97(6):509-514. doi:10.1016/0002-9343(94)90345-X PubMedGoogle Scholar
    65.
    Rotstein  C, Bow  EJ, Laverdiere  M, Ioannou  S, Carr  D, Moghaddam  N; The Canadian Fluconazole Prophylaxis Study Group.  Randomized placebo-controlled trial of fluconazole prophylaxis for neutropenic cancer patients: benefit based on purpose and intensity of cytotoxic therapy.   Clin Infect Dis. 1999;28(2):331-340. doi:10.1086/515128 PubMedGoogle Scholar
    66.
    Sawada  A, Sakata  N, Higuchi  B,  et al.  Comparison of micafungin and fosfluconazole as prophylaxis for invasive fungal infection during neutropenia in children undergoing chemotherapy and hematopoietic stem cell transplantation.  Article in Japanese.  Rinsho Ketsueki. 2009;50(12):1692-1699.PubMedGoogle Scholar
    67.
    Schaffner  A, Schaffner  M.  Effect of prophylactic fluconazole on the frequency of fungal infections, amphotericin B use, and health care costs in patients undergoing intensive chemotherapy for hematologic neoplasias.   J Infect Dis. 1995;172(4):1035-1041. doi:10.1093/infdis/172.4.1035 PubMedGoogle Scholar
    68.
    Schwartz  S, Behre  G, Heinemann  V,  et al.  Aerosolized amphotericin B inhalations as prophylaxis of invasive aspergillus infections during prolonged neutropenia: results of a prospective randomized multicenter trial.   Blood. 1999;93(11):3654-3661.PubMedGoogle Scholar
    69.
    Shen  Y, Huang  XJ, Wang  JX,  et al.  Posaconazole vs. fluconazole as invasive fungal infection prophylaxis in China: a multicenter, randomized, open-label study.   Int J Clin Pharmacol Ther. 2013;51(9):738-745. doi:10.5414/CP201880 PubMedGoogle Scholar
    70.
    Slavin  MA, Osborne  B, Adams  R,  et al.  Efficacy and safety of fluconazole prophylaxis for fungal infections after marrow transplantation: a prospective, randomized, double-blind study.   J Infect Dis. 1995;171(6):1545-1552. doi:10.1093/infdis/171.6.1545 PubMedGoogle Scholar
    71.
    Tollemar  J, Ringdén  O, Andersson  S, Sundberg  B, Ljungman  P, Tydén  G.  Randomized double-blind study of liposomal amphotericin B (Ambisome) prophylaxis of invasive fungal infections in bone marrow transplant recipients.   Bone Marrow Transplant. 1993;12(6):577-582.PubMedGoogle Scholar
    72.
    Ullmann  AJ, Lipton  JH, Vesole  DH,  et al.  Posaconazole or fluconazole for prophylaxis in severe graft-versus-host disease.   N Engl J Med. 2007;356(4):335-347. doi:10.1056/NEJMoa061098 PubMedGoogle Scholar
    73.
    van Burik  JA, Ratanatharathorn  V, Stepan  DE,  et al; National Institute of Allergy and Infectious Diseases Mycoses Study Group.  Micafungin versus fluconazole for prophylaxis against invasive fungal infections during neutropenia in patients undergoing hematopoietic stem cell transplantation.   Clin Infect Dis. 2004;39(10):1407-1416. doi:10.1086/422312 PubMedGoogle Scholar
    74.
    Vehreschild  JJ, Böhme  A, Buchheidt  D,  et al.  A double-blind trial on prophylactic voriconazole (VRC) or placebo during induction chemotherapy for acute myelogenous leukaemia (AML).   J Infect. 2007;55(5):445-449. doi:10.1016/j.jinf.2007.07.003 PubMedGoogle Scholar
    75.
    Vreugdenhil  G, Van Dijke  BJ, Donnelly  JP,  et al.  Efficacy of itraconazole in the prevention of fungal infections among neutropenic patients with hematologic malignancies and intensive chemotherapy: a double blind, placebo controlled study.   Leuk Lymphoma. 1993;11(5-6):353-358. doi:10.3109/10428199309067926 PubMedGoogle Scholar
    76.
    Wingard  JR, Vaughan  WP, Braine  HG, Merz  WG, Saral  R.  Prevention of fungal sepsis in patients with prolonged neutropenia: a randomized, double-blind, placebo-controlled trial of intravenous miconazole.   Am J Med. 1987;83(6):1103-1110. doi:10.1016/0002-9343(87)90949-1 PubMedGoogle Scholar
    77.
    Wingard  JR, Carter  SL, Walsh  TJ,  et al; Blood and Marrow Transplant Clinical Trials Network.  Randomized, double-blind trial of fluconazole versus voriconazole for prevention of invasive fungal infection after allogeneic hematopoietic cell transplantation.   Blood. 2010;116(24):5111-5118. doi:10.1182/blood-2010-02-268151 PubMedGoogle Scholar
    78.
    Winston  DJ, Chandrasekar  PH, Lazarus  HM,  et al.  Fluconazole prophylaxis of fungal infections in patients with acute leukemia: results of a randomized placebo-controlled, double-blind, multicenter trial.   Ann Intern Med. 1993;118(7):495-503. doi:10.7326/0003-4819-118-7-199304010-00003 PubMedGoogle Scholar
    79.
    Winston  DJ, Maziarz  RT, Chandrasekar  PH,  et al.  Intravenous and oral itraconazole versus intravenous and oral fluconazole for long-term antifungal prophylaxis in allogeneic hematopoietic stem-cell transplant recipients: a multicenter, randomized trial.   Ann Intern Med. 2003;138(9):705-713. doi:10.7326/0003-4819-138-9-200305060-00006 PubMedGoogle Scholar
    80.
    Wolff  SN, Fay  J, Stevens  D,  et al.  Fluconazole vs low-dose amphotericin B for the prevention of fungal infections in patients undergoing bone marrow transplantation: a study of the North American Marrow Transplant Group.   Bone Marrow Transplant. 2000;25(8):853-859. doi:10.1038/sj.bmt.1702233 PubMedGoogle Scholar
    81.
    Yamaç  K, Senol  E, Haznedar  R.  Prophylactic use of fluconazole in neutropenic cancer patients.   Postgrad Med J. 1995;71(835):284-286. doi:10.1136/pgmj.71.835.284 PubMedGoogle Scholar
    82.
    Young  GA, Bosly  A, Gibbs  DL, Durrant  S; Antifungal Prophylaxis Study Group.  A double-blind comparison of fluconazole and nystatin in the prevention of candidiasis in patients with leukaemia.   Eur J Cancer. 1999;35(8):1208-1213. doi:10.1016/S0959-8049(99)00102-1 PubMedGoogle Scholar
    83.
    Mellinghoff  SC, Panse  J, Alakel  N,  et al.  Primary prophylaxis of invasive fungal infections in patients with haematological malignancies: 2017 update of the recommendations of the Infectious Diseases Working Party (AGIHO) of the German Society for Haematology and Medical Oncology (DGHO).   Ann Hematol. 2018;97(2):197-207. doi:10.1007/s00277-017-3196-2 PubMedGoogle Scholar
    84.
    Keating  GM.  Posaconazole.   Drugs. 2005;65(11):1553-1567. doi:10.2165/00003495-200565110-00007 PubMedGoogle Scholar
    85.
    Guarascio  AJ, Slain  D.  Review of the new delayed-release oral tablet and intravenous dosage forms of posaconazole.   Pharmacotherapy. 2015;35(2):208-219. doi:10.1002/phar.1533 PubMedGoogle Scholar
    86.
    Pappas  PG, Kauffman  CA, Andes  DR,  et al.  Clinical practice guideline for the management of candidiasis: 2016 update by the Infectious Diseases Society of America.   Clin Infect Dis. 2016;62(4):e1-e50. doi:10.1093/cid/civ1194 PubMedGoogle Scholar
    87.
    Patterson  TF, Thompson  GR  III, Denning  DW,  et al.  Practice guidelines for the diagnosis and management of aspergillosis: 2016 update by the Infectious Diseases Society of America.   Clin Infect Dis. 2016;63(4):e1-e60. doi:10.1093/cid/ciw326 PubMedGoogle Scholar
    88.
    Leonart  LP, Tonin  FS, Ferreira  VL,  et al.  A network meta-analysis of primary prophylaxis for invasive fungal infection in haematological patients.   J Clin Pharm Ther. 2017;42(5):530-538. doi:10.1111/jcpt.12579 PubMedGoogle Scholar
    89.
    Zhao  YJ, Khoo  AL, Tan  G,  et al.  Network meta-analysis and pharmacoeconomic evaluation of fluconazole, itraconazole, posaconazole, and voriconazole in invasive fungal infection prophylaxis.   Antimicrob Agents Chemother. 2015;60(1):376-386. doi:10.1128/AAC.01985-15 PubMedGoogle Scholar
    90.
    Lee  CH, Lin  C, Ho  CL, Lin  JC.  Primary fungal prophylaxis in hematological malignancy: a network meta-analysis of randomized controlled trials.   Antimicrob Agents Chemother. 2018;62(8):e00355-e18. doi:10.1128/AAC.00355-18 PubMedGoogle Scholar
    91.
    Blyth  CC, Gilroy  NM, Guy  SD,  et al.  Consensus guidelines for the treatment of invasive mould infections in haematological malignancy and haemopoietic stem cell transplantation, 2014.   Intern Med J. 2014;44(12b):1333-1349. doi:10.1111/imj.12598 PubMedGoogle Scholar
    92.
    Ninane  J; Multicentre Study Group.  A multicentre study of fluconazole versus oral polyenes in the prevention of fungal infection in children with hematological or oncological malignancies.   Eur J Clin Microbiol Infect Dis. 1994;13(4):330-337. doi:10.1007/BF01974614 PubMedGoogle Scholar
    93.
    Ioannidis  JP.  Integration of evidence from multiple meta-analyses: a primer on umbrella reviews, treatment networks and multiple treatments meta-analyses.   CMAJ. 2009;181(8):488-493. doi:10.1503/cmaj.081086 PubMedGoogle Scholar
    94.
    Trinquart  L, Attiche  N, Bafeta  A, Porcher  R, Ravaud  P.  Uncertainty in treatment rankings: reanalysis of network meta-analyses of randomized trials.   Ann Intern Med. 2016;164(10):666-673. doi:10.7326/M15-2521 PubMedGoogle Scholar
    95.
    Mills  EJ, Kanters  S, Thorlund  K, Chaimani  A, Veroniki  AA, Ioannidis  JP.  The effects of excluding treatments from network meta-analyses: survey.   BMJ. 2013;347:f5195. doi:10.1136/bmj.f5195 PubMedGoogle Scholar
    ×