Bisphosphonate Treatment Beyond 5 Years and Hip Fracture Risk in Older Women | Geriatrics | JAMA Network Open | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 35.153.100.128. Please contact the publisher to request reinstatement.
1.
Cosman  F, de Beur  SJ, LeBoff  MS,  et al; National Osteoporosis Foundation.  Clinician’s guide to prevention and treatment of osteoporosis.   Osteoporos Int. 2014;25(10):2359-2381. doi:10.1007/s00198-014-2794-2PubMedGoogle ScholarCrossref
2.
Bilezikian  JP.  Efficacy of bisphosphonates in reducing fracture risk in postmenopausal osteoporosis.   Am J Med. 2009;122(2)(suppl):S14-S21. doi:10.1016/j.amjmed.2008.12.003PubMedGoogle ScholarCrossref
3.
Adler  RA, El-Hajj Fuleihan  G, Bauer  DC,  et al.  Managing osteoporosis in patients on long-term bisphosphonate treatment: report of a task force of the American Society for Bone and Mineral Research.   J Bone Miner Res. 2016;31(1):16-35. doi:10.1002/jbmr.2708PubMedGoogle ScholarCrossref
4.
Whitaker  M, Guo  J, Kehoe  T, Benson  G.  Bisphosphonates for osteoporosis—where do we go from here?   N Engl J Med. 2012;366(22):2048-2051. doi:10.1056/NEJMp1202619PubMedGoogle ScholarCrossref
5.
Black  DM, Reid  IR, Boonen  S,  et al.  The effect of 3 versus 6 years of zoledronic acid treatment of osteoporosis: a randomized extension to the HORIZON-Pivotal Fracture Trial (PFT).   J Bone Miner Res. 2012;27(2):243-254. doi:10.1002/jbmr.1494PubMedGoogle ScholarCrossref
6.
Black  DM, Schwartz  AV, Ensrud  KE,  et al; FLEX Research Group.  Effects of continuing or stopping alendronate after 5 years of treatment: the Fracture Intervention Trial Long-term Extension (FLEX): a randomized trial.   JAMA. 2006;296(24):2927-2938. doi:10.1001/jama.296.24.2927PubMedGoogle ScholarCrossref
7.
Mellström  DD, Sörensen  OH, Goemaere  S, Roux  C, Johnson  TD, Chines  AA.  Seven years of treatment with risedronate in women with postmenopausal osteoporosis.   Calcif Tissue Int. 2004;75(6):462-468. doi:10.1007/s00223-004-0286-7PubMedGoogle ScholarCrossref
8.
Drieling  RL, LaCroix  AZ, Beresford  SAA,  et al.  Long-term oral bisphosphonate therapy and fractures in older women: the Women’s Health Initiative.   J Am Geriatr Soc. 2017;65(9):1924-1931. doi:10.1111/jgs.14911PubMedGoogle ScholarCrossref
9.
Ott  SM.  Long-term bisphosphonates: primum non nocere.   Menopause. 2016;23(11):1159-1161. doi:10.1097/GME.0000000000000757PubMedGoogle ScholarCrossref
10.
Wysowski  DK, Greene  P.  Trends in osteoporosis treatment with oral and intravenous bisphosphonates in the United States, 2002-2012.   Bone. 2013;57(2):423-428. doi:10.1016/j.bone.2013.09.008PubMedGoogle ScholarCrossref
11.
Adams  AL, Shi  J, Takayanagi  M, Dell  RM, Funahashi  TT, Jacobsen  SJ.  Ten-year hip fracture incidence rate trends in a large California population, 1997-2006.   Osteoporos Int. 2013;24(1):373-376. doi:10.1007/s00198-012-1938-5PubMedGoogle ScholarCrossref
12.
Lo  JC, Pressman  AR, Chandra  M, Ettinger  B.  Fracture risk tool validation in an integrated healthcare delivery system.   Am J Manag Care. 2011;17(3):188-194.PubMedGoogle Scholar
13.
Lo  JC, Srinivasan  S, Chandra  M,  et al.  Trends in mortality following hip fracture in older women.   Am J Manag Care. 2015;21(3):e206-e214.PubMedGoogle Scholar
14.
Lo  JC, Zheng  P, Grimsrud  CD,  et al.  Racial/ethnic differences in hip and diaphyseal femur fractures.   Osteoporos Int. 2014;25(9):2313-2318. doi:10.1007/s00198-014-2750-1PubMedGoogle ScholarCrossref
15.
Lo  JC, Pressman  AR, Omar  MA, Ettinger  B.  Persistence with weekly alendronate therapy among postmenopausal women.   Osteoporos Int. 2006;17(6):922-928. doi:10.1007/s00198-006-0085-2PubMedGoogle ScholarCrossref
16.
Adams  AL, Adams  JL, Raebel  MA,  et al.  Bisphosphonate drug holiday and fracture risk: a population-based cohort study.   J Bone Miner Res. 2018;33(7):1252-1259. doi:10.1002/jbmr.3420PubMedGoogle ScholarCrossref
17.
Izano  MA, Lo  JC, Ettinger  B,  et al.  Determinants of oral bisphosphonate use beyond 5 years.   J Manag Care Spec Pharm. 2020;26(2):197-202. doi:10.18553/jmcp.2020.26.2.197PubMedGoogle Scholar
18.
Izano  MA, Neugebauer  R, Ettinger  B,  et al.  Using pharmacy data and adherence to define long-term bisphosphonate exposure in women.   J Manag Care Spec Pharm. 2019;25(6):719-723. doi:10.18553/jmcp.2019.25.6.719PubMedGoogle Scholar
19.
Hui  RL, Adams  AL, Niu  F,  et al.  Predicting adherence and persistence with oral bisphosphonate therapy in an integrated health care delivery system.   J Manag Care Spec Pharm. 2017;23(4):503-512. doi:10.18553/jmcp.2017.23.4.503PubMedGoogle Scholar
20.
Dawson-Hughes  B; National Osteoporosis Foundation Guide Committee.  A revised clinician’s guide to the prevention and treatment of osteoporosis.   J Clin Endocrinol Metab. 2008;93(7):2463-2465. doi:10.1210/jc.2008-0926PubMedGoogle ScholarCrossref
21.
Watts  NB, Lewiecki  EM, Miller  PD, Baim  S.  National Osteoporosis Foundation 2008 clinician’s guide to prevention and treatment of osteoporosis and the World Health Organization Fracture Risk Assessment Tool (FRAX): what they mean to the bone densitometrist and bone technologist.   J Clin Densitom. 2008;11(4):473-477. doi:10.1016/j.jocd.2008.04.003PubMedGoogle ScholarCrossref
22.
FRAX Fracture Risk Assessment Tool. Welcome to FRAX. Accessed October 30, 2020. http://www.shef.ac.uk/FRAX/
23.
Deyo  RA, Cherkin  DC, Ciol  MA.  Adapting a clinical comorbidity index for use with ICD-9-CM administrative databases.   J Clin Epidemiol. 1992;45(6):613-619. doi:10.1016/0895-4356(92)90133-8PubMedGoogle ScholarCrossref
24.
Blake  HA, Leyrat  C, Mansfield  KE,  et al.  Propensity scores using missingness pattern information: a practical guide.   Stat Med. 2020;39(11):1641-1657. doi:10.1002/sim.8503PubMedGoogle ScholarCrossref
25.
Stuart  EA.  Matching methods for causal inference: a review and a look forward.   Stat Sci. 2010;25(1):1-21. doi:10.1214/09-STS313PubMedGoogle ScholarCrossref
26.
Hernán  MA, McAdams  M, McGrath  N, Lanoy  E, Costagliola  D.  Observation plans in longitudinal studies with time-varying treatments.   Stat Methods Med Res. 2009;18(1):27-52. doi:10.1177/0962280208092345PubMedGoogle ScholarCrossref
27.
Kreif  N, Sofrygin  O, Schmittdiel  JA,  et al.  Exploiting nonsystematic covariate monitoring to broaden the scope of evidence about the causal effects of adaptive treatment strategies.   Biometrics. 2020. doi:10.1111/biom.13271PubMedGoogle Scholar
28.
Schousboe  JT, Shepherd  JA, Bilezikian  JP, Baim  S.  Executive summary of the 2013 International Society for Clinical Densitometry Position Development Conference on bone densitometry.   J Clin Densitom. 2013;16(4):455-466. doi:10.1016/j.jocd.2013.08.004PubMedGoogle ScholarCrossref
29.
Hernán  MA, Robins  JM.  Using big data to emulate a target trial when a randomized trial is not available.   Am J Epidemiol. 2016;183(8):758-764. doi:10.1093/aje/kwv254PubMedGoogle ScholarCrossref
30.
Cain  LE, Robins  JM, Lanoy  E, Logan  R, Costagliola  D, Hernán  MA.  When to start treatment? a systematic approach to the comparison of dynamic regimes using observational data.   Int J Biostat. 2010;6(2):18. doi:10.2202/1557-4679.1212PubMedGoogle ScholarCrossref
31.
Robins  JM. Marginal structural models. In: 1997 Proceedings of the American Statistical Association, Section on Bayesian Statistical Science. American Statistical Association; 1998:1-10. Accessed October 30, 2020. https://cdn1.sph.harvard.edu/wp-content/uploads/sites/343/2013/03/msm-web.pdf
32.
Robins  JM, Hernán  MA, Brumback  B.  Marginal structural models and causal inference in epidemiology.   Epidemiology. 2000;11(5):550-560. doi:10.1097/00001648-200009000-00011PubMedGoogle ScholarCrossref
33.
Cole  SR, Hernán  MA.  Constructing inverse probability weights for marginal structural models.   Am J Epidemiol. 2008;168(6):656-664. doi:10.1093/aje/kwn164PubMedGoogle ScholarCrossref
34.
Petersen  ML, Porter  KE, Gruber  S, Wang  Y, van der Laan  MJ.  Diagnosing and responding to violations in the positivity assumption.   Stat Methods Med Res. 2012;21(1):31-54. doi:10.1177/0962280210386207PubMedGoogle ScholarCrossref
35.
van der Laan  MJ, Gruber  S.  Targeted minimum loss based estimation of causal effects of multiple time point interventions.   Int J Biostat. 2012;8(1). doi:10.1515/1557-4679.1370PubMedGoogle Scholar
36.
Leong  TK, Tabada  GH, Yang  J, Zhu  Z, Neugebauer  R; Kaiser Permanente Northern California Division of Research. MSMstructure. Updated March 2017. Accessed November 4, 2020. https://divisionofresearch.kaiserpermanente.org/projects/biostatistics/causalinferencesoftware
37.
Sofrygin  O, Zhu  Z, Schmittdiel  JA,  et al.  Targeted learning with daily EHR data.   Stat Med. 2019;38(16):3073-3090. doi:10.1002/sim.8164PubMedGoogle ScholarCrossref
38.
Hernán  MA.  The hazards of hazard ratios.   Epidemiology. 2010;21(1):13-15. doi:10.1097/EDE.0b013e3181c1ea43PubMedGoogle ScholarCrossref
39.
Black  DM, Cummings  SR, Karpf  DB,  et al; Fracture Intervention Trial Research Group.  Randomised trial of effect of alendronate on risk of fracture in women with existing vertebral fractures.   Lancet. 1996;348(9041):1535-1541. doi:10.1016/S0140-6736(96)07088-2PubMedGoogle ScholarCrossref
40.
Cummings  SR, Black  DM, Thompson  DE,  et al.  Effect of alendronate on risk of fracture in women with low bone density but without vertebral fractures: results from the Fracture Intervention Trial.   JAMA. 1998;280(24):2077-2082. doi:10.1001/jama.280.24.2077PubMedGoogle ScholarCrossref
41.
Reginster  J, Minne  HW, Sorensen  OH,  et al; Vertebral Efficacy with Risedronate Therapy (VERT) Study Group.  Randomized trial of the effects of risedronate on vertebral fractures in women with established postmenopausal osteoporosis.   Osteoporos Int. 2000;11(1):83-91. doi:10.1007/s001980050010PubMedGoogle ScholarCrossref
42.
Sorensen  OH, Crawford  GM, Mulder  H,  et al.  Long-term efficacy of risedronate: a 5-year placebo-controlled clinical experience.   Bone. 2003;32(2):120-126. doi:10.1016/S8756-3282(02)00946-8PubMedGoogle ScholarCrossref
43.
Schwartz  AV, Bauer  DC, Cummings  SR,  et al; FLEX Research Group.  Efficacy of continued alendronate for fractures in women with and without prevalent vertebral fracture: the FLEX trial.   J Bone Miner Res. 2010;25(5):976-982. doi:10.1002/jbmr.11PubMedGoogle ScholarCrossref
44.
Mignot  MA, Taisne  N, Legroux  I, Cortet  B, Paccou  J.  Bisphosphonate drug holidays in postmenopausal osteoporosis: effect on clinical fracture risk.   Osteoporos Int. 2017;28(12):3431-3438. doi:10.1007/s00198-017-4215-9PubMedGoogle ScholarCrossref
45.
Curtis  JR, Saag  KG, Arora  T,  et al.  Duration of bisphosphonate drug holidays and associated fracture risk.   Med Care. 2020;58(5):419-426. doi:10.1097/MLR.0000000000001294PubMedGoogle ScholarCrossref
46.
Abrahamsen  B, Eiken  P, Prieto-Alhambra  D, Eastell  R.  Risk of hip, subtrochanteric, and femoral shaft fractures among mid and long term users of alendronate: nationwide cohort and nested case-control study.   BMJ. 2016;353:i3365. doi:10.1136/bmj.i3365PubMedGoogle ScholarCrossref
47.
Siris  ES, Harris  ST, Rosen  CJ,  et al.  Adherence to bisphosphonate therapy and fracture rates in osteoporotic women: relationship to vertebral and nonvertebral fractures from 2 US claims databases.   Mayo Clin Proc. 2006;81(8):1013-1022. doi:10.4065/81.8.1013PubMedGoogle ScholarCrossref
48.
Neugebauer  R, Schmittdiel  JA, van der Laan  MJ.  A case study of the impact of data-adaptive versus model-based estimation of the propensity scores on causal inferences from three inverse probability weighting estimators.   Int J Biostat. 2016;12(1):131-155. doi:10.1515/ijb-2015-0028PubMedGoogle ScholarCrossref
Limit 200 characters
Limit 25 characters
Conflicts of Interest Disclosure

Identify all potential conflicts of interest that might be relevant to your comment.

Conflicts of interest comprise financial interests, activities, and relationships within the past 3 years including but not limited to employment, affiliation, grants or funding, consultancies, honoraria or payment, speaker's bureaus, stock ownership or options, expert testimony, royalties, donation of medical equipment, or patents planned, pending, or issued.

Err on the side of full disclosure.

If you have no conflicts of interest, check "No potential conflicts of interest" in the box below. The information will be posted with your response.

Not all submitted comments are published. Please see our commenting policy for details.

Limit 140 characters
Limit 3600 characters or approximately 600 words
    Original Investigation
    Pharmacy and Clinical Pharmacology
    December 7, 2020

    Bisphosphonate Treatment Beyond 5 Years and Hip Fracture Risk in Older Women

    Author Affiliations
    • 1Division of Research, Kaiser Permanente Northern California, Oakland
    • 2Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena
    • 3Department of Medicine, University of Washington School of Medicine, Seattle
    • 4Pharmacy Outcomes Research Group, Kaiser Permanente California, Oakland
    JAMA Netw Open. 2020;3(12):e2025190. doi:10.1001/jamanetworkopen.2020.25190
    Key Points

    Question  Is bisphosphonate therapy beyond 5 years associated with lower risk of hip fracture?

    Findings  In this cohort study of 29 685 older women who completed 5 years of bisphosphonate treatment, if women continued treatment for 5 additional years, the risk of hip fracture was not significantly different than if they discontinued after the first 5 years. If women continued for 2 additional years and then discontinued, there was a difference in hip fracture outcome depending on the use of a grace period for discontinuation.

    Meaning  In this study of women who completed 5 years of bisphosphonate treatment, completing an additional 5 years of treatment was not associated with a reduction in hip fracture risk; the potential hip fracture benefit for continuing 2 additional years but not for 5 additional years should be further studied.

    Abstract

    Importance  Clinical trials have demonstrated the antifracture efficacy of bisphosphonate drugs for the first 3 to 5 years of therapy. However, the efficacy of continuing bisphosphonate for as long as 10 years is uncertain.

    Objective  To examine the association of discontinuing bisphosphonate at study entry, discontinuing at 2 years, and continuing for 5 additional years with the risk of hip fracture among women who had completed 5 years of bisphosphonate treatment at study entry.

    Design, Setting, and Participants  This cohort study included women who were members of Kaiser Permanente Northern and Southern California, 2 integrated health care delivery systems, and who had initiated oral bisphosphonate and completed 5 years of treatment by January 1, 2002, to September 30, 2014. Data analysis was conducted from January 2018 to August 2020.

    Exposure  Discontinuation of bisphosphonate at study entry (within a 6-month grace period), discontinuation at 2 years (within a 6-month grace period), and continuation for 5 additional years.

    Main Outcomes and Measures  The outcome was hip fracture determined by principal hospital discharge diagnoses. Demographic, clinical, and pharmacological data were ascertained from electronic health records.

    Results  Among 29 685 women (median [interquartile range] age, 71 [64-77] years; 17 778 [60%] non-Hispanic White individuals), 507 incident hip fractures were identified. Compared with bisphosphonate discontinuation at study entry, there were no differences in the cumulative incidence (ie, risk) of hip fracture if women remained on therapy for 2 additional years (5-year risk difference [RD], −2.2 per 1000 individuals; 95% CI, −20.3 to 15.9 per 1000 individuals) or if women continued therapy for 5 additional years (5-year RD, 3.8 per 1000 individuals; 95% CI, −7.4 to 15.0 per 1000 individuals). While 5-year differences in hip fracture risk comparing continuation for 5 additional years with discontinuation at 2 additional years were not statistically significant (5-year RD, 6.0 per 1000 individuals; 95% CI, −9.9 to 22.0 per 1000 individuals), interim hip fracture risk appeared lower if women discontinued after 2 additional years (3-year RD, 2.8 per 1000 individuals; 95% CI, 1.3 to 4.3 per 1000 individuals; 4-year RD, 9.3 per 1000 individuals; 95% CI, 6.3 to 12.3 per 1000 individuals) but not without a 6-month grace period to define discontinuation.

    Conclusions and Relevance  In this study of women treated with bisphosphonate for 5 years, hip fracture risk did not differ if they discontinued treatment compared with continuing treatment for 5 additional years. If women continued for 2 additional years and then discontinued, their risk appeared lower than continuing for 5 additional years. Discontinuation at other times and fracture rates during intervening years should be further studied.

    ×