Assessment of Physician Sleep and Wellness, Burnout, and Clinically Significant Medical Errors | Health Care Safety | JAMA Network Open | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 34.239.150.57. Please contact the publisher to request reinstatement.
1.
Baldwin  DC  Jr, Daugherty  SR, Tsai  R, Scotti  MJ  Jr.  A national survey of residents’ self-reported work hours: thinking beyond specialty.   Acad Med. 2003;78(11):1154-1163. doi:10.1097/00001888-200311000-00018PubMedGoogle ScholarCrossref
2.
Shanafelt  TD, Hasan  O, Dyrbye  LN,  et al.  Changes in burnout and satisfaction with work-life balance in physicians and the general US working population between 2011 and 2014.   Mayo Clin Proc. 2015;90(12):1600-1613. doi:10.1016/j.mayocp.2015.08.023PubMedGoogle ScholarCrossref
3.
Bilimoria  KY, Chung  JW, Hedges  LV,  et al.  National cluster-randomized trial of duty-hour flexibility in surgical training.   N Engl J Med. 2016;374(8):713-727. doi:10.1056/NEJMoa1515724PubMedGoogle ScholarCrossref
4.
Tang  C, Liu  C, Fang  P, Xiang  Y, Min  R.  Work-related accumulated fatigue among doctors in tertiary hospitals: a cross-sectional survey in six provinces of China.   Int J Environ Res Public Health. 2019;16(17):3049. doi:10.3390/ijerph16173049PubMedGoogle ScholarCrossref
5.
Mansukhani  MP, Kolla  BP, Surani  S, Varon  J, Ramar  K.  Sleep deprivation in resident physicians, work hour limitations, and related outcomes: a systematic review of the literature.   Postgrad Med. 2012;124(4):241-249. doi:10.3810/pgm.2012.07.2583PubMedGoogle ScholarCrossref
6.
Van Dongen  HP, Baynard  MD, Maislin  G, Dinges  DF.  Systematic interindividual differences in neurobehavioral impairment from sleep loss: evidence of trait-like differential vulnerability.   Sleep. 2004;27(3):423-433.PubMedGoogle Scholar
7.
Kuna  ST, Maislin  G, Pack  FM,  et al.  Heritability of performance deficit accumulation during acute sleep deprivation in twins.   Sleep. 2012;35(9):1223-1233. doi:10.5665/sleep.2074PubMedGoogle Scholar
8.
Rupp  TL, Wesensten  NJ, Balkin  TJ.  Trait-like vulnerability to total and partial sleep loss.   Sleep. 2012;35(8):1163-1172. doi:10.5665/sleep.2010PubMedGoogle ScholarCrossref
9.
Krause  AJ, Simon  EB, Mander  BA,  et al.  The sleep-deprived human brain.   Nat Rev Neurosci. 2017;18(7):404-418. doi:10.1038/nrn.2017.55PubMedGoogle ScholarCrossref
10.
Yoo  S-S, Gujar  N, Hu  P, Jolesz  FA, Walker  MP.  The human emotional brain without sleep: a prefrontal amygdala disconnect.   Curr Biol. 2007;17(20):R877-R878. doi:10.1016/j.cub.2007.08.007PubMedGoogle ScholarCrossref
11.
Motomura  Y, Kitamura  S, Oba  K,  et al.  Sleep debt elicits negative emotional reaction through diminished amygdala-anterior cingulate functional connectivity.   PLoS One. 2013;8(2):e56578. doi:10.1371/journal.pone.0056578PubMedGoogle Scholar
12.
Prather  AA, Bogdan  R, Hariri  AR.  Impact of sleep quality on amygdala reactivity, negative affect, and perceived stress.   Psychosom Med. 2013;75(4):350-358. doi:10.1097/PSY.0b013e31828ef15bPubMedGoogle ScholarCrossref
13.
Goldstein  AN, Walker  MP.  The role of sleep in emotional brain function.   Annu Rev Clin Psychol. 2014;10:679-708. doi:10.1146/annurev-clinpsy-032813-153716PubMedGoogle ScholarCrossref
14.
Killgore  WD.  Self-reported sleep correlates with prefrontal-amygdala functional connectivity and emotional functioning.   Sleep. 2013;36(11):1597-1608. doi:10.5665/sleep.3106PubMedGoogle ScholarCrossref
15.
van der Helm  E, Gujar  N, Walker  MP.  Sleep deprivation impairs the accurate recognition of human emotions.   Sleep. 2010;33(3):335-342. doi:10.1093/sleep/33.3.335PubMedGoogle ScholarCrossref
16.
Goldstein-Piekarski  AN, Greer  SM, Saletin  JM, Walker  MP.  Sleep deprivation impairs the human central and peripheral nervous system discrimination of social threat.   J Neurosci. 2015;35(28):10135-10145. doi:10.1523/JNEUROSCI.5254-14.2015PubMedGoogle ScholarCrossref
17.
Friedman  RC, Bigger  JT, Kornfeld  DS.  The intern and sleep loss.   N Engl J Med. 1971;285(4):201-203. doi:10.1056/NEJM197107222850405PubMedGoogle ScholarCrossref
18.
Van Dongen  HP, Maislin  G, Mullington  JM, Dinges  DF.  The cumulative cost of additional wakefulness: dose-response effects on neurobehavioral functions and sleep physiology from chronic sleep restriction and total sleep deprivation.   Sleep. 2003;26(2):117-126. doi:10.1093/sleep/26.2.117PubMedGoogle ScholarCrossref
19.
Durmer  JS, Dinges  DF.  Neurocognitive consequences of sleep deprivation.   Semin Neurol. 2005;25(1):117-129. doi:10.1055/s-2005-867080Google ScholarCrossref
20.
Chee  MW, Tan  JC.  Lapsing when sleep deprived: neural activation characteristics of resistant and vulnerable individuals.   Neuroimage. 2010;51(2):835-843. doi:10.1016/j.neuroimage.2010.02.031PubMedGoogle ScholarCrossref
21.
Chee  MW, Goh  CS, Namburi  P, Parimal  S, Seidl  KN, Kastner  S.  Effects of sleep deprivation on cortical activation during directed attention in the absence and presence of visual stimuli.   Neuroimage. 2011;58(2):595-604. doi:10.1016/j.neuroimage.2011.06.058PubMedGoogle ScholarCrossref
22.
Smith-Coggins  R, Rosekind  MR, Buccino  KR, Dinges  DF, Moser  RP.  Rotating shiftwork schedules: can we enhance physician adaptation to night shifts?   Acad Emerg Med. 1997;4(10):951-961. doi:10.1111/j.1553-2712.1997.tb03658.xPubMedGoogle ScholarCrossref
23.
Smith-Coggins  R, Rosekind  MR, Hurd  S, Buccino  KR.  Relationship of day versus night sleep to physician performance and mood.   Ann Emerg Med. 1994;24(5):928-934. doi:10.1016/S0196-0644(94)70209-8PubMedGoogle ScholarCrossref
24.
Dula  DJ, Dula  NL, Hamrick  C, Wood  GC.  The effect of working serial night shifts on the cognitive functioning of emergency physicians.   Ann Emerg Med. 2001;38(2):152-155. doi:10.1067/mem.2001.116024PubMedGoogle ScholarCrossref
25.
Robbins  J, Gottlieb  F.  Sleep deprivation and cognitive testing in internal medicine house staff.   West J Med. 1990;152(1):82-86.PubMedGoogle Scholar
26.
Howard  SK, Rosekind  MR, Katz  JD, Berry  AJ.  Fatigue in anesthesia: implications and strategies for patient and provider safety.   Anesthesiology. 2002;97(5):1281-1294. doi:10.1097/00000542-200211000-000PubMedGoogle ScholarCrossref
27.
Wesnes  KA, Walker  MB, Walker  LG,  et al.  Cognitive performance and mood after a weekend on call in a surgical unit.   Br J Surg. 1997;84(4):493-495.PubMedGoogle Scholar
28.
Rollinson  DC, Rathlev  NK, Moss  M,  et al.  The effects of consecutive night shifts on neuropsychological performance of interns in the emergency department: a pilot study.   Ann Emerg Med. 2003;41(3):400-406. doi:10.1067/mem.2003.77PubMedGoogle ScholarCrossref
29.
Taffinder  NJ, McManus  IC, Gul  Y, Russell  RC, Darzi  A.  Effect of sleep deprivation on surgeons’ dexterity on laparoscopy simulator.   Lancet. 1998;352(9135):1191. doi:10.1016/S0140-6736(98)00034-8PubMedGoogle ScholarCrossref
30.
Samkoff  JS, Jacques  CH.  A review of studies concerning effects of sleep deprivation and fatigue on residents’ performance.   Acad Med. 1991;66(11):687-693. doi:10.1097/00001888-199111000-00013PubMedGoogle ScholarCrossref
31.
Owens  JA, Veasey  SC, Rosen  RC.  Physician, heal thyself: sleep, fatigue, and medical education.   Sleep. 2001;24(5):493-495. doi:10.1093/sleep/24.5.493PubMedGoogle ScholarCrossref
32.
Jacques  CH, Lynch  JC, Samkoff  JS.  The effects of sleep loss on cognitive performance of resident physicians.   J Fam Pract. 1990;30(2):223-229.PubMedGoogle Scholar
33.
Killgore  WD, Balkin  TJ, Wesensten  NJ.  Impaired decision making following 49 h of sleep deprivation.   J Sleep Res. 2006;15(1):7-13. doi:10.1111/j.1365-2869.2006.00487.xPubMedGoogle ScholarCrossref
34.
Mullin  BC, Phillips  ML, Siegle  GJ, Buysse  DJ, Forbes  EE, Franzen  PL.  Sleep deprivation amplifies striatal activation to monetary reward.   Psychol Med. 2013;43(10):2215-2225. doi:10.1017/S0033291712002875PubMedGoogle ScholarCrossref
35.
Venkatraman  V, Chuah  YM, Huettel  SA, Chee  MW.  Sleep deprivation elevates expectation of gains and attenuates response to losses following risky decisions.   Sleep. 2007;30(5):603-609. doi:10.1093/sleep/30.5.603PubMedGoogle ScholarCrossref
36.
Olson  EA, Weber  M, Rauch  SL, Killgore  WD.  Daytime sleepiness is associated with reduced integration of temporally distant outcomes on the Iowa Gambling Task.   Behav Sleep Med. 2016;14(2):200-211. doi:10.1080/15402002.2014.974182PubMedGoogle ScholarCrossref
37.
Aran  A, Wasserteil  N, Gross  I, Mendlovic  J, Pollak  Y.  Medical decisions of pediatric residents turn riskier after a 24-hour call with no sleep.   Med Decis Making. 2017;37(1):127-133. doi:10.1177/0272989X15626398PubMedGoogle ScholarCrossref
38.
Welle  D, Trockel  M, Hamidi  M,  et al.  Association of occupational distress and sleep-related impairment in physicians with unsolicited patient complaints.   Mayo Clin Proc. 2020;95(4):719-726. doi:10.1016/j.mayocp.2019.09.025PubMedGoogle ScholarCrossref
39.
Cooper  WO, Guillamondegui  O, Hines  OJ,  et al.  Use of unsolicited patient observations to identify surgeons with increased risk for postoperative complications.   JAMA Surg. 2017;152(6):522-529. doi:10.1001/jamasurg.2016.5703PubMedGoogle ScholarCrossref
40.
Hickson  GB, Federspiel  CF, Pichert  JW, Miller  CS, Gauld-Jaeger  J, Bost  P.  Patient complaints and malpractice risk.   JAMA. 2002;287(22):2951-2957. doi:10.1001/jama.287.22.2951PubMedGoogle ScholarCrossref
41.
Catron  TF, Guillamondegui  OD, Karrass  J,  et al.  Patient complaints and adverse surgical outcomes.   Am J Med Qual. 2016;31(5):415-422. doi:10.1177/1062860615584158PubMedGoogle ScholarCrossref
42.
Vela-Bueno  A, Moreno-Jiménez  B, Rodríguez-Muñoz  A,  et al.  Insomnia and sleep quality among primary care physicians with low and high burnout levels.   J Psychosom Res. 2008;64(4):435-442. doi:10.1016/j.jpsychores.2007.10.014PubMedGoogle ScholarCrossref
43.
Trockel  M, Bohman  B, Lesure  E,  et al.  A brief instrument to assess both burnout and professional fulfillment in physicians: reliability and validity, including correlation with self-reported medical errors, in a sample of resident and practicing physicians.   Acad Psychiatry. 2018;42(1):11-24. doi:10.1007/s40596-017-0849-3PubMedGoogle ScholarCrossref
44.
Patient-Reported Outcomes Measurement Information System. A brief guide to the PROMIS Sleep-Related Impairment instruments. Accessed August 1, 2020. http://www.healthmeasures.net/images/PROMIS/manuals/PROMIS_Sleep-Related_Impairment_Scoring_Manual.pdf
45.
Cella  D, Riley  W, Stone  A,  et al; PROMIS Cooperative Group.  The Patient-Reported Outcomes Measurement Information System (PROMIS) developed and tested its first wave of adult self-reported health outcome item banks: 2005-2008.   J Clin Epidemiol. 2010;63(11):1179-1194. doi:10.1016/j.jclinepi.2010.04.011PubMedGoogle ScholarCrossref
46.
Yu  L, Buysse  DJ, Germain  A,  et al.  Development of short forms from the PROMIS sleep disturbance and Sleep-Related Impairment item banks.   Behav Sleep Med. 2011;10(1):6-24. doi:10.1080/15402002.2012.636266PubMedGoogle ScholarCrossref
47.
West  CP, Tan  AD, Habermann  TM, Sloan  JA, Shanafelt  TD.  Association of resident fatigue and distress with perceived medical errors.   JAMA. 2009;302(12):1294-1300. doi:10.1001/jama.2009.1389PubMedGoogle ScholarCrossref
48.
Cedernaes  J, Osorio  RS, Varga  AW, Kam  K, Schiöth  HB, Benedict  C.  Candidate mechanisms underlying the association between sleep-wake disruptions and Alzheimer’s disease.   Sleep Med Rev. 2017;31:102-111. doi:10.1016/j.smrv.2016.02.002PubMedGoogle ScholarCrossref
49.
Cappuccio  FP, Cooper  D, D’Elia  L, Strazzullo  P, Miller  MA.  Sleep duration predicts cardiovascular outcomes: a systematic review and meta-analysis of prospective studies.   Eur Heart J. 2011;32(12):1484-1492. doi:10.1093/eurheartj/ehr007PubMedGoogle ScholarCrossref
50.
Tsuno  N, Besset  A, Ritchie  K.  Sleep and depression.   J Clin Psychiatry. 2005;66(10):1254-1269. doi:10.4088/JCP.v66n1008PubMedGoogle ScholarCrossref
51.
Bernert  RA, Turvey  CL, Conwell  Y, Joiner  TE  Jr.  Association of poor subjective sleep quality with risk for death by suicide during a 10-year period: a longitudinal, population-based study of late life.   JAMA Psychiatry. 2014;71(10):1129-1137. doi:10.1001/jamapsychiatry.2014.1126PubMedGoogle ScholarCrossref
52.
Hayley  AC, Williams  LJ, Venugopal  K, Kennedy  GA, Berk  M, Pasco  JA.  The relationships between insomnia, sleep apnoea and depression: findings from the American National Health and Nutrition Examination Survey, 2005-2008.   Aust N Z J Psychiatry. 2015;49(2):156-170. doi:10.1177/0004867414546700PubMedGoogle ScholarCrossref
53.
Ali  T, Choe  J, Awab  A, Wagener  TL, Orr  WC.  Sleep, immunity and inflammation in gastrointestinal disorders.   World J Gastroenterol. 2013;19(48):9231-9239. doi:10.3748/wjg.v19.i48.9231PubMedGoogle ScholarCrossref
54.
Kinnucan  JA, Rubin  DT, Ali  T.  Sleep and inflammatory bowel disease: exploring the relationship between sleep disturbances and inflammation.   Gastroenterol Hepatol (N Y). 2013;9(11):718-727.PubMedGoogle Scholar
55.
Cohen  S, Doyle  WJ, Alper  CM, Janicki-Deverts  D, Turner  RB.  Sleep habits and susceptibility to the common cold.   Arch Intern Med. 2009;169(1):62-67. doi:10.1001/archinternmed.2008.505PubMedGoogle ScholarCrossref
56.
Irwin  M, McClintick  J, Costlow  C, Fortner  M, White  J, Gillin  JC.  Partial night sleep deprivation reduces natural killer and cellular immune responses in humans.   FASEB J. 1996;10(5):643-653. doi:10.1096/fasebj.10.5.8621064PubMedGoogle ScholarCrossref
57.
Belenky  G, Wesensten  NJ, Thorne  DR,  et al.  Patterns of performance degradation and restoration during sleep restriction and subsequent recovery: a sleep dose-response study.   J Sleep Res. 2003;12(1):1-12. doi:10.1046/j.1365-2869.2003.00337.xPubMedGoogle ScholarCrossref
58.
Stewart  NH, Arora  VM.  The impact of sleep and circadian disorders on physician burnout.   Chest. 2019;156(5):1022-1030. doi:10.1016/j.chest.2019.07.008PubMedGoogle ScholarCrossref
59.
Shanafelt  TD, West  CP, Sloan  JA,  et al.  Career fit and burnout among academic faculty.   Arch Intern Med. 2009;169(10):990-995. doi:10.1001/archinternmed.2009.70PubMedGoogle ScholarCrossref
60.
Shanafelt  TD, Boone  S, Tan  L,  et al.  Burnout and satisfaction with work-life balance among US physicians relative to the general US population.   Arch Intern Med. 2012;172(18):1377-1385. doi:10.1001/archinternmed.2012.3199PubMedGoogle ScholarCrossref
61.
Dewa  CS, Jacobs  P, Thanh  NX, Loong  D.  An estimate of the cost of burnout on early retirement and reduction in clinical hours of practicing physicians in Canada.   BMC Health Serv Res. 2014;14(1):254. doi:10.1186/1472-6963-14-254PubMedGoogle ScholarCrossref
62.
Spickard  A  Jr, Gabbe  SG, Christensen  JF.  Mid-career burnout in generalist and specialist physicians.   JAMA. 2002;288(12):1447-1450. doi:10.1001/jama.288.12.1447PubMedGoogle ScholarCrossref
63.
Halbesleben  JRB, Rathert  C.  Linking physician burnout and patient outcomes: exploring the dyadic relationship between physicians and patients.   Health Care Manage Rev. 2008;33(1):29-39. doi:10.1097/01.HMR.0000304493.87898.72PubMedGoogle ScholarCrossref
64.
Thomas  LR, Ripp  JA, West  CP.  Charter on physician well-being.   JAMA. 2018;319(15):1541-1542. doi:10.1001/jama.2018.1331PubMedGoogle ScholarCrossref
65.
Shanafelt  TD, Bradley  KA, Wipf  JE, Back  AL.  Burnout and self-reported patient care in an internal medicine residency program.   Ann Intern Med. 2002;136(5):358-367. doi:10.7326/0003-4819-136-5-200203050-00008PubMedGoogle ScholarCrossref
66.
Dewa  CS, Loong  D, Bonato  S, Thanh  NX, Jacobs  P.  How does burnout affect physician productivity? a systematic literature review.   BMC Health Serv Res. 2014;14:325. doi:10.1186/1472-6963-14-325PubMedGoogle ScholarCrossref
67.
Goldstein  AN, Greer  SM, Saletin  JM, Harvey  AG, Nitschke  JB, Walker  MP.  Tired and apprehensive: anxiety amplifies the impact of sleep loss on aversive brain anticipation.   J Neurosci. 2013;33(26):10607-10615. doi:10.1523/JNEUROSCI.5578-12.2013PubMedGoogle ScholarCrossref
68.
Simon  EB, Oren  N, Sharon  H,  et al.  Losing neutrality: the neural basis of impaired emotional control without sleep.   J Neurosci. 2015;35(38):13194-13205. doi:10.1523/JNEUROSCI.1314-15.2015PubMedGoogle ScholarCrossref
69.
Wickwire  EM, Geiger-Brown  J, Scharf  SM, Drake  CL.  Shift work and shift work sleep disorder: clinical and organizational perspectives.   Chest. 2017;151(5):1156-1172. doi:10.1016/j.chest.2016.12.007PubMedGoogle ScholarCrossref
70.
Anderson  C, Sullivan  JP, Flynn-Evans  EE, Cade  BE, Czeisler  CA, Lockley  SW.  Deterioration of neurobehavioral performance in resident physicians during repeated exposure to extended duration work shifts.   Sleep. 2012;35(8):1137-1146. doi:10.5665/sleep.2004PubMedGoogle Scholar
71.
Shanafelt  TD, Balch  CM, Bechamps  G,  et al.  Burnout and medical errors among American surgeons.   Ann Surg. 2010;251(6):995-1000. doi:10.1097/SLA.0b013e3181bfdab3PubMedGoogle ScholarCrossref
Limit 200 characters
Limit 25 characters
Conflicts of Interest Disclosure

Identify all potential conflicts of interest that might be relevant to your comment.

Conflicts of interest comprise financial interests, activities, and relationships within the past 3 years including but not limited to employment, affiliation, grants or funding, consultancies, honoraria or payment, speaker's bureaus, stock ownership or options, expert testimony, royalties, donation of medical equipment, or patents planned, pending, or issued.

Err on the side of full disclosure.

If you have no conflicts of interest, check "No potential conflicts of interest" in the box below. The information will be posted with your response.

Not all submitted comments are published. Please see our commenting policy for details.

Limit 140 characters
Limit 3600 characters or approximately 600 words
    Views 12,002
    Citations 0
    Original Investigation
    Health Policy
    December 7, 2020

    Assessment of Physician Sleep and Wellness, Burnout, and Clinically Significant Medical Errors

    Author Affiliations
    • 1Stanford University School of Medicine, Palo Alto, California
    • 2Boston Medical Center, Boston, Massachusetts
    • 3Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
    • 4Physician Affiliate Group of New York, New York, New York
    • 5University of Wisconsin School of Medicine, Madison
    • 6University of New Mexico School of Medicine, Albuquerque
    • 7MedStar Health, Columbia, Maryland
    • 8Christiana Care Health System, Middletown, Delaware
    • 9Rush University Medical Center, Chicago, Illinois
    • 10Advocate Christ Medical Center, Oak Lawn, Illinois
    • 11Brigham and Women's Hospital–Partners HealthCare, Boston, Massachusetts
    JAMA Netw Open. 2020;3(12):e2028111. doi:10.1001/jamanetworkopen.2020.28111
    Key Points

    Question  Is sleep-related impairment associated with burnout, professional fulfillment, and self-reported clinically significant medical error in physicians?

    Findings  In this cross-sectional study of 11 395 physicians, sleep-related impairment had statistically significant correlations with burnout and professional fulfillment. In a model adjusting for gender, training status, practice specialty, and burnout, moderate, high, and very high sleep-related impairment were associated with 53%, 96%, and 97% greater odds of self-reported clinically significant medical error, respectively, compared with low sleep-related impairment.

    Meaning  These findings suggest that interventions to mitigate sleep-related impairment in physicians are warranted.

    Abstract

    Importance  Sleep-related impairment in physicians is an occupational hazard associated with long and sometimes unpredictable work hours and may contribute to burnout and self-reported clinically significant medical error.

    Objective  To assess the associations between sleep-related impairment and occupational wellness indicators in physicians practicing at academic-affiliated medical centers and the association of sleep-related impairment with self-reported clinically significant medical errors, before and after adjusting for burnout.

    Design, Setting, and Participants  This cross-sectional study used physician wellness survey data collected from 11 academic-affiliated medical centers between November 2016 and October 2018. Analysis was completed in January 2020. A total of 19 384 attending physicians and 7257 house staff physicians at participating institutions were invited to complete a wellness survey. The sample of responders was used for this study.

    Exposures  Sleep-related impairment.

    Main Outcomes and Measures  Association between sleep-related impairment and occupational wellness indicators (ie, work exhaustion, interpersonal disengagement, overall burnout, and professional fulfillment) was hypothesized before data collection. Assessment of the associations of sleep-related impairment and burnout with self-reported clinically significant medical errors (ie, error within the last year resulting in patient harm) was planned after data collection.

    Results  Of all physicians invited to participate in the survey, 7700 of 19 384 attending physicians (40%) and 3695 of 7257 house staff physicians (51%) completed sleep-related impairment items, including 5279 women (46%), 5187 men (46%), and 929 (8%) who self-identified as other gender or elected not to answer. Because of institutional variation in survey domain inclusion, self-reported medical error responses from 7538 physicians were available for analyses. Spearman correlations of sleep-related impairment with interpersonal disengagement (r = 0.51; P < .001), work exhaustion (r = 0.58; P < .001), and overall burnout (r = 0.59; P < .001) were large. Sleep-related impairment correlation with professional fulfillment (r = −0.40; P < .001) was moderate. In a multivariate model adjusted for gender, training status, medical specialty, and burnout level, compared with low sleep-related impairment levels, moderate, high, and very high levels were associated with increased odds of self-reported clinically significant medical error, by 53% (odds ratio, 1.53; 95% CI, 1.12-2.09), 96% (odds ratio, 1.96; 95% CI, 1.46-2.63), and 97% (odds ratio, 1.97; 95% CI, 1.45-2.69), respectively.

    Conclusions and Relevance  In this study, sleep-related impairment was associated with increased burnout, decreased professional fulfillment, and increased self-reported clinically significant medical error. Interventions to mitigate sleep-related impairment in physicians are warranted.

    ×