Association of Cognitive Function Trajectories in Centenarians With Postmortem Neuropathology, Physical Health, and Other Risk Factors for Cognitive Decline | Dementia and Cognitive Impairment | JAMA Network Open | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 18.207.129.82. Please contact the publisher to request reinstatement.
1.
Poon  LW, Woodard  JL, Stephen Miller  L,  et al.  Understanding dementia prevalence among centenarians.   J Gerontol A Biol Sci Med Sci. 2012;67(4):358-365. doi:10.1093/gerona/glr250PubMedGoogle ScholarCrossref
2.
Perls  T.  Dementia-free centenarians.   Exp Gerontol. 2004;39(11-12):1587-1593. doi:10.1016/j.exger.2004.08.015PubMedGoogle ScholarCrossref
3.
Mossakowska  M, Broczek  K, Wieczorowska-Tobis  K,  et al.  Cognitive performance and functional status are the major factors predicting survival of centenarians in Poland.   J Gerontol A Biol Sci Med Sci. 2014;69(10):1269-1275. doi:10.1093/gerona/glu003PubMedGoogle ScholarCrossref
4.
Andersen-Ranberg  K, Vasegaard  L, Jeune  B.  Dementia is not inevitable: a population-based study of Danish centenarians.   J Gerontol B Psychol Sci Soc Sci. 2001;56(3):152-159. doi:10.1093/geronb/56.3.P152PubMedGoogle ScholarCrossref
5.
Hagberg  B, Bauer Alfredson  B, Poon  LW, Homma  A.  Cognitive functioning in centenarians: a coordinated analysis of results from three countries.   J Gerontol B Psychol Sci Soc Sci. 2001;56(3):141-151. doi:10.1093/geronb/56.3.P141PubMedGoogle ScholarCrossref
6.
Small  SA, Stern  Y, Tang  M, Mayeux  R.  Selective decline in memory function among healthy elderly.   Neurology. 1999;52(7):1392-1396. doi:10.1212/WNL.52.7.1392PubMedGoogle ScholarCrossref
7.
Hedden  T, Gabrieli  JD.  Insights into the ageing mind: a view from cognitive neuroscience.   Nat Rev Neurosci. 2004;5(2):87-96. doi:10.1038/nrn1323PubMedGoogle ScholarCrossref
8.
Park  DC, Lautenschlager  G, Hedden  T, Davidson  NS, Smith  AD, Smith  PK.  Models of visuospatial and verbal memory across the adult life span.   Psychol Aging. 2002;17(2):299-320. doi:10.1037/0882-7974.17.2.299PubMedGoogle ScholarCrossref
9.
Christensen  H.  What cognitive changes can be expected with normal ageing?   Aust N Z J Psychiatry. 2001;35(6):768-775. doi:10.1046/j.1440-1614.2001.00966.xPubMedGoogle ScholarCrossref
10.
Salthouse  TA.  Neuroanatomical substrates of age-related cognitive decline.   Psychol Bull. 2011;137(5):753-784. doi:10.1037/a0023262PubMedGoogle ScholarCrossref
11.
Salthouse  TA.  Trajectories of normal cognitive aging.   Psychol Aging. 2019;34(1):17-24. doi:10.1037/pag0000288PubMedGoogle ScholarCrossref
12.
Corrada  MM, Brookmeyer  R, Paganini-Hill  A, Berlau  D, Kawas  CH.  Dementia incidence continues to increase with age in the oldest old: the 90+ study.   Ann Neurol. 2010;67(1):114-121. doi:10.1002/ana.21915PubMedGoogle ScholarCrossref
13.
Lobo  A, Lopez-Anton  R, Santabárbara  J,  et al.  Incidence and lifetime risk of dementia and Alzheimer’s disease in a Southern European population.   Acta Psychiatr Scand. 2011;124(5):372-383. doi:10.1111/j.1600-0447.2011.01754.xPubMedGoogle ScholarCrossref
14.
Stern  Y.  Cognitive reserve.   Neuropsychologia. 2009;47(10):2015-2028. doi:10.1016/j.neuropsychologia.2009.03.004PubMedGoogle ScholarCrossref
15.
Stern  Y, Arenaza-Urquijo  EM, Bartrés-Faz  D,  et al.  Whitepaper: defining and investigating cognitive reserve, brain reserve, and brain maintenance.   Alzheimer’s & Dementia. 2020;16(9):1305-1311. doi:10.1016/j.jalz.2018.07.219PubMedGoogle ScholarCrossref
16.
World Medical Association.  World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects.   JAMA. 2013;310(20):2191-2194. doi:10.1001/jama.2013.281053Google ScholarCrossref
17.
Holstege  H, Beker  N, Dijkstra  T,  et al.  The 100-plus Study of cognitively healthy centenarians: rationale, design and cohort description.   Eur J Epidemiol. 2018;33(12):1229-1249. doi:10.1007/s10654-018-0451-3PubMedGoogle ScholarCrossref
18.
Folstein  MF, Folstein  SE, McHugh  PR.  “Mini-mental state”: a practical method for grading the cognitive state of patients for the clinician.   J Psychiatr Res. 1975;12(3):189-198. doi:10.1016/0022-3956(75)90026-6PubMedGoogle ScholarCrossref
19.
van Buuren  S, Groothuis-Oudshoorn  K.  mice: multivariate imputation by chained equations in R.   J Stat Software. 2011;45(3):1-67. doi:10.18637/jss.v045.i03Google Scholar
20.
Beker  N, Sikkes  SA, Hulsman  M, Schmand  B, Scheltens  P, Holstege  H.  Neuropsychological test performance of cognitively healthy centenarians: normative data from the Dutch 100-plus Study.   J Am Geriatr Soc. 2019;67(4):759-767. doi:10.1111/jgs.15729PubMedGoogle ScholarCrossref
21.
Wilson  B, Cockburn  J, Baddeley  A.  The Rivermead Behavioural Memory Test. Nederlandstalige bewerking. Handleiding. Balen  HGG, Groot Zwaaftink  AJM , trans. Swets & Zeitling; 1987.
22.
Wilson  B, Cockburn  J, Baddeley  A.  The Rivermead Behavioural Memory Test Reading. Thames Valley Test Co; 1985.
23.
Reitan  RM.  Validity of the Trail Making Test as an indicator of organic brain damage.   Perceptual and Motor Skills. 1958;8(3):271-276. doi:10.2466/pms.1958.8.3.271Google ScholarCrossref
24.
Wilson  BA, Alderman  N, Burgess  PW, Emslie  H, Evans  JJ.  BADS: Behavioural Assessment of the Dysexecutive Syndrome. Pearson; 1996.
25.
Wechsler  D.  WAIS-III: Wechsler Adult Intelligence Scale. Psychological Corporation; 1997.
26.
Benton  AL, Hamsher  KD, Sivan  A.  Multilingual Aphasia Examination. Vol 59. AJA Associates; 1989.
27.
Van der Elst  W, Van Boxtel  MP, Van Breukelen  GJ, Jolles  J.  Normative data for the animal, profession and letter m naming verbal fluency tests for Dutch speaking participants and the effects of age, education, and sex.   J Int Neuropsychol Soc. 2006;12(1):80-89. doi:10.1017/S1355617706060115PubMedGoogle ScholarCrossref
28.
Warrington  EK, James  M.  The Visual Object and Space Perception Battery: VOSP. Pearson London; 1991.
29.
Munang  L, Chan  M, Lim  W.  Diagnostic performance of the clock drawing test using a pre-drawn circle in persons with early dementia.   Asian J Gerontol Geriatr. 2010;5:54-61.Google Scholar
30.
Shulman  KI.  Clock-drawing: is it the ideal cognitive screening test?   Int J Geriatr Psychiatry. 2000;15(6):548-561. doi:10.1002/1099-1166(200006)15:6<548::AID-GPS242>3.0.CO;2-UPubMedGoogle ScholarCrossref
31.
Schiepers  OJ, Harris  SE, Gow  AJ,  et al.  APOE E4 status predicts age-related cognitive decline in the ninth decade: longitudinal follow-up of the Lothian Birth Cohort 1921.   Mol Psychiatry. 2012;17(3):315-324. doi:10.1038/mp.2010.137PubMedGoogle ScholarCrossref
32.
Genin  E, Hannequin  D, Wallon  D,  et al.  APOE and Alzheimer disease: a major gene with semi-dominant inheritance.   Mol Psychiatry. 2011;16(9):903-907. doi:10.1038/mp.2011.52PubMedGoogle ScholarCrossref
33.
Farrer  LA, Cupples  LA, Haines  JL,  et al; APOE and Alzheimer Disease Meta Analysis Consortium.  Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease—a meta-analysis.   JAMA. 1997;278(16):1349-1356. doi:10.1001/jama.1997.03550160069041PubMedGoogle ScholarCrossref
34.
van der Lee  SJ, Wolters  FJ, Ikram  MK,  et al.  The effect of APOE and other common genetic variants on the onset of Alzheimer’s disease and dementia: a community-based cohort study.   Lancet Neurol. 2018;17(5):434-444. doi:10.1016/S1474-4422(18)30053-XPubMedGoogle ScholarCrossref
35.
Mahoney  FI, Barthel  DW.  Functional Evaluation: The Barthel Index. Mary State Matiland GD; 1965.
36.
Reijnierse  EM, de Jong  N, Trappenburg  MC,  et al.  Assessment of maximal handgrip strength: how many attempts are needed?   J Cachexia Sarcopenia Muscle. 2017;8(3):466-474. doi:10.1002/jcsm.12181PubMedGoogle ScholarCrossref
37.
United Nations Educational, Scientific, and Cultural Organization. International standard classification of education or ISCED-1997. Published 1997. Accessed November 19, 2020. https://en.unesco.org/themes/education
38.
Wilson  R, Barnes  L, Bennett  D.  Assessment of lifetime participation in cognitively stimulating activities.   J Clin Exp Neuropsychol. 2003;25(5):634-642. doi:10.1076/jcen.25.5.634.14572PubMedGoogle ScholarCrossref
39.
Nelson  HE, O’Connell  A.  Dementia: the estimation of premorbid intelligence levels using the New Adult Reading Test.   Cortex. 1978;14(2):234-244. doi:10.1016/S0010-9452(78)80049-5PubMedGoogle ScholarCrossref
40.
Schmand  B, Bakker  D, Saan  R, Louman  J.  The Dutch Reading Test for Adults: a measure of premorbid intelligence level.   Tijdschr Gerontol Geriatr. 1991;22(1):15-19.PubMedGoogle Scholar
41.
Schmand  B, Lindeboom  J, van Harskamp  F.  Dutch Adult Reading Test. Swets & Zeitlinger; 1992.
42.
Ganz  AB, Beker  N, Hulsman  M,  et al; Netherlands Brain Bank.  Neuropathology and cognitive performance in self-reported cognitively healthy centenarians.   Acta Neuropathol Commun. 2018;6(1):64. doi:10.1186/s40478-018-0558-5PubMedGoogle ScholarCrossref
43.
Thal  DR, Rüb  U, Schultz  C,  et al.  Sequence of Abeta-protein deposition in the human medial temporal lobe.   J Neuropathol Exp Neurol. 2000;59(8):733-748. doi:10.1093/jnen/59.8.733PubMedGoogle ScholarCrossref
44.
Braak  H, Braak  E.  Neuropathological stageing of Alzheimer-related changes.   Acta Neuropathol. 1991;82(4):239-259. doi:10.1007/BF00308809PubMedGoogle ScholarCrossref
45.
Braak  H, Alafuzoff  I, Arzberger  T, Kretzschmar  H, Del Tredici  K.  Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry.   Acta Neuropathol. 2006;112(4):389-404. doi:10.1007/s00401-006-0127-zPubMedGoogle ScholarCrossref
46.
Braak  H, Braak  E.  Staging of Alzheimer’s disease-related neurofibrillary changes.   Neurobiol Aging. 1995;16(3):271-278. doi:10.1016/0197-4580(95)00021-6PubMedGoogle ScholarCrossref
47.
Mirra  SS, Heyman  A, McKeel  D,  et al.  The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD)—part II, standardization of the neuropathologic assessment of Alzheimer’s disease.   Neurology. 1991;41(4):479-486. doi:10.1212/WNL.41.4.479PubMedGoogle ScholarCrossref
48.
Nylund  KL, Asparouhov  T, Muthén  BO.  Deciding on the number of classes in latent class analysis and growth mixture modeling: a Monte Carlo simulation study.   Structural equation modeling. 2007;14(4):535-569. doi:10.1080/10705511.2014.882690Google ScholarCrossref
49.
Proust-Lima  C, Philipps  V, Liquet  B.  Estimation of extended mixed models using latent classes and latent processes: the R package lcmm.  Preprint. Posted online January 24, 2015. Accessed December 4, 2020. arXiv 150300890. https://arxiv.org/pdf/1503.00890.pdf
50.
Bates  D. Computational methods for mixed models.  Vignette for lme4. Created October 14, 2007. Accessed November 19, 2020. http://btr0xq.rz.uni-bayreuth.de/math/statlib/R/CRAN/doc/vignettes/lme4/Theory.pdf
51.
Wright  DB.  Some Limits Using Random Slope Models to Measure Academic Growth.   Frontiers in Education. 2017;2(58). doi:10.3389/feduc.2017.00058Google Scholar
52.
Beker  N, Sikkes  SAM, Hulsman  M,  et al.  Longitudinal maintenance of cognitive health in centenarians in the 100-plus Study.   JAMA Netw Open. 2020;3(2):e200094. doi:10.1001/jamanetworkopen.2020.0094PubMedGoogle Scholar
53.
Smits  LL, van Harten  AC, Pijnenburg  YA,  et al.  Trajectories of cognitive decline in different types of dementia.   Psychol Med. 2015;45(5):1051-1059.PubMedGoogle ScholarCrossref
54.
Berg  S.  Aging, Behavior, and Terminal Decline. Academic Press; 1996.
55.
Arenaza-Urquijo  EM, Vemuri  P.  Resistance vs resilience to Alzheimer disease: clarifying terminology for preclinical studies.   Neurology. 2018;90(15):695-703. doi:10.1212/WNL.0000000000005303PubMedGoogle ScholarCrossref
56.
Arenaza-Urquijo  EM, Vemuri  P.  Improving the resistance and resilience framework for aging and dementia studies.   Alzheimers Res Ther. 2020;12(1):41. doi:10.1186/s13195-020-00609-2PubMedGoogle ScholarCrossref
57.
Montine  TJ, Cholerton  BA, Corrada  MM,  et al.  Concepts for brain aging: resistance, resilience, reserve, and compensation.   Alzheimers Res Ther. 2019;11(1):22. doi:10.1186/s13195-019-0479-yPubMedGoogle ScholarCrossref
58.
Khachaturian  AS, Corcoran  CD, Mayer  LS, Zandi  PP, Breitner  JCS; Cache County Study Investigators.  Apolipoprotein E ϵ4 count affects age at onset of Alzheimer disease, but not lifetime susceptibility: the Cache County Study.   Arch Gen Psychiatry. 2004;61(5):518-524. doi:10.1001/archpsyc.61.5.518PubMedGoogle ScholarCrossref
59.
Balasubramanian  AB, Kawas  CH, Peltz  CB, Brookmeyer  R, Corrada  MM.  Alzheimer disease pathology and longitudinal cognitive performance in the oldest-old with no dementia.   Neurology. 2012;79(9):915-921.PubMedGoogle ScholarCrossref
60.
Wilson  RS, Yu  L, Lamar  M, Schneider  JA, Boyle  PA, Bennett  DA.  Education and cognitive reserve in old age.   Neurology. 2019;92(10):e1041-e1050. doi:10.1212/WNL.0000000000007036PubMedGoogle ScholarCrossref
61.
Hagberg  B, Samuelsson  G.  Survival after 100 years of age: a multivariate model of exceptional survival in Swedish Centenarians.   J Gerontol. 2008;63(11):1219-1226. doi:10.1093/gerona/63.11.1219Google ScholarCrossref
62.
Poon  L, Johnson  M, Davey  A, Dawson  D, Siegler  I, Martin  P.  Psychosocial predictors of survival among centenarians.   Facts, Res, and Intervent in Geriatr. 2000:77-89. Accessed December 4, 2020. http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1449384Google Scholar
63.
Samuelsson  SM, Alfredson  BB, Hagberg  B,  et al.  The Swedish Centenarian Study: a multidisciplinary study of five consecutive cohorts at the age of 100.   Int J Aging Hum Dev. 1997;45(3):223-253. doi:10.2190/XKG9-YP7Y-QJTK-BGPGPubMedGoogle ScholarCrossref
64.
Kawas  CH, Corrada  MM. Successful cognitive aging: what the oldest-old can teach us about resistance and resilience.  Neurology. 2020;95(8):329-330. doi:10.1212/WNL.0000000000010251Crossref
65.
Calamia  M, Markon  K, Tranel  D.  Scoring higher the second time around: meta-analyses of practice effects in neuropsychological assessment.   Clin Neuropsychol. 2012;26(4):543-570. doi:10.1080/13854046.2012.680913PubMedGoogle ScholarCrossref
66.
Christensen  K, Thinggaard  M, Oksuzyan  A,  et al.  Physical and cognitive functioning of people older than 90 years: a comparison of two Danish cohorts born 10 years apart.   Lancet. 2013;382(9903):1507-1513. doi:10.1016/S0140-6736(13)60777-1PubMedGoogle ScholarCrossref
67.
Gilsanz  P, Corrada  MM, Kawas  CH,  et al.  Incidence of dementia after age 90 in a multiracial cohort.   Alzheimers Dement. 2019;15(4):497-505. doi:10.1016/j.jalz.2018.12.006PubMedGoogle ScholarCrossref
Limit 200 characters
Limit 25 characters
Conflicts of Interest Disclosure

Identify all potential conflicts of interest that might be relevant to your comment.

Conflicts of interest comprise financial interests, activities, and relationships within the past 3 years including but not limited to employment, affiliation, grants or funding, consultancies, honoraria or payment, speaker's bureaus, stock ownership or options, expert testimony, royalties, donation of medical equipment, or patents planned, pending, or issued.

Err on the side of full disclosure.

If you have no conflicts of interest, check "No potential conflicts of interest" in the box below. The information will be posted with your response.

Not all submitted comments are published. Please see our commenting policy for details.

Limit 140 characters
Limit 3600 characters or approximately 600 words
    Original Investigation
    Neurology
    January 15, 2021

    Association of Cognitive Function Trajectories in Centenarians With Postmortem Neuropathology, Physical Health, and Other Risk Factors for Cognitive Decline

    Author Affiliations
    • 1Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
    • 2Center for Neurogenomics and Cognitive Research, Department of Molecular and Cellular Neuroscience, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
    • 3Department of Pathology, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, the Netherlands
    • 4Department of Clinical Genetics, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
    • 5Amsterdam Public Health Research Institute, Department of Epidemiology and Biostatistics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
    • 6Brain & Cognition, Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands
    • 7Department of Clinical Psychology, Neuropsychology and Developmental Psychology, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
    JAMA Netw Open. 2021;4(1):e2031654. doi:10.1001/jamanetworkopen.2020.31654
    Key Points

    Question  Are cognitively healthy centenarians resilient against further cognitive decline?

    Findings  In this cohort study of 330 self-reported cognitively healthy centenarians, cognitive trajectories revealed only a slight decline in memory functioning, while other domains remained stable over time. Centenarians maintained high levels of cognitive performance despite being exposed to varying levels of risk factors of cognitive decline, including postmortem Alzheimer disease–associated neuropathologies.

    Meaning  These findings indicate that prolonged maintenance of cognitive functioning may be supported by mechanisms underlying resilience against risk factors of cognitive decline.

    Abstract

    Importance  Understanding mechanisms associated with prolonged cognitive health in combination with exceptional longevity might lead to approaches to enable successful aging.

    Objective  To investigate trajectories of cognitive functioning in centenarians across domains, and to examine the association of these trajectories with factors underlying cognitive reserve, physical health, and postmortem levels of Alzheimer disease (AD)–associated neuropathology.

    Design, Setting, and Participants  This cohort study used neuropsychological test data and postmortem neuropathological reports from Dutch centenarians who were drawn from the 100-plus Study between January 2013 and April 2019. Eligible participants self-reported being cognitively healthy, which was confirmed by a proxy. Data analysis was performed between June 2019 and June 2020.

    Exposures  Age, sex, APOE ε genotype, factors of cognitive reserve, physical health, and AD-associated neuropathology (ie, amyloid-β, neurofibrillary tangles, and neuritic plaques).

    Main Outcomes and Measures  In annual visits (until death or until participation was no longer possible), centenarians underwent an extensive neuropsychological test battery, from which an mean z score of global cognition, memory, executive functions, verbal fluency, visuospatial functions, and attention/processing speed was calculated. Linear mixed models with a random intercept and time as independent variable were used to investigate cognitive trajectories, adjusted for sex, age, education, and vision and hearing capacities. In a second step, linear mixed models were used to associate cognitive trajectories with factors underlying cognitive reserve, physical health at baseline, and AD-associated neuropathology.

    Results  Of the 1023 centenarians approached, 340 were included in the study. We analyzed 330 centenarians for whom cognitive tests were available at baseline (239 [72.4%] women; median [interquartile range] age of 100.5 [100.2-101.7] years), with a mean (SD) follow-up duration of 1.6 (0.8) years. We observed no decline across investigated cognitive domains, with the exception of a slight decline in memory function (β, −0.10 SD per year; 95% CI, −0.14 to −0.05 SD; P < .001). Cognitive performance was associated with factors of physical health (eg, higher Barthel index: β, 0.37 SD per year; 95% CI, 0.24-0.49; P < .001) and cognitive reserve (eg, higher education: β, 0.41 SD per year; 95% CI, 0.29-0.53; P < .001), but none of these factors were associated with the rate of decline. Neuropathological reports were available for 44 participants. While centenarian brains revealed varying loads of postmortem neuropathological hallmarks of AD, this was not associated with cognitive performance or rate of decline.

    Conclusions and Relevance  While we observed a slight vulnerability for decline in memory function, centenarians maintained high levels of performance in all other investigated cognitive domains for up to 4 years despite the presence of risk factors of cognitive decline. These findings suggest that mechanisms of resilience may underlie the prolongation of cognitive health until exceptional ages.

    ×