Respiratory and Psychophysical Sequelae Among Patients With COVID-19 Four Months After Hospital Discharge | Infectious Diseases | JAMA Network Open | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 34.239.150.57. Please contact the publisher to request reinstatement.
1.
Chen  N, Zhou  M, Dong  X,  et al.  Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study.   Lancet. 2020;395(10223):507-513. doi:10.1016/S0140-6736(20)30211-7PubMedGoogle ScholarCrossref
2.
Johns Hopkins University and Medicine. COVID-19 dashboard by the Center for Systems Science and Engineering. Accessed November 26, 2020. https://coronavirus.jhu.edu/map.html
3.
Cummings  MJ, Baldwin  MR, Abrams  D,  et al.  Epidemiology, clinical course, and outcomes of critically ill adults with COVID-19 in New York City: a prospective cohort study.   Lancet. 2020;395(10239):1763-1770. doi:10.1016/S0140-6736(20)31189-2PubMedGoogle ScholarCrossref
4.
Liu  S, Luo  H, Wang  Y,  et al.  Clinical characteristics and risk factors of patients with severe COVID-19 in Jiangsu province, China: a retrospective multicentre cohort study.   BMC Infect Dis. 2020;20(1):584. doi:10.1186/s12879-020-05314-xPubMedGoogle ScholarCrossref
5.
Wiersinga  WJ, Rhodes  A, Cheng  AC, Peacock  SJ, Prescott  HC.  Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19): a review.   JAMA. 2020;324(8):782-793. doi:10.1001/jama.2020.12839PubMedGoogle ScholarCrossref
6.
Balachandar  V, Mahalaxmi  I, Subramaniam  M,  et al.  Follow-up studies in COVID-19 recovered patients—is it mandatory?   Sci Total Environ. 2020;729:139021. doi:10.1016/j.scitotenv.2020.139021PubMedGoogle Scholar
7.
Xu  Z, Shi  L, Wang  Y,  et al.  Pathological findings of COVID-19 associated with acute respiratory distress syndrome.   Lancet Respir Med. 2020;8(4):420-422. doi:10.1016/S2213-2600(20)30076-XPubMedGoogle ScholarCrossref
8.
Mo  X, Jian  W, Su  Z,  et al.  Abnormal pulmonary function in COVID-19 patients at time of hospital discharge.   Eur Respir J. 2020;55(6):2001217. doi:10.1183/13993003.01217-2020PubMedGoogle Scholar
9.
Ngai  JC, Ko  FW, Ng  SS, To  KW, Tong  M, Hui  DS.  The long-term impact of severe acute respiratory syndrome on pulmonary function, exercise capacity and health status.   Respirology. 2010;15(3):543-550. doi:10.1111/j.1440-1843.2010.01720.xPubMedGoogle ScholarCrossref
10.
Park  WB, Jun  KI, Kim  G,  et al.  Correlation between pneumonia severity and pulmonary complications in Middle East respiratory syndrome.   J Korean Med Sci. 2018;33(24):e169. doi:10.3346/jkms.2018.33.e169PubMedGoogle Scholar
11.
World Medical Association.  World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects.   JAMA. 2013;310(20):2191-2194. doi:10.1001/jama.2013.281053PubMedGoogle ScholarCrossref
12.
Miller  MR, Hankinson  J, Brusasco  V,  et al; ATS/ERS Task Force.  Standardisation of spirometry.   Eur Respir J. 2005;26(2):319-338. doi:10.1183/09031936.05.00034805PubMedGoogle ScholarCrossref
13.
Pellegrino  R, Viegi  G, Brusasco  V,  et al.  Interpretative strategies for lung function tests.   Eur Respir J. 2005;26(5):948-968. doi:10.1183/09031936.05.00035205PubMedGoogle ScholarCrossref
14.
Bernabeu-Mora  R, Giménez-Giménez  LM, Montilla-Herrador  J, García-Guillamón  G, García-Vidal  JA, Medina-Mirapeix  F.  Determinants of each domain of the Short Physical Performance Battery in COPD.   Int J Chron Obstruct Pulmon Dis. 2017;12:2539-2544. doi:10.2147/COPD.S138402PubMedGoogle ScholarCrossref
15.
Bernabeu-Mora  R, Medina-Mirapeix  F, Llamazares-Herrán  E, García-Guillamón  G, Giménez-Giménez  LM, Sánchez-Nieto  JM.  The Short Physical Performance Battery is a discriminative tool for identifying patients with COPD at risk of disability.   Int J Chron Obstruct Pulmon Dis. 2015;10:2619-2626. doi:10.2147/COPD.S94377PubMedGoogle ScholarCrossref
16.
Sayers  SP, Guralnik  JM, Newman  AB, Brach  JS, Fielding  RA.  Concordance and discordance between two measures of lower extremity function: 400 meter self-paced walk and SPPB.   Aging Clin Exp Res. 2006;18(2):100-106. doi:10.1007/BF03327424PubMedGoogle ScholarCrossref
17.
Leung  AS, Chan  KK, Sykes  K, Chan  KS.  Reliability, validity, and responsiveness of a 2-min walk test to assess exercise capacity of COPD patients.   Chest. 2006;130(1):119-125. doi:10.1378/chest.130.1.119PubMedGoogle ScholarCrossref
18.
Bohannon  RW, Wang  YC, Gershon  RC.  Two-minute walk test performance by adults 18 to 85 years: normative values, reliability, and responsiveness.   Arch Phys Med Rehabil. 2015;96(3):472-477. doi:10.1016/j.apmr.2014.10.006PubMedGoogle ScholarCrossref
19.
Bohannon  RW.  Normative reference values for the two-minute walk test derived by meta-analysis.   J Phys Ther Sci. 2017;29(12):2224-2227. doi:10.1589/jpts.29.2224PubMedGoogle ScholarCrossref
20.
Horowitz  M, Wilner  N, Alvarez  W.  Impact of Event Scale: a measure of subjective stress.   Psychosom Med. 1979;41(3):209-218. doi:10.1097/00006842-197905000-00004PubMedGoogle ScholarCrossref
21.
Storebø  ML, Eagan  TM, Eide  GE, Gulsvik  A, Thorsen  E, Bakke  PS.  Change in pulmonary diffusion capacity in a general population sample over 9 years.   Eur Clin Respir J. 2016;3:31265. doi:10.3402/ecrj.v3.31265PubMedGoogle ScholarCrossref
22.
Huang  Y, Tan  C, Wu  J,  et al.  Impact of coronavirus disease 2019 on pulmonary function in early convalescence phase.   Respir Res. 2020;21(1):163. doi:10.1186/s12931-020-01429-6PubMedGoogle ScholarCrossref
23.
Zhao  YM, Shang  YM, Song  WB,  et al.  Follow-up study of the pulmonary function and related physiological characteristics of COVID-19 survivors three months after recovery.   EClinicalMedicine. 2020;25:100463. doi:10.1016/j.eclinm.2020.100463PubMedGoogle Scholar
24.
Olfert  IM, Balouch  J, Kleinsasser  A,  et al.  Does gender affect human pulmonary gas exchange during exercise?   J Physiol. 2004;557(Pt 2):529-541. doi:10.1113/jphysiol.2003.056887PubMedGoogle ScholarCrossref
25.
Ramani  C, Davis  EM, Kim  JS, Provencio  JJ, Enfield  KB, Kadl  A.  Post-ICU COVID-19 outcomes: a case series.   Chest. 2020;S0012-3692(20):34277.PubMedGoogle Scholar
26.
Henry  BM, Lippi  G.  Chronic kidney disease is associated with severe coronavirus disease 2019 (COVID-19) infection.   Int Urol Nephrol. 2020;52(6):1193-1194. doi:10.1007/s11255-020-02451-9PubMedGoogle ScholarCrossref
27.
Nihtyanova  SI, Schreiber  BE, Ong  VH,  et al.  Prediction of pulmonary complications and long-term survival in systemic sclerosis.   Arthritis Rheumatol. 2014;66(6):1625-1635. doi:10.1002/art.38390PubMedGoogle ScholarCrossref
28.
Martinez  FJ, Flaherty  K.  Pulmonary function testing in idiopathic interstitial pneumonias.   Proc Am Thorac Soc. 2006;3(4):315-321. doi:10.1513/pats.200602-022TKPubMedGoogle ScholarCrossref
29.
Xie  L, Liu  Y, Fan  B,  et al.  Dynamic changes of serum SARS-coronavirus IgG, pulmonary function and radiography in patients recovering from SARS after hospital discharge.   Respir Res. 2005;6:5. doi:10.1186/1465-9921-6-5PubMedGoogle ScholarCrossref
30.
Kang  SJ, Jung  SI.  Age-related morbidity and mortality among patients with COVID-19.   Infect Chemother. 2020;52(2):154-164. doi:10.3947/ic.2020.52.2.154PubMedGoogle ScholarCrossref
31.
Farrell  TW, Ferrante  LE, Brown  T,  et al.  AGS position statement: resource allocation strategies and age-related considerations in the COVID-19 era and beyond.   J Am Geriatr Soc. 2020;68(6):1136-1142. doi:10.1111/jgs.16537PubMedGoogle ScholarCrossref
32.
Chang  MC, Park  D.  Incidence of post-traumatic stress disorder after coronavirus disease.   Healthcare (Basel). 2020;8(4):E373. doi:10.3390/healthcare8040373PubMedGoogle Scholar
33.
Carfì  A, Bernabei  R, Landi  F; Gemelli Against COVID-19 Post-Acute Care Study Group.  Persistent symptoms in patients after acute COVID-19.   JAMA. 2020;324(6):603-605. doi:10.1001/jama.2020.12603PubMedGoogle ScholarCrossref
34.
Hajikhani  B, Calcagno  T, Nasiri  MJ,  et al; FACS.  Olfactory and gustatory dysfunction in COVID-19 patients: A meta-analysis study.   Physiol Rep. 2020;8(18):e14578. doi:10.14814/phy2.14578PubMedGoogle Scholar
35.
Iannuzzi  L, Salzo  AE, Angarano  G,  et al.  Gaining back what is lost: recovering the sense of smell in mild to moderate patients after COVID-19.   Chem Senses. 2020;45(9):875-881. doi:10.1093/chemse/bjaa066 PubMedGoogle ScholarCrossref
36.
Locatello  LG, Maggiore  G, Bruno  C, Trotta  M, Gallo  O.  An integrated care strategy for the follow-up of patients with COVID-19-associated chemosensory dysfunction.   Otolaryngol Head Neck Surg. 2020;194599820950716. doi:10.1177/0194599820950716PubMedGoogle Scholar
37.
Carvalho-Schneider  C, Laurent  E, Lemaignen  A,  et al.  Follow-up of adults with noncritical COVID-19 two months after symptom onset.   Clin Microbiol Infect. 2020;S1198-743X(20):30606. doi:10.1016/j.cmi.2020.09.052PubMedGoogle Scholar
Limit 200 characters
Limit 25 characters
Conflicts of Interest Disclosure

Identify all potential conflicts of interest that might be relevant to your comment.

Conflicts of interest comprise financial interests, activities, and relationships within the past 3 years including but not limited to employment, affiliation, grants or funding, consultancies, honoraria or payment, speaker's bureaus, stock ownership or options, expert testimony, royalties, donation of medical equipment, or patents planned, pending, or issued.

Err on the side of full disclosure.

If you have no conflicts of interest, check "No potential conflicts of interest" in the box below. The information will be posted with your response.

Not all submitted comments are published. Please see our commenting policy for details.

Limit 140 characters
Limit 3600 characters or approximately 600 words
    Original Investigation
    Infectious Diseases
    January 27, 2021

    Respiratory and Psychophysical Sequelae Among Patients With COVID-19 Four Months After Hospital Discharge

    Author Affiliations
    • 1Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
    • 2Azienda Ospedaliero–Universitaria Maggiore della Carità, Novara, Italy
    JAMA Netw Open. 2021;4(1):e2036142. doi:10.1001/jamanetworkopen.2020.36142
    Key Points

    Question  What respiratory, functional, and psychological sequalae are associated with recovery from coronavirus disease 2019 (COVID-19)?

    Findings  In this cohort study of 238 patients with COVID-19 hospitalized in an academic hospital in Northern Italy, more than half of participants had a significant reduction of diffusing lung capacity for carbon monoxide or measurable functional impairment and approximately one-fifth of patients had symptoms of posttraumatic stress 4 months after discharge.

    Meaning  These findings suggest that despite virological recovery, a sizable proportion of patients with COVID-19 experienced respiratory, functional, or psychological sequelae months after hospital discharge.

    Abstract

    Importance  Although plenty of data exist regarding clinical manifestations, course, case fatality rate, and risk factors associated with mortality in severe coronavirus disease 2019 (COVID-19), long-term respiratory and functional sequelae in survivors of COVID-19 are unknown.

    Objective  To evaluate the prevalence of lung function anomalies, exercise function impairment, and psychological sequelae among patients hospitalized for COVID-19, 4 months after discharge.

    Design, Setting, and Participants  This prospective cohort study at an academic hospital in Northern Italy was conducted among a consecutive series of patients aged 18 years and older (or their caregivers) who had received a confirmed diagnosis of severe acute respiratory coronavirus 2 (SARS-CoV-2) infection severe enough to require hospital admission from March 1 to June 29, 2020. SARS-CoV-2 infection was confirmed via reverse transcription–polymerase chain reaction testing, bronchial swab, serological testing, or suggestive computed tomography results.

    Exposure  Severe COVID-19 requiring hospitalization.

    Main Outcomes and Measures  The primary outcome of the study was to describe the proportion of patients with a diffusing lung capacity for carbon monoxide (Dlco) less than 80% of expected value. Secondary outcomes included proportion of patients with severe lung function impairment (defined as Dlco <60% expected value); proportion of patients with posttraumatic stress symptoms (measured using the Impact of Event Scale–Revised total score); proportion of patients with functional impairment (assessed using the Short Physical Performance Battery [SPPB] score and 2-minute walking test); and identification of factors associated with Dlco reduction and psychological or functional sequelae.

    Results  Among 767 patients hospitalized for severe COVID-19, 494 (64.4%) refused to participate, and 35 (4.6%) died during follow-up. A total of 238 patients (31.0%) (median [interquartile range] age, 61 [50-71] years; 142 [59.7%] men; median [interquartile range] comorbidities, 2 [1-3]) consented to participate to the study. Of these, 219 patients were able to complete both pulmonary function tests and Dlco measurement. Dlco was reduced to less than 80% of the estimated value in 113 patients (51.6%) and less than 60% in 34 patients (15.5%). The SPPB score was suggested limited mobility (score <11) in 53 patients (22.3%). Patients with SPPB scores within reference range underwent a 2-minute walk test, which was outside reference ranges of expected performance for age and sex in 75 patients (40.5%); thus, a total of 128 patients (53.8%) had functional impairment. Posttraumatic stress symptoms were reported in a total of 41 patients (17.2%).

    Conclusions and Relevance  These findings suggest that at 4 months after discharge, respiratory, physical, and psychological sequelae were common among patients who had been hospitalized for COVID-19.

    ×