Association of Obesity With Survival Outcomes in Patients With Cancer: A Systematic Review and Meta-analysis | Obesity | JAMA Network Open | JAMA Network
[Skip to Navigation]
Sign In
Figure.  Flow Diagram of Included Studies
Flow Diagram of Included Studies
Table 1.  Characteristics of Included Studies
Characteristics of Included Studies
Table 2.  Association of Obesity With Overall Mortality, by Cancer
Association of Obesity With Overall Mortality, by Cancer
Table 3.  Association of Obesity With Cancer-Specific Mortality by Cancer Type
Association of Obesity With Cancer-Specific Mortality by Cancer Type
Table 4.  Association of Obesity With Recurrence by Cancer Type
Association of Obesity With Recurrence by Cancer Type
1.
World Health Organization.  Obesity: Preventing and Managing the Global Epidemic. World Health Organization; 2000. Accessed February 24, 2021. https://www.who.int/nutrition/publications/obesity/WHO_TRS_894/en/
2.
Chooi  YC, Ding  C, Magkos  F.  The epidemiology of obesity.   Metabolism. 2019;92:6-10. doi:10.1016/j.metabol.2018.09.005PubMedGoogle ScholarCrossref
3.
Aune  D, Sen  A, Prasad  M,  et al.  BMI and all cause mortality: systematic review and non-linear dose-response meta-analysis of 230 cohort studies with 3.74 million deaths among 30.3 million participants.   BMJ. 2016;353:i2156. doi:10.1136/bmj.i2156PubMedGoogle ScholarCrossref
4.
Lavie  CJ, Sharma  A, Alpert  MA,  et al.  Update on obesity and obesity paradox in heart failure.   Prog Cardiovasc Dis. 2016;58(4):393-400. doi:10.1016/j.pcad.2015.12.003PubMedGoogle ScholarCrossref
5.
Guh  DP, Zhang  W, Bansback  N, Amarsi  Z, Birmingham  CL, Anis  AH.  The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis.   BMC Public Health. 2009;9:88. doi:10.1186/1471-2458-9-88PubMedGoogle ScholarCrossref
6.
Calle  EE, Rodriguez  C, Walker-Thurmond  K, Thun  MJ.  Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults.   N Engl J Med. 2003;348(17):1625-1638. doi:10.1056/NEJMoa021423PubMedGoogle ScholarCrossref
7.
Greenlee  H, Shi  Z, Sardo Molmenti  CL, Rundle  A, Tsai  WY.  Trends in obesity prevalence in adults with a history of cancer: results from the US National Health Interview Survey, 1997 to 2014.   J Clin Oncol. 2016;34(26):3133-3140. doi:10.1200/JCO.2016.66.4391PubMedGoogle ScholarCrossref
8.
Gallagher  EJ, LeRoith  D.  Obesity and diabetes: the increased risk of cancer and cancer-related mortality.   Physiol Rev. 2015;95(3):727-748. doi:10.1152/physrev.00030.2014PubMedGoogle ScholarCrossref
9.
Khandekar  MJ, Cohen  P, Spiegelman  BM.  Molecular mechanisms of cancer development in obesity.   Nat Rev Cancer. 2011;11(12):886-895. doi:10.1038/nrc3174PubMedGoogle ScholarCrossref
10.
Lennon  H, Sperrin  M, Badrick  E, Renehan  AG.  The obesity paradox in cancer: a review.   Curr Oncol Rep. 2016;18(9):56. doi:10.1007/s11912-016-0539-4PubMedGoogle ScholarCrossref
11.
Shachar  SS, Williams  GR.  The obesity paradox in cancer-moving beyond BMI.   Cancer Epidemiol Biomarkers Prev. 2017;26(6):981. doi:10.1158/1055-9965.EPI-17-0144PubMedGoogle ScholarCrossref
12.
Wang  Z, Aguilar  EG, Luna  JI,  et al.  Paradoxical effects of obesity on T cell function during tumor progression and PD-1 checkpoint blockade.   Nat Med. 2019;25(1):141-151. doi:10.1038/s41591-018-0221-5PubMedGoogle ScholarCrossref
13.
Li  S, Wang  Z, Huang  J,  et al.  Systematic review of prognostic roles of body mass index for patients undergoing lung cancer surgery: does the “obesity paradox” really exist?   Eur J Cardio-thoracic Surg. 2017;51(5):817-828. doi:10.1093/ejcts/ezw386Google Scholar
14.
Bagheri  M, Speakman  JR, Shemirani  F, Djafarian  K.  Renal cell carcinoma survival and body mass index: a dose-response meta-analysis reveals another potential paradox within a paradox.   Int J Obes (Lond). 2016;40(12):1817-1822. doi:10.1038/ijo.2016.171PubMedGoogle ScholarCrossref
15.
Shen  N, Fu  P, Cui  B, Bu  C-Y, Bi  J-W.  Associations between body mass index and the risk of mortality from lung cancer: a dose-response PRISMA-compliant meta-analysis of prospective cohort studies.   Medicine (Baltimore). 2017;96(34):e7721. doi:10.1097/MD.0000000000007721Google Scholar
16.
Chan  DSM, Vieira  AR, Aune  D,  et al.  Body mass index and survival in women with breast cancer-systematic literature review and meta-analysis of 82 follow-up studies.   Ann Oncol. 2014;25(10):1901-1914. doi:10.1093/annonc/mdu042PubMedGoogle ScholarCrossref
17.
Wu  S, Liu  J, Wang  X, Li  M, Gan  Y, Tang  Y.  Association of obesity and overweight with overall survival in colorectal cancer patients: a meta-analysis of 29 studies.   Cancer Causes Control. 2014;25(11):1489-1502. doi:10.1007/s10552-014-0450-yPubMedGoogle ScholarCrossref
18.
Protani  MM, Nagle  CM, Webb  PM.  Obesity and ovarian cancer survival: a systematic review and meta-analysis.   Cancer Prev Res (Phila). 2012;5(7):901-910. doi:10.1158/1940-6207.CAPR-12-0048PubMedGoogle ScholarCrossref
19.
Liberati  A, Altman  DG, Tetzlaff  J,  et al.  The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration.   J Clin Epidemiol. 2009;62(10):e1-e34. doi:10.1016/j.jclinepi.2009.06.006PubMedGoogle ScholarCrossref
20.
Stroup  DF, Berlin  JA, Morton  SC,  et al.  Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group.   JAMA. 2000;283(15):2008-2012. doi:10.1001/jama.283.15.2008PubMedGoogle ScholarCrossref
21.
Wells  GA, Shea  B, O’connell  D,  et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Accessed August 13, 2014. http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp
22.
Shi  L, Lin  L, Omboni  S.  The trim-and-fill method for publication bias: practical guidelines and recommendations based on a large database of meta-analyses.   Medicine (Baltimore). 2019;98(23):e1598. doi:10.1097/MD.0000000000015987Google Scholar
23.
Begg  CB, Mazumdar  M.  Operating characteristics of a rank correlation test for publication bias.   Biometrics. 1994;50(4):1088-1101.Google ScholarCrossref
24.
Chromecki  TF, Cha  EK, Fajkovic  H,  et al.  Obesity is associated with worse oncological outcomes in patients treated with radical cystectomy.   BJU Int. 2013;111(2):249-255. doi:10.1111/j.1464-410X.2012.11322.xPubMedGoogle ScholarCrossref
25.
Ferro  M, Vartolomei  MD, Russo  GI,  et al.  An increased body mass index is associated with a worse prognosis in patients administered BCG immunotherapy for T1 bladder cancer.   World J Urol. 2019;37(3):507-514. doi:10.1007/s00345-018-2397-1PubMedGoogle ScholarCrossref
26.
Siegel  EM, Nabors  LB, Thompson  RC,  et al.  Prediagnostic body weight and survival in high grade glioma.   J Neurooncol. 2013;114(1):79-84. doi:10.1007/s11060-013-1150-2PubMedGoogle ScholarCrossref
27.
Abrahamson  PE, Gammon  MD, Lund  MJ,  et al.  General and abdominal obesity and survival among young women with breast cancer.   Cancer Epidemiol Biomarkers Prev. 2006;15(10):1871-1877. doi:10.1158/1055-9965.EPI-06-0356PubMedGoogle ScholarCrossref
28.
Abubakar  M, Sung  H, Bcr  D,  et al.  Breast cancer risk factors, survival and recurrence, and tumor molecular subtype: analysis of 3012 women from an indigenous Asian population.   Breast Cancer Res. 2018;20(1):114. doi:10.1186/s13058-018-1033-8PubMedGoogle ScholarCrossref
29.
Alarfi  H, Salamoon  M, Kadri  M,  et al.  The impact of baseline body mass index on clinical outcomes in metastatic breast cancer: a prospective study.   BMC Res Notes. 2017;10(1):550. doi:10.1186/s13104-017-2876-2PubMedGoogle ScholarCrossref
30.
Alsaker  MDK, Opdahl  S, Åsvold  BO, Romundstad  PR, Vatten  LJ.  The association of reproductive factors and breastfeeding with long term survival from breast cancer.   Breast Cancer Res Treat. 2011;130(1):175-182. doi:10.1007/s10549-011-1566-3PubMedGoogle ScholarCrossref
31.
Arce-Salinas  C, Aguilar-Ponce  JL, Villarreal-Garza  C,  et al.  Overweight and obesity as poor prognostic factors in locally advanced breast cancer patients.   Breast Cancer Res Treat. 2014;146(1):183-188. doi:10.1007/s10549-014-2977-8PubMedGoogle ScholarCrossref
32.
Beasley  JM, Kwan  ML, Chen  WY,  et al.  Meeting the physical activity guidelines and survival after breast cancer: findings from the after breast cancer pooling project.   Breast Cancer Res Treat. 2012;131(2):637-643. doi:10.1007/s10549-011-1770-1PubMedGoogle ScholarCrossref
33.
Blair  CK, Wiggins  CL, Nibbe  AM,  et al.  Obesity and survival among a cohort of breast cancer patients is partially mediated by tumor characteristics.   NPJ Breast Cancer. 2019;5(1):33. doi:10.1038/s41523-019-0128-4PubMedGoogle ScholarCrossref
34.
Braithwaite  D, Satariano  WA, Sternfeld  B,  et al.  Long-term prognostic role of functional limitations among women with breast cancer.   J Natl Cancer Inst. 2010;102(19):1468-1477. doi:10.1093/jnci/djq344PubMedGoogle ScholarCrossref
35.
Buono  G, Crispo  A, Giuliano  M,  et al.  Combined effect of obesity and diabetes on early breast cancer outcome: a prospective observational study.   Oncotarget. 2017;8(70):115709-115717. doi:10.18632/oncotarget.22977PubMedGoogle ScholarCrossref
36.
Caan  BJ, Kwan  ML.  Pre-diagnosis body mass index, post-diagnosis weight change and prognosis among women with early stage breast cancer.   Cancers Causes Control. 2008;19(10):1319-1328. doi:10.1007/s10552-008-9203-0Google ScholarCrossref
37.
Cecchini  RS, Swain  SM, Costantino  JP,  et al.  Body mass index at diagnosis and breast cancer survival prognosis in clinical trial populations from NRG oncology/NSABP B-30, B-31, B-34, and B-38.   Cancer Epidemiol Biomarkers Prev. 2016;25(1):51-59. doi:10.1158/1055-9965.EPI-15-0334-TPubMedGoogle ScholarCrossref
38.
Chang  S, Alderfer  JR, Asmar  L, Buzdar  AU.  Inflammatory breast cancer survival: the role of obesity and menopausal status at diagnosis.   Breast Cancer Res Treat. 2000;64(2):157-163. doi:10.1023/A:1006489100283PubMedGoogle ScholarCrossref
39.
Chen  X, Lu  W, Zheng  W,  et al.  Obesity and weight change in relation to breast cancer survival.   Breast Cancer Res Treat. 2010;122(3):823-833. doi:10.1007/s10549-009-0708-3PubMedGoogle ScholarCrossref
40.
Chung  IY, Lee  JW, Lee  JS,  et al.  Interaction between body mass index and hormone-receptor status as a prognostic factor in lymph-node-positive breast cancer.   PLoS One. 2017;12(3):e0170311. doi:10.1371/journal.pone.0170311PubMedGoogle Scholar
41.
Cleveland  RJ, North  KE, Stevens  J, Teitelbaum  SL, Neugut  AI, Gammon  MD.  The association of diabetes with breast cancer incidence and mortality in the Long Island Breast Cancer Study Project.   Cancer Causes Control. 2012;23(7):1193-1203. doi:10.1007/s10552-012-9989-7PubMedGoogle ScholarCrossref
42.
Connor  AE, Visvanathan  K, Baumgartner  KB,  et al.  Ethnic differences in the relationships between diabetes, early age adiposity and mortality among breast cancer survivors: the Breast Cancer Health Disparities Study.   Breast Cancer Res Treat. 2016;157(1):167-178. doi:10.1007/s10549-016-3810-3PubMedGoogle ScholarCrossref
43.
Conroy  SM, Maskarinec  G, Wilkens  LR, White  KK, Henderson  BE, Kolonel  LN.  Obesity and breast cancer survival in ethnically diverse postmenopausal women: the Multiethnic Cohort Study.   Breast Cancer Res Treat. 2011;129(2):565-574. doi:10.1007/s10549-011-1468-4PubMedGoogle ScholarCrossref
44.
Copson  ER, Cutress  RI, Maishman  T,  et al; POSH Study Steering Group.  Obesity and the outcome of young breast cancer patients in the UK: the POSH study.   Ann Oncol. 2015;26(1):101-112. doi:10.1093/annonc/mdu509PubMedGoogle ScholarCrossref
45.
Crozier  JA, Moreno-Aspitia  A, Ballman  KV, Dueck  AC, Pockaj  BA, Perez  EA.  Effect of body mass index on tumor characteristics and disease-free survival in patients from the HER2-positive adjuvant trastuzumab trial N9831.   Cancer. 2013;119(13):2447-2454. doi:10.1002/cncr.28051PubMedGoogle ScholarCrossref
46.
Dal Maso  L, Zucchetto  A, Talamini  R,  et al; Prospective Analysis of Case-control studies on Environmental factors and health (PACE) study group.  Effect of obesity and other lifestyle factors on mortality in women with breast cancer.   Int J Cancer. 2008;123(9):2188-2194. doi:10.1002/ijc.23747PubMedGoogle ScholarCrossref
47.
Dignam  JJ, Wieand  K, Johnson  KA, Fisher  B, Xu  L, Mamounas  EP.  Obesity, tamoxifen use, and outcomes in women with estrogen receptor-positive early-stage breast cancer.   J Natl Cancer Inst. 2003;95(19):1467-1476. doi:10.1093/jnci/djg060PubMedGoogle ScholarCrossref
48.
Dignam  JJ, Wieand  K, Johnson  KA,  et al.  Effects of obesity and race on prognosis in lymph node-negative, estrogen receptor-negative breast cancer.   Breast Cancer Res Treat. 2006;97(3):245-254. doi:10.1007/s10549-005-9118-3PubMedGoogle ScholarCrossref
49.
Elwood  JM, Tin Tin  S, Kuper-Hommel  M, Lawrenson  R, Campbell  I.  Obesity and breast cancer outcomes in chemotherapy patients in New Zealand—a population-based cohort study.   BMC Cancer. 2018;18(1):76. doi:10.1186/s12885-017-3971-4PubMedGoogle ScholarCrossref
50.
Emaus  A, Veierød  MB, Tretli  S,  et al.  Metabolic profile, physical activity, and mortality in breast cancer patients.   Breast Cancer Res Treat. 2010;121(3):651-660. doi:10.1007/s10549-009-0603-yPubMedGoogle ScholarCrossref
51.
Feliciano  EMC, Kroenke  CH, Meyerhardt  JA,  et al.  Association of systemic inflammation and sarcopenia with survival in nonmetastatic colorectal cancer: results from the C SCANS Study.   JAMA Oncol. 2017;3(12):e172319. doi:10.1001/jamaoncol.2017.2319PubMedGoogle Scholar
52.
Goodwin  PJ, Ennis  M, Pritchard  KI,  et al.  Insulin- and obesity-related variables in early-stage breast cancer: correlations and time course of prognostic associations.   J Clin Oncol. 2012;30(2):164-171. doi:10.1200/JCO.2011.36.2723PubMedGoogle ScholarCrossref
53.
He  X, Esteva  FJ, Ensor  J, Hortobagyi  GN, Lee  MH, Yeung  SC.  Metformin and thiazolidinediones are associated with improved breast cancer-specific survival of diabetic women with HER2+ breast cancer.   Ann Oncol. 2012;23(7):1771-1780. doi:10.1093/annonc/mdr534PubMedGoogle ScholarCrossref
54.
Hellmann  SS, Thygesen  LC, Tolstrup  JS, Grønbaek  M.  Modifiable risk factors and survival in women diagnosed with primary breast cancer: results from a prospective cohort study.   Eur J Cancer Prev. 2010;19(5):366-373. doi:10.1097/CEJ.0b013e32833b4828PubMedGoogle ScholarCrossref
55.
His  M, Fagherazzi  G, Mesrine  S, Boutron-Ruault  MC, Clavel-Chapelon  F, Dossus  L.  Prediagnostic body size and breast cancer survival in the E3N cohort study.   Int J Cancer. 2016;139(5):1053-1064. doi:10.1002/ijc.30158PubMedGoogle ScholarCrossref
56.
Jeon  YW, Kang  SH, Park  MH, Lim  W, Cho  SH, Suh  YJ.  Relationship between body mass index and the expression of hormone receptors or human epidermal growth factor receptor 2 with respect to breast cancer survival.   BMC Cancer. 2015;15(1):865. doi:10.1186/s12885-015-1879-4PubMedGoogle ScholarCrossref
57.
Jiralerspong  S, Kim  ES, Dong  W, Feng  L, Hortobagyi  GN, Giordano  SH.  Obesity, diabetes, and survival outcomes in a large cohort of early-stage breast cancer patients.   Ann Oncol. 2013;24(10):2506-2514. doi:10.1093/annonc/mdt224PubMedGoogle ScholarCrossref
58.
Kawai  M, Tomotaki  A, Miyata  H,  et al.  Body mass index and survival after diagnosis of invasive breast cancer: a study based on the Japanese National Clinical Database-Breast Cancer Registry.   Cancer Med. 2016;5(6):1328-1340. doi:10.1002/cam4.678PubMedGoogle ScholarCrossref
59.
Keegan  THM, Milne  RL, Andrulis  IL,  et al.  Past recreational physical activity, body size, and all-cause mortality following breast cancer diagnosis: results from the Breast Cancer Family Registry.   Breast Cancer Res Treat. 2010;123(2):531-542. doi:10.1007/s10549-010-0774-6PubMedGoogle ScholarCrossref
60.
Kwan  ML, Chen  WY, Kroenke  CH,  et al.  Pre-diagnosis body mass index and survival after breast cancer in the After Breast Cancer Pooling Project.   Breast Cancer Res Treat. 2012;132(2):729-739. doi:10.1007/s10549-011-1914-3PubMedGoogle ScholarCrossref
61.
Kwan  ML, John  EM, Caan  BJ,  et al.  Obesity and mortality after breast cancer by race/ethnicity: the California Breast Cancer Survivorship Consortium.   Am J Epidemiol. 2014;179(1):95-111. doi:10.1093/aje/kwt233PubMedGoogle ScholarCrossref
62.
Ladoire  S, Dalban  C, Roché  H,  et al.  Effect of obesity on disease-free and overall survival in node-positive breast cancer patients in a large French population: a pooled analysis of two randomised trials.   Eur J Cancer. 2014;50(3):506-516. doi:10.1016/j.ejca.2013.11.013PubMedGoogle ScholarCrossref
63.
Larsen  SB, Kroman  N, Ibfelt  EH, Christensen  J, Tjønneland  A, Dalton  SO.  Influence of metabolic indicators, smoking, alcohol and socioeconomic position on mortality after breast cancer.   Acta Oncol. 2015;54(5):780-788. doi:10.3109/0284186X.2014.998774PubMedGoogle ScholarCrossref
64.
Loi  S, Milne  RL, Friedlander  ML,  et al.  Obesity and outcomes in premenopausal and postmenopausal breast cancer.   Cancer Epidemiol Biomarkers Prev. 2005;14(7):1686-1691. doi:10.1158/1055-9965.EPI-05-0042PubMedGoogle ScholarCrossref
65.
Maskarinec  G, Pagano  I, Lurie  G, Bantum  E, Gotay  CC, Issell  BF.  Factors affecting survival among women with breast cancer in Hawaii.   J Womens Health (Larchmt). 2011;20(2):231-237. doi:10.1089/jwh.2010.2114PubMedGoogle ScholarCrossref
66.
McCullough  ML, Feigelson  HS, Diver  WR, Patel  AV, Thun  MJ, Calle  EE.  Risk factors for fatal breast cancer in African-American women and White women in a large US prospective cohort.   Am J Epidemiol. 2005;162(8):734-742. doi:10.1093/aje/kwi278PubMedGoogle ScholarCrossref
67.
McCullough  LE, Chen  J, Cho  YH,  et al.  DNA methylation modifies the association between obesity and survival after breast cancer diagnosis.   Breast Cancer Res Treat. 2016;156(1):183-194. doi:10.1007/s10549-016-3724-0PubMedGoogle ScholarCrossref
68.
Nichols  HB, Trentham-Dietz  A, Egan  KM,  et al.  Body mass index before and after breast cancer diagnosis: associations with all-cause, breast cancer, and cardiovascular disease mortality.   Cancer Epidemiol Biomarkers Prev. 2010;18(5):1403-1409. doi:10.1158/1055-9965.EPI-08-1094Google ScholarCrossref
69.
Nur  U, El Reda  D, Hashim  D, Weiderpass  E.  A prospective investigation of oral contraceptive use and breast cancer mortality: findings from the Swedish women’s lifestyle and health cohort.   BMC Cancer. 2019;19(1):807. doi:10.1186/s12885-019-5985-6PubMedGoogle ScholarCrossref
70.
Oh  SW, Park  CY, Lee  ES,  et al.  Adipokines, insulin resistance, metabolic syndrome, and breast cancer recurrence: a cohort study.   Breast Cancer Res. 2011;13(2):R34. doi:10.1186/bcr2856PubMedGoogle ScholarCrossref
71.
Oudanonh  T, Nabi  H, Ennour-Idrissi  K,  et al.  Progesterone receptor status modifies the association between body mass index and prognosis in women diagnosed with estrogen receptor positive breast cancer.   Int J Cancer. 2020;146(10):2736-2745. doi:10.1002/ijc.32621PubMedGoogle ScholarCrossref
72.
Pajares  B, Pollán  M, Martín  M,  et al.  Obesity and survival in operable breast cancer patients treated with adjuvant anthracyclines and taxanes according to pathological subtypes: a pooled analysis.   Breast Cancer Res. 2013;15(6):R105. doi:10.1186/bcr3572PubMedGoogle ScholarCrossref
73.
Pfeiler  G, Stöger  H, Dubsky  P,  et al; ABCSG.  Efficacy of tamoxifen ± aminoglutethimide in normal weight and overweight postmenopausal patients with hormone receptor-positive breast cancer: an analysis of 1509 patients of the ABCSG-06 trial.   Br J Cancer. 2013;108(7):1408-1414. doi:10.1038/bjc.2013.114PubMedGoogle ScholarCrossref
74.
Pierce  JP, Stefanick  ML, Flatt  SW,  et al.  Greater survival after breast cancer in physically active women with high vegetable-fruit intake regardless of obesity.   J Clin Oncol. 2007;25(17):2345-2351. doi:10.1200/JCO.2006.08.6819PubMedGoogle ScholarCrossref
75.
Probst-Hensch  NM, Steiner  JHB, Schraml  P,  et al.  IGFBP2 and IGFBP3 protein expressions in human breast cancer: association with hormonal factors and obesity.   Clin Cancer Res. 2010;16(3):1025-1032. doi:10.1158/1078-0432.CCR-09-0957PubMedGoogle ScholarCrossref
76.
Senie  RT, Rosen  PP, Rhodes  P, Lesser  ML, Kinne  DW.  Obesity at diagnosis of breast carcinoma influences duration of disease-free survival.   Ann Intern Med. 1992;116(1):26-32. doi:10.7326/0003-4819-116-1-26PubMedGoogle ScholarCrossref
77.
Sparano  JA, Wang  M, Zhao  F,  et al.  Race and hormone receptor-positive breast cancer outcomes in a randomized chemotherapy trial.   J Natl Cancer Inst. 2012;104(5):406-414. doi:10.1093/jnci/djr543PubMedGoogle ScholarCrossref
78.
Sparano  JA, Wang  M, Zhao  F,  et al.  Obesity at diagnosis is associated with inferior outcomes in hormone receptor-positive operable breast cancer.   Cancer. 2012;118(23):5937-5946. doi:10.1002/cncr.27527PubMedGoogle ScholarCrossref
79.
Su  HI, Sue  LY, Flatt  SW, Natarajan  L, Patterson  RE, Pierce  JP.  Endogenous estradiol is not associated with poor physical health in postmenopausal breast cancer survivors.   J Womens Health (Larchmt). 2013;22(12):1043-1048. doi:10.1089/jwh.2013.4375PubMedGoogle ScholarCrossref
80.
Sun  X, Nichols  HB, Robinson  W, Sherman  ME, Olshan  AF, Troester  MA.  Post-diagnosis adiposity and survival among breast cancer patients: influence of breast cancer subtype.   Cancer Causes Control. 2015;26(12):1803-1811. doi:10.1007/s10552-015-0673-6PubMedGoogle ScholarCrossref
81.
Sun  L, Zhu  Y, Qian  Q, Tang  L.  Body mass index and prognosis of breast cancer: an analysis by menstruation status when breast cancer diagnosis.   Medicine (Baltimore). 2018;97(26):e11220. doi:10.1097/MD.0000000000011220PubMedGoogle Scholar
82.
Tait  S, Pacheco  JM, Gao  F, Bumb  C, Ellis  MJ, Ma  CX.  Body mass index, diabetes, and triple-negative breast cancer prognosis.   Breast Cancer Res Treat. 2014;146(1):189-197. doi:10.1007/s10549-014-3002-yPubMedGoogle ScholarCrossref
83.
Warren  LEG, Ligibel  JA, Chen  YH, Truong  L, Catalano  PJ, Bellon  JR.  Body mass index and locoregional recurrence in women with early-stage breast cancer.   Ann Surg Oncol. 2016;23(12):3870-3879. doi:10.1245/s10434-016-5437-3PubMedGoogle ScholarCrossref
84.
Widschwendter  P, Friedl  TWP, Schwentner  L,  et al.  The influence of obesity on survival in early, high-risk breast cancer: results from the randomized SUCCESS A trial.   Breast Cancer Res. 2015;17(1):129. doi:10.1186/s13058-015-0639-3PubMedGoogle ScholarCrossref
85.
Xiao  Y, Zhang  S, Hou  G, Zhang  X, Hao  X, Zhang  J.  Clinical pathological characteristics and prognostic analysis of diabetic women with luminal subtype breast cancer.   Tumour Biol. 2014;35(3):2035-2045. doi:10.1007/s13277-013-1270-5PubMedGoogle ScholarCrossref
86.
Mazzarella  L, Disalvatore  D, Bagnardi  V,  et al.  Obesity increases the incidence of distant metastases in oestrogen receptor-negative human epidermal growth factor receptor 2-positive breast cancer patients.   Eur J Cancer. 2013;49(17):3588-3597. doi:10.1016/j.ejca.2013.07.016PubMedGoogle ScholarCrossref
87.
Rosenberg  L, Czene  K, Hall  P.  Obesity and poor breast cancer prognosis: an illusion because of hormone replacement therapy?   Br J Cancer. 2009;100(9):1486-1491. doi:10.1038/sj.bjc.6605025PubMedGoogle ScholarCrossref
88.
Ademuyiwa  FO, Groman  A, O’Connor  T, Ambrosone  C, Watroba  N, Edge  SB.  Impact of body mass index on clinical outcomes in triple-negative breast cancer.   Cancer. 2011;117(18):4132-4140. doi:10.1002/cncr.26019PubMedGoogle ScholarCrossref
89.
Dawood  S, Lei  X, Litton  JK, Buchholz  TA, Hortobagyi  GN, Gonzalez-Angulo  AM.  Impact of body mass index on survival outcome among women with early stage triple-negative breast cancer.   Clin Breast Cancer. 2012;12(5):364-372. doi:10.1016/j.clbc.2012.07.013PubMedGoogle ScholarCrossref
90.
Melhem-Bertrandt  A, Chavez-Macgregor  M, Lei  X,  et al.  Beta-blocker use is associated with improved relapse-free survival in patients with triple-negative breast cancer.   J Clin Oncol. 2011;29(19):2645-2652. doi:10.1200/JCO.2010.33.4441PubMedGoogle ScholarCrossref
91.
Frumovitz  M, Jhingran  A, Soliman  PT, Klopp  AH, Schmeler  KM, Eifel  PJ.  Morbid obesity as an independent risk factor for disease-specific mortality in women with cervical cancer.   Obstet Gynecol. 2014;124(6):1098-1104. doi:10.1097/AOG.0000000000000558PubMedGoogle ScholarCrossref
92.
Fedirko  V, Romieu  I, Aleksandrova  K,  et al.  Pre-diagnostic anthropometry and survival after colorectal cancer diagnosis in Western European populations.   Int J Cancer. 2014;135(8):1949-1960. doi:10.1002/ijc.28841PubMedGoogle ScholarCrossref
93.
Boyle  T, Fritschi  L, Platell  C, Heyworth  J.  Lifestyle factors associated with survival after colorectal cancer diagnosis.   Br J Cancer. 2013;109(3):814-822. doi:10.1038/bjc.2013.310PubMedGoogle ScholarCrossref
94.
Campbell  PT, Newton  CC, Newcomb  PA,  et al.  Association between body mass index and mortality for colorectal cancer survivors: overall and by tumor molecular phenotype.   Cancer Epidemiol Biomarkers Prev. 2015;24(8):1229-1238. doi:10.1158/1055-9965.EPI-15-0094PubMedGoogle ScholarCrossref
95.
Cespedes Feliciano  EM, Kwan  ML, Kushi  LH,  et al.  Body mass index, PAM50 subtype, recurrence, and survival among patients with nonmetastatic breast cancer.   Cancer. 2017;123(13):2535-2542. doi:10.1002/cncr.30637PubMedGoogle ScholarCrossref
96.
Clark  W, Siegel  EM, Chen  YA,  et al.  Quantitative measures of visceral adiposity and body mass index in predicting rectal cancer outcomes after neoadjuvant chemoradiation.   J Am Coll Surg. 2013;216(6):1070-1081. doi:10.1016/j.jamcollsurg.2013.01.007PubMedGoogle ScholarCrossref
97.
Dahdaleh  FS, Sherman  SK, Poli  EC,  et al.  Obstruction predicts worse long-term outcomes in stage III colon cancer: a secondary analysis of the N0147 trial.   Surgery. 2018;164(6):1223-1229. doi:10.1016/j.surg.2018.06.044PubMedGoogle ScholarCrossref
98.
Dignam  JJ, Polite  BN, Yothers  G,  et al.  Body mass index and outcomes in patients who receive adjuvant chemotherapy for colon cancer.   J Natl Cancer Inst. 2006;98(22):1647-1654. doi:10.1093/jnci/djj442PubMedGoogle ScholarCrossref
99.
Jayasekara  H, English  DR, Haydon  A,  et al.  Associations of alcohol intake, smoking, physical activity and obesity with survival following colorectal cancer diagnosis by stage, anatomic site and tumor molecular subtype.   Int J Cancer. 2018;142(2):238-250. doi:10.1002/ijc.31049PubMedGoogle ScholarCrossref
100.
Kaidar-Person  O, Badarna  H, Bar-Sela  G.  Bevacizumab for metastatic colon cancer: does patient BMI influence survival?   Anticancer Drugs. 2015;26(3):363-366. doi:10.1097/CAD.0000000000000201PubMedGoogle ScholarCrossref
101.
Kalb  M, Langheinrich  MC, Merkel  S,  et al.  Influence of body mass index on long-term outcome in patients with rectal cancer-a single centre experience.   Cancers (Basel). 2019;11(5):E609. doi:10.3390/cancers11050609PubMedGoogle Scholar
102.
Meyerhardt  JA, Catalano  PJ, Haller  DG,  et al.  Influence of body mass index on outcomes and treatment-related toxicity in patients with colon carcinoma.   Cancer. 2003;98(3):484-495. doi:10.1002/cncr.11544PubMedGoogle ScholarCrossref
103.
Meyerhardt  JA, Tepper  JE, Niedzwiecki  D,  et al.  Impact of body mass index on outcomes and treatment-related toxicity in patients with stage II and III rectal cancer: findings from Intergroup Trial 0114.   J Clin Oncol. 2004;22(4):648-657. doi:10.1200/JCO.2004.07.121PubMedGoogle ScholarCrossref
104.
Meyerhardt  JA, Niedzwiecki  D, Hollis  D,  et al; Cancer and Leukemia Group B 89803.  Impact of body mass index and weight change after treatment on cancer recurrence and survival in patients with stage III colon cancer: findings from Cancer and Leukemia Group B 89803.   J Clin Oncol. 2008;26(25):4109-4115. doi:10.1200/JCO.2007.15.6687PubMedGoogle ScholarCrossref
105.
Morikawa  T, Kuchiba  A, Liao  X,  et al.  Tumor TP53 expression status, body mass index and prognosis in colorectal cancer.   Int J Cancer. 2012;131(5):1169-1178. doi:10.1002/ijc.26495PubMedGoogle ScholarCrossref
106.
Ogino  S, Nosho  K, Baba  Y,  et al.  A cohort study of STMN1 expression in colorectal cancer: body mass index and prognosis.   Am J Gastroenterol. 2009;104(8):2047-2056. doi:10.1038/ajg.2009.281PubMedGoogle ScholarCrossref
107.
Patel  GS, Ullah  S, Beeke  C,  et al.  Association of BMI with overall survival in patients with mCRC who received chemotherapy versus EGFR and VEGF-targeted therapies.   Cancer Med. 2015;4(10):1461-1471. doi:10.1002/cam4.490PubMedGoogle ScholarCrossref
108.
Pelser  C, Arem  H, Pfeiffer  RM,  et al.  Prediagnostic lifestyle factors and survival after colon and rectal cancer diagnosis in the National Institutes of Health (NIH)-AARP Diet and Health Study.   Cancer. 2014;120(10):1540-1547. doi:10.1002/cncr.28573PubMedGoogle ScholarCrossref
109.
Prizment  AE, Flood  A, Anderson  KE, Folsom  AR.  Survival of women with colon cancer in relation to precancer anthropometric characteristics: the Iowa Women’s Health Study.   Cancer Epidemiol Biomarkers Prev. 2010;19(9):2229-2237. doi:10.1158/1055-9965.EPI-10-0522PubMedGoogle ScholarCrossref
110.
Schlesinger  S, Siegert  S, Koch  M,  et al.  Postdiagnosis body mass index and risk of mortality in colorectal cancer survivors: a prospective study and meta-analysis.   Cancer Causes Control. 2014;25(10):1407-1418. doi:10.1007/s10552-014-0435-xPubMedGoogle ScholarCrossref
111.
Shah  MS, Fogelman  DR, Raghav  KPS,  et al.  Joint prognostic effect of obesity and chronic systemic inflammation in patients with metastatic colorectal cancer.   Cancer. 2015;121(17):2968-2975. doi:10.1002/cncr.29440PubMedGoogle ScholarCrossref
112.
Sinicrope  FA, Foster  NR, Yoon  HH,  et al.  Association of obesity with DNA mismatch repair status and clinical outcome in patients with stage II or III colon carcinoma participating in NCCTG and NSABP adjuvant chemotherapy trials.   J Clin Oncol. 2012;30(4):406-412. doi:10.1200/JCO.2011.39.2563PubMedGoogle ScholarCrossref
113.
Sinicrope  FA, Foster  NR, Yothers  G,  et al; Adjuvant Colon Cancer Endpoints (ACCENT) Group.  Body mass index at diagnosis and survival among colon cancer patients enrolled in clinical trials of adjuvant chemotherapy.   Cancer. 2013;119(8):1528-1536. doi:10.1002/cncr.27938PubMedGoogle ScholarCrossref
114.
Sorbye  H, Mauer  M, Gruenberger  T,  et al; EORTC Gastro-Intestinal Tract Cancer Group; Cancer Research UK (CRUK); Arbeitsgruppe Lebermetastasen und-tumoren in der Chirurgischen Arbeitsgemeinschaft Onkologie (ALM-CAO); Australasian Gastro-Intestinal Trials Group (AGITG); Fédération Francophone de Cancérologie Digestive (FFCD).  Predictive factors for the benefit of perioperative FOLFOX for resectable liver metastasis in colorectal cancer patients (EORTC Intergroup Trial 40983).   Ann Surg. 2012;255(3):534-539. doi:10.1097/SLA.0b013e3182456aa2PubMedGoogle ScholarCrossref
115.
Wang  N, Khankari  NK, Cai  H,  et al.  Prediagnosis body mass index and waist-hip circumference ratio in association with colorectal cancer survival.   Int J Cancer. 2017;140(2):292-301. doi:10.1002/ijc.30459PubMedGoogle ScholarCrossref
116.
Zheng  J, Li  Y, Zhu  S,  et al.  NDRG4 stratifies the prognostic value of body mass index in colorectal cancer.   Oncotarget. 2016;7(2):1311-1322. doi:10.18632/oncotarget.6182PubMedGoogle ScholarCrossref
117.
Doria-Rose  VP, Newcomb  PA, Morimoto  LM, Hampton  JM, Trentham-Dietz  A.  Body mass index and the risk of death following the diagnosis of colorectal cancer in postmenopausal women (United States).   Cancer Causes Control. 2006;17(1):63-70. doi:10.1007/s10552-005-0360-0PubMedGoogle ScholarCrossref
118.
Kristensen  AB, Hare-Bruun  H, Høgdall  CK, Rudnicki  M.  Influence of body mass index on tumor pathology and survival in uterine cancer: a Danish register study.   Int J Gynecol Cancer. 2017;27(2):281-288. doi:10.1097/IGC.0000000000000874PubMedGoogle ScholarCrossref
119.
Nagle  CM, Crosbie  EJ, Brand  A,  et al; Australian National Endometrial Cancer Study Group.  The association between diabetes, comorbidities, body mass index and all-cause and cause-specific mortality among women with endometrial cancer.   Gynecol Oncol. 2018;150(1):99-105. doi:10.1016/j.ygyno.2018.04.006PubMedGoogle ScholarCrossref
120.
Nicholas  Z, Hu  N, Ying  J, Soisson  P, Dodson  M, Gaffney  DK.  Impact of comorbid conditions on survival in endometrial cancer.   Am J Clin Oncol. 2014;37(2):131-134. doi:10.1097/COC.0b013e318277d5f4PubMedGoogle ScholarCrossref
121.
Todo  Y, Okamoto  K, Minobe  S, Kato  H.  Clinical significance of surgical staging for obese women with endometrial cancer: a retrospective analysis in a Japanese cohort.   Jpn J Clin Oncol. 2014;44(10):903-909. doi:10.1093/jjco/hyu106PubMedGoogle ScholarCrossref
122.
Yoon  LS, Goodman  MT, Rimel  BJ, Jeon  CY.  Statin use and survival in elderly patients with endometrial cancer.   Gynecol Oncol. 2015;137(2):252-257. doi:10.1016/j.ygyno.2015.01.549PubMedGoogle ScholarCrossref
123.
Hynes  O, Anandavadivelan  P, Gossage  J, Johar  AM, Lagergren  J, Lagergren  P.  The impact of pre- and post-operative weight loss and body mass index on prognosis in patients with oesophageal cancer.   Eur J Surg Oncol. 2017;43(8):1559-1565. doi:10.1016/j.ejso.2017.05.023PubMedGoogle ScholarCrossref
124.
Spreafico  A, Coate  L, Zhai  R,  et al.  Early adulthood body mass index, cumulative smoking, and esophageal adenocarcinoma survival.   Cancer Epidemiol. 2017;47:28-34. doi:10.1016/j.canep.2016.11.009PubMedGoogle ScholarCrossref
125.
Sundelöf  M, Lagergren  J, Ye  W.  Patient demographics and lifestyle factors influencing long-term survival of oesophageal cancer and gastric cardia cancer in a nationwide study in Sweden.   Eur J Cancer. 2008;44(11):1566-1571. doi:10.1016/j.ejca.2008.04.002PubMedGoogle ScholarCrossref
126.
Yoon  HH, Lewis  MA, Shi  Q,  et al.  Prognostic impact of body mass index stratified by smoking status in patients with esophageal adenocarcinoma.   J Clin Oncol. 2011;29(34):4561-4567. doi:10.1200/JCO.2011.37.1260PubMedGoogle ScholarCrossref
127.
Thrift  AP, Nagle  CM, Fahey  PP, Smithers  BM, Watson  DI, Whiteman  DC.  Predictors of survival among patients diagnosed with adenocarcinoma of the esophagus and gastroesophageal junction.   Cancer Causes Control. 2012;23(4):555-564. doi:10.1007/s10552-012-9913-1PubMedGoogle ScholarCrossref
128.
Trivers  KF, De Roos  AJ, Gammon  MD,  et al.  Demographic and lifestyle predictors of survival in patients with esophageal or gastric cancers.   Clin Gastroenterol Hepatol. 2005;3(3):225-230. doi:10.1016/S1542-3565(04)00613-5PubMedGoogle ScholarCrossref
129.
Potharaju  M, Mangaleswaran  B, Mathavan  A,  et al.  Body mass index as a prognostic marker in glioblastoma multiforme: a clinical outcome.   Int J Radiat Oncol Biol Phys. 2018;102(1):204-209. doi:10.1016/j.ijrobp.2018.05.024PubMedGoogle ScholarCrossref
130.
Gama  RR, Song  Y, Zhang  Q,  et al.  Body mass index and prognosis in patients with head and neck cancer.   Head Neck. 2017;39(6):1226-1233. doi:10.1002/hed.24760PubMedGoogle ScholarCrossref
131.
Grossberg  AJ, Chamchod  S, Fuller  CD,  et al.  Association of body composition with survival and locoregional control of radiotherapy-treated head and neck squamous cell carcinoma.   JAMA Oncol. 2016;2(6):782-789. doi:10.1001/jamaoncol.2015.6339PubMedGoogle ScholarCrossref
132.
Hu  Q, Peng  J, Chen  X,  et al.  Obesity and genes related to lipid metabolism predict poor survival in oral squamous cell carcinoma.   Oral Oncol. 2019;89:14-22. doi:10.1016/j.oraloncology.2018.12.006PubMedGoogle ScholarCrossref
133.
Ata  N, Ayloo  S, Tsung  A, Molinari  M.  Recipient obesity does not affect survival after deceased donor liver transplantation for hepatocellular carcinoma: a national retrospective cohort study in the United States.   HPB (Oxford). 2019;21(1):67-76. doi:10.1016/j.hpb.2018.06.1797PubMedGoogle ScholarCrossref
134.
Carr  BI, Giannelli  G, Guerra  V,  et al.  Plasma cholesterol and lipoprotein levels in relation to tumor aggressiveness and survival in HCC patients.   Int J Biol Markers. 2018;33(4):423-431. doi:10.1177/1724600818776838PubMedGoogle ScholarCrossref
135.
Yang  T, Liu  K, Liu  CF,  et al.  Impact of postoperative infective complications on long-term survival after liver resection for hepatocellular carcinoma.   Br J Surg. 2019;106(9):1228-1236. doi:10.1002/bjs.11231PubMedGoogle ScholarCrossref
136.
Roque  DR, Taylor  KN, Palisoul  M,  et al.  Gemcitabine and docetaxel compared with observation, radiation, or other chemotherapy regimens as adjuvant treatment for stage I-to-IV uterine leiomyosarcoma.   Int J Gynecol Cancer. 2016;26(3):505-511. doi:10.1097/IGC.0000000000000634PubMedGoogle ScholarCrossref
137.
McMahon  BJ, Bruden  D, Townshend-Bulson  L,  et al.  Infection With hepatitis C virus genotype 3 is an independent risk factor for end-stage liver disease, hepatocellular carcinoma, and liver-related death.   Clin Gastroenterol Hepatol. 2017;15(3):431-437.e2. doi:10.1016/j.cgh.2016.10.012PubMedGoogle ScholarCrossref
138.
Abdel-Rahman  O.  Pre-diagnostic body mass index trajectory in relationship to lung cancer incidence and mortality; findings from the PLCO trial.   Expert Rev Respir Med. 2019;13(10):1029-1035. doi:10.1080/17476348.2019.1656532PubMedGoogle ScholarCrossref
139.
Leung  CC, Lam  TH, Yew  WW, Chan  WM, Law  WS, Tam  CM.  Lower lung cancer mortality in obesity.   Int J Epidemiol. 2011;40(1):174-182. doi:10.1093/ije/dyq134PubMedGoogle ScholarCrossref
140.
Nonemaker  JM, Garrett-Mayer  E, Carpenter  MJ,  et al.  The risk of dying from lung cancer by race: a prospective cohort study in a biracial cohort in Charleston, South Carolina.   Ann Epidemiol. 2009;19(5):304-310. doi:10.1016/j.annepidem.2008.12.017PubMedGoogle ScholarCrossref
141.
Qi  Y, Schild  SE, Mandrekar  SJ,  et al.  Pretreatment quality of life is an independent prognostic factor for overall survival in patients with advanced stage non-small cell lung cancer.   J Thorac Oncol. 2009;4(9):1075-1082. doi:10.1097/JTO.0b013e3181ae27f5PubMedGoogle ScholarCrossref
142.
Shepshelovich  D, Xu  W, Lu  L,  et al.  Body mass index (BMI), BMI change, and overall survival in patients with SCLC and NSCLC: a pooled analysis of the International Lung Cancer Consortium.   J Thorac Oncol. 2019;14(9):1594-1607. doi:10.1016/j.jtho.2019.05.031PubMedGoogle ScholarCrossref
143.
Turner  MC, Krewski  D, Pope  CA  III, Chen  Y, Gapstur  SM, Thun  MJ.  Long-term ambient fine particulate matter air pollution and lung cancer in a large cohort of never-smokers.   Am J Respir Crit Care Med. 2011;184(12):1374-1381. doi:10.1164/rccm.201106-1011OCPubMedGoogle ScholarCrossref
144.
Xie  HJ, Zhang  X, Wei  ZQ, Long  H, Rong  TH, Su  XD.  Effect of body mass index on survival of patients with stage I non-small cell lung cancer.   Chin J Cancer. 2017;36(1):7. doi:10.1186/s40880-016-0170-7PubMedGoogle ScholarCrossref
145.
McQuade  JL, Daniel  CR, Hess  PKR,  et al.  Association of body-mass index and outcomes in patients with metastatic melanoma treated with targeted therapy, immunotherapy, or chemotherapy: a retrospective, multicohort analysis.   Lancet Oncol. 2018;19(3):310-322. doi:10.1016/S1470-2045(18)30078-0Google ScholarCrossref
146.
Aldrich  MC, Grogan  EL, Munro  HM, Signorello  LB, Blot  WJ.  Stage-adjusted lung cancer survival does not differ between low-income Blacks and Whites.   J Thorac Oncol. 2013;8(10):1248-1254. doi:10.1097/JTO.0b013e3182a406f6PubMedGoogle ScholarCrossref
147.
Kichenadasse  G, Miners  JO, Mangoni  AA, Rowland  A, Hopkins  AM, Sorich  MJ.  Association between body mass index and overall survival with immune checkpoint inhibitor therapy for advanced non-small cell lung cancer.   JAMA Oncol. 2020;6(4):512-518. doi:10.1001/jamaoncol.2019.5241PubMedGoogle ScholarCrossref
148.
Nakagawa  T, Toyazaki  T, Chiba  N, Ueda  Y, Gotoh  M.  Prognostic value of body mass index and change in body weight in postoperative outcomes of lung cancer surgery.   Interact Cardiovasc Thorac Surg. 2016;23(4):560-566. doi:10.1093/icvts/ivw175PubMedGoogle ScholarCrossref
149.
Bandera  EV, Lee  VS, Rodriguez-Rodriguez  L, Powell  CB, Kushi  LH.  Impact of chemotherapy dosing on ovarian cancer survival according to body mass index.   JAMA Oncol. 2015;1(6):737-745. doi:10.1001/jamaoncol.2015.1796PubMedGoogle ScholarCrossref
150.
Kotsopoulos  J, Moody  JRK, Fan  I,  et al.  Height, weight, BMI and ovarian cancer survival.   Gynecol Oncol. 2012;127(1):83-87. doi:10.1016/j.ygyno.2012.05.038PubMedGoogle ScholarCrossref
151.
Minlikeeva  AN, Cannioto  R, Jensen  A,  et al; Australian Ovarian Cancer Study Group; Ovarian Cancer Association Consortium.  Joint exposure to smoking, excessive weight, and physical inactivity and survival of ovarian cancer patients, evidence from the Ovarian Cancer Association Consortium.   Cancer Causes Control. 2019;30(5):537-547. doi:10.1007/s10552-019-01157-3PubMedGoogle ScholarCrossref
152.
Previs  RA, Kilgore  J, Craven  R,  et al.  Obesity is associated with worse overall survival in women with low-grade papillary serous epithelial ovarian cancer.   Int J Gynecol Cancer. 2014;24(4):670-675. doi:10.1097/IGC.0000000000000109PubMedGoogle ScholarCrossref
153.
Tyler  CP, Whiteman  MK, Zapata  LB,  et al.  The effect of body mass index and weight change on epithelial ovarian cancer survival in younger women: a long-term follow-up study.   J Womens Health (Larchmt). 2012;21(8):865-871. doi:10.1089/jwh.2012.3487PubMedGoogle ScholarCrossref
154.
Yang  L, Klint  A, Lambe  M,  et al.  Predictors of ovarian cancer survival: a population-based prospective study in Sweden.   Int J Cancer. 2008;123(3):672-679. doi:10.1002/ijc.23429PubMedGoogle ScholarCrossref
155.
Dalal  S, Hui  D, Bidaut  L,  et al.  Relationships among body mass index, longitudinal body composition alterations, and survival in patients with locally advanced pancreatic cancer receiving chemoradiation: a pilot study.   J Pain Symptom Manage. 2012;44(2):181-191. doi:10.1016/j.jpainsymman.2011.09.010PubMedGoogle ScholarCrossref
156.
Genkinger  JM, Kitahara  CM, Bernstein  L,  et al.  Central adiposity, obesity during early adulthood, and pancreatic cancer mortality in a pooled analysis of cohort studies.   Ann Oncol. 2015;26(11):2257-2266. doi:10.1093/annonc/mdv355PubMedGoogle ScholarCrossref
157.
Gong  Z, Holly  EA, Bracci  PM.  Obesity and survival in population-based patients with pancreatic cancer in the San Francisco Bay Area.   Cancer Causes Control. 2012;23(12):1929-1937. doi:10.1007/s10552-012-0070-3PubMedGoogle ScholarCrossref
158.
Li  D, Morris  JS, Liu  J,  et al.  Body mass index and risk, age of onset, and survival in patients with pancreatic cancer.   JAMA. 2009;301(24):2553-2562.PubMedGoogle ScholarCrossref
159.
Lin  Y, Fu  R, Grant  E,  et al.  Association of body mass index and risk of death from pancreas cancer in Asians: findings from the Asia Cohort Consortium.   Eur J Cancer Prev. 2013;22(3):244-250. doi:10.1097/CEJ.0b013e3283592cefPubMedGoogle ScholarCrossref
160.
Olson  SH, Chou  JF, Ludwig  E,  et al.  Allergies, obesity, other risk factors and survival from pancreatic cancer.   Int J Cancer. 2010;127(10):2412-2419. doi:10.1002/ijc.25240PubMedGoogle ScholarCrossref
161.
Yuan  C, Bao  Y, Wu  C,  et al.  Prediagnostic body mass index and pancreatic cancer survival.   J Clin Oncol. 2013;31(33):4229-4234. doi:10.1200/JCO.2013.51.7532PubMedGoogle ScholarCrossref
162.
Tsai  S, Choti  MA, Assumpcao  L,  et al.  Impact of obesity on perioperative outcomes and survival following pancreaticoduodenectomy for pancreatic cancer: a large single-institution study.   J Gastrointest Surg. 2010;14(7):1143-1150. doi:10.1007/s11605-010-1201-3PubMedGoogle ScholarCrossref
163.
Bassett  JK, Severi  G, Baglietto  L,  et al.  Weight change and prostate cancer incidence and mortality.   Int J Cancer. 2012;131(7):1711-1719. doi:10.1002/ijc.27414PubMedGoogle ScholarCrossref
164.
Bonn  SE, Wiklund  F, Sjölander  A,  et al.  Body mass index and weight change in men with prostate cancer: progression and mortality.   Cancer Causes Control. 2014;25(8):933-943. doi:10.1007/s10552-014-0393-3PubMedGoogle ScholarCrossref
165.
Dickerman  BA, Ahearn  TU, Giovannucci  E,  et al.  Weight change, obesity and risk of prostate cancer progression among men with clinically localized prostate cancer.   Int J Cancer. 2017;141(5):933-944. doi:10.1002/ijc.30803PubMedGoogle ScholarCrossref
166.
Efstathiou  JA, Bae  K, Shipley  WU,  et al.  Obesity and mortality in men with locally advanced prostate cancer: analysis of RTOG 85-31.   Cancer. 2007;110(12):2691-2699. doi:10.1002/cncr.23093PubMedGoogle ScholarCrossref
167.
Farris  MS, Courneya  KS, Kopciuk  KA, McGregor  SE, Friedenreich  CM.  Anthropometric measurements and survival after a prostate cancer diagnosis.   Br J Cancer. 2018;118(4):607-610. doi:10.1038/bjc.2017.440PubMedGoogle ScholarCrossref
168.
Froehner  M, Kellner  AE, Koch  R, Baretton  GB, Hakenberg  OW, Wirth  MP.  A combined index to classify prognostic comorbidity in candidates for radical prostatectomy.   BMC Urol. 2014;14(1):28. doi:10.1186/1471-2490-14-28PubMedGoogle ScholarCrossref
169.
Gong  Z, Agalliu  I, Lin  DW, Stanford  JL, Kristal  AR.  Obesity is associated with increased risks of prostate cancer metastasis and death after initial cancer diagnosis in middle-aged men.   Cancer. 2007;109(6):1192-1202. doi:10.1002/cncr.22534PubMedGoogle ScholarCrossref
170.
Han  M, Trock  BJ, Partin  AW,  et al.  The impact of preoperative erectile dysfunction on survival after radical prostatectomy.   BJU Int. 2010;106(11):1612-1617. doi:10.1111/j.1464-410X.2010.09472.xPubMedGoogle ScholarCrossref
171.
Ho  T, Gerber  L, Aronson  WJ,  et al.  Obesity, prostate-specific antigen nadir, and biochemical recurrence after radical prostatectomy: biology or technique? results from the SEARCH database.   Eur Urol. 2012;62(5):910-916. doi:10.1016/j.eururo.2012.08.015PubMedGoogle ScholarCrossref
172.
Kelly  SP, Graubard  BI, Andreotti  G, Younes  N, Cleary  SD, Cook  MB.  Prediagnostic body mass index trajectories in relation to prostate cancer incidence and mortality in the PLCO cancer screening trial.   J Natl Cancer Inst. 2016;109(3):1-9. doi:10.1093/jnci/djw225PubMedGoogle Scholar
173.
Kenfield  SA, Batista  JL, Jahn  JL,  et al.  Development and application of a lifestyle score for prevention of lethal prostate cancer.   J Natl Cancer Inst. 2015;108(3):djv329. doi:10.1093/jnci/djv329PubMedGoogle Scholar
174.
Khan  S, Cai  J, Nielsen  ME,  et al.  The association of diabetes and obesity with prostate cancer progression: HCaP-NC.   Prostate. 2017;77(8):878-887. doi:10.1002/pros.23342PubMedGoogle ScholarCrossref
175.
Ma  J, Li  H, Giovannucci  E,  et al.  Prediagnostic body-mass index, plasma C-peptide concentration, and prostate cancer-specific mortality in men with prostate cancer: a long-term survival analysis.   Lancet Oncol. 2008;9(11):1039-1047. doi:10.1016/S1470-2045(08)70235-3PubMedGoogle ScholarCrossref
176.
Maj-Hes  AB, Mathieu  R, Özsoy  M,  et al.  Obesity is associated with biochemical recurrence after radical prostatectomy: a multi-institutional extended validation study.   Urol Oncol. 2017;35(7):460.e1-460.e8. doi:10.1016/j.urolonc.2017.01.022PubMedGoogle ScholarCrossref
177.
Møller  H, Roswall  N, Van Hemelrijck  M,  et al.  Prostate cancer incidence, clinical stage and survival in relation to obesity: a prospective cohort study in Denmark.   Int J Cancer. 2015;136(8):1940-1947. doi:10.1002/ijc.29238PubMedGoogle ScholarCrossref
178.
Rudman  SM, Gray  KP, Batista  JL,  et al.  Risk of prostate cancer-specific death in men with baseline metabolic aberrations treated with androgen deprivation therapy for biochemical recurrence.   BJU Int. 2016;118(6):919-926. doi:10.1111/bju.13428PubMedGoogle ScholarCrossref
179.
Schiffmann  J, Salomon  G, Tilki  D,  et al.  Radical prostatectomy neutralizes obesity-driven risk of prostate cancer progression.   Urol Oncol. 2017;35(5):243-249. doi:10.1016/j.urolonc.2016.12.014PubMedGoogle ScholarCrossref
180.
Spangler  E, Zeigler-Johnson  CM, Coomes  M, Malkowicz  SB, Wein  A, Rebbeck  TR.  Association of obesity with tumor characteristics and treatment failure of prostate cancer in African-American and European American men.   J Urol. 2007;178(5):1939-1944. doi:10.1016/j.juro.2007.07.021PubMedGoogle ScholarCrossref
181.
Vidal  AC, Howard  LE, Sun  SX,  et al.  Obesity and prostate cancer-specific mortality after radical prostatectomy: results from the Shared Equal Access Regional Cancer Hospital (SEARCH) database.   Prostate Cancer Prostatic Dis. 2017;20(1):72-78. doi:10.1038/pcan.2016.47PubMedGoogle ScholarCrossref
182.
Wu  W, Liu  X, Chaftari  P,  et al.  Association of body composition with outcome of docetaxel chemotherapy in metastatic prostate cancer: a retrospective review.   PLoS One. 2015;10(3):e0122047. doi:10.1371/journal.pone.0122047PubMedGoogle Scholar
183.
Montgomery  RB, Goldman  B, Tangen  CM,  et al; Southwest Oncology Group.  Association of body mass index with response and survival in men with metastatic prostate cancer: Southwest Oncology Group trials 8894 and 9916.   J Urol. 2007;178(5):1946-1951. doi:10.1016/j.juro.2007.07.026PubMedGoogle ScholarCrossref
184.
Halabi  S, Ou  SS, Vogelzang  NJ, Small  EJ.  Inverse correlation between body mass index and clinical outcomes in men with advanced castration-recurrent prostate cancer.   Cancer. 2007;110(7):1478-1484. doi:10.1002/cncr.22932PubMedGoogle ScholarCrossref
185.
Keizman  D, Gottfried  M, Ish-Shalom  M,  et al.  Active smoking may negatively affect response rate, progression-free survival, and overall survival of patients with metastatic renal cell carcinoma treated with sunitinib.   Oncologist. 2014;19(1):51-60. doi:10.1634/theoncologist.2012-0335PubMedGoogle ScholarCrossref
186.
Lee  WK, Byun  SS, Kim  HH,  et al.  Characteristics and prognosis of chromophobe non-metastatic renal cell carcinoma: a multicenter study.   Int J Urol. 2010;17(11):898-904. doi:10.1111/j.1442-2042.2010.02630.xPubMedGoogle ScholarCrossref
187.
Parker  AS, Lohse  CM, Cheville  JC, Thiel  DD, Leibovich  BC, Blute  ML.  Greater body mass index is associated with better pathologic features and improved outcome among patients treated surgically for clear cell renal cell carcinoma.   Urology. 2006;68(4):741-746. doi:10.1016/j.urology.2006.05.024PubMedGoogle ScholarCrossref
188.
Psutka  SP, Boorjian  SA, Moynagh  MR,  et al.  Decreased skeletal muscle mass is associated with an increased risk of mortality after radical nephrectomy for localized renal cell cancer.   J Urol. 2016;195(2):270-276. doi:10.1016/j.juro.2015.08.072PubMedGoogle ScholarCrossref
189.
Spiess  PE, Kurian  T, Lin  HY,  et al.  Preoperative metastatic status, level of thrombus and body mass index predict overall survival in patients undergoing nephrectomy and inferior vena cava thrombectomy.   BJU Int. 2012;110(11 Pt B):E470-E474. doi:10.1111/j.1464-410X.2012.11155.xGoogle ScholarCrossref
190.
Yu  ML, Asal  NR, Geyer  JR.  Later recurrence and longer survival among obese patients with renal cell carcinoma.   Cancer. 1991;68(7):1648-1655. doi:10.1002/1097-0142(19911001)68:7<1648:aid-cncr2820680731>3.0.co;2-5PubMedGoogle ScholarCrossref
191.
Hung  CY, Lai  CC, Chen  PT,  et al.  Impact of body mass index on long-term survival outcome in Asian populations with solid cancer who underwent curative-intent surgery: a six-year multicenter observational cohort study.   J Cancer. 2018;9(18):3316-3325. doi:10.7150/jca.25729PubMedGoogle ScholarCrossref
192.
Houdek  MT, Griffin  AM, Ferguson  PC, Wunder  JS.  Morbid obesity increases the risk of postoperative wound complications, infection, and repeat surgical procedures following upper extremity limb salvage surgery for soft tissue sarcoma.   Hand (N Y). 2019;14(1):114-120. doi:10.1177/1558944718797336PubMedGoogle ScholarCrossref
193.
Iyengar  NM, Kochhar  A, Morris  PG,  et al.  Impact of obesity on the survival of patients with early‐stage squamous cell carcinoma of the oral tongue.   Cancer. 2014;120(7):983-991. doi:10.1002/cncr.28532Google ScholarCrossref
194.
Xu  H, Tan  P, Zheng  X,  et al.  Metabolic syndrome and upper tract urothelial carcinoma: A retrospective analysis from a large Chinese cohort.   Urol Oncol. 2019;37(4):291.e19-291.e28. doi:10.1016/j.urolonc.2018.12.005PubMedGoogle ScholarCrossref
195.
Arem  H, Park  Y, Pelser  C,  et al.  Prediagnosis body mass index, physical activity, and mortality in endometrial cancer patients.   J Natl Cancer Inst. 2013;105(5):342-349. doi:10.1093/jnci/djs530PubMedGoogle ScholarCrossref
196.
Matsuo  K, Moeini  A, Cahoon  SS,  et al.  Weight change pattern and survival outcome of women with endometrial cancer.   Ann Surg Oncol. 2016;23(9):2988-2997. doi:10.1245/s10434-016-5237-9PubMedGoogle ScholarCrossref
197.
Ruterbusch  JJ, Ali-Fehmi  R, Olson  SH,  et al.  The influence of comorbid conditions on racial disparities in endometrial cancer survival.   Am J Obstet Gynecol. 2014;211(6):627.e1-627.e9. doi:10.1016/j.ajog.2014.06.036PubMedGoogle ScholarCrossref
198.
Seidelin  UH, Ibfelt  E, Andersen  I,  et al.  Does stage of cancer, comorbidity or lifestyle factors explain educational differences in survival after endometrial cancer? a cohort study among Danish women diagnosed 2005-2009.   Acta Oncol. 2016;55(6):680-685. doi:10.3109/0284186X.2015.1136750PubMedGoogle ScholarCrossref
199.
Abdullah  A, Wolfe  R, Stoelwinder  JU,  et al.  The number of years lived with obesity and the risk of all-cause and cause-specific mortality.   Int J Epidemiol. 2011;40(4):985-996. doi:10.1093/ije/dyr018PubMedGoogle ScholarCrossref
200.
Akinyemiju  T, Moore  JX, Pisu  M,  et al.  A prospective study of obesity, metabolic health, and cancer mortality.   Obesity (Silver Spring). 2018;26(1):193-201. doi:10.1002/oby.22067.AGoogle ScholarCrossref
201.
Barroso  M, Goday  A, Ramos  R,  et al; FRESCO Investigators.  Interaction between cardiovascular risk factors and body mass index and 10-year incidence of cardiovascular disease, cancer death, and overall mortality.   Prev Med. 2018;107(107):81-89. doi:10.1016/j.ypmed.2017.11.013PubMedGoogle ScholarCrossref
202.
Boggs  DA, Rosenberg  L, Cozier  YC,  et al.  General and abdominal obesity and risk of death among black women.   N Engl J Med. 2011;365(10):901-908. doi:10.1056/NEJMoa1104119PubMedGoogle ScholarCrossref
203.
Cortellini  A, Bersanelli  M, Buti  S,  et al.  A multicenter study of body mass index in cancer patients treated with anti-PD-1/PD-L1 immune checkpoint inhibitors: when overweight becomes favorable.   J Immunother Cancer. 2019;7(1):57. doi:10.1186/s40425-019-0527-yPubMedGoogle ScholarCrossref
204.
Drake  I, Gullberg  B, Sonestedt  E,  et al.  Type 2 diabetes, adiposity and cancer morbidity and mortality risk taking into account competing risk of noncancer deaths in a prospective cohort setting.   Int J Cancer. 2017;141(6):1170-1180. doi:10.1002/ijc.30824PubMedGoogle ScholarCrossref
205.
Han  X, Stevens  J, Truesdale  KP,  et al.  Body mass index at early adulthood, subsequent weight change and cancer incidence and mortality.   Int J Cancer. 2014;135(12):2900-2909. doi:10.1002/ijc.28930PubMedGoogle ScholarCrossref
206.
Izumida  T, Nakamura  Y, Ishikawa  S.  Impact of body mass index and metabolically unhealthy status on mortality in the Japanese general population: the JMS cohort study.   PLoS One. 2019;14(11):e0224802. doi:10.1371/journal.pone.0224802PubMedGoogle Scholar
207.
Janssen  SJ, van der Heijden  AS, van Dijke  M,  et al.  2015 Marshall Urist Young Investigator Award: prognostication in patients with long bone metastases: does a boosting algorithm improve survival estimates?   Clin Orthop Relat Res. 2015;473(10):3112-3121. doi:10.1007/s11999-015-4446-zPubMedGoogle ScholarCrossref
208.
Jenkins  DA, Bowden  J, Robinson  HA,  et al.  Adiposity-mortality relationships in type 2 diabetes, coronary heart disease, and cancer subgroups in the UK Biobank, and their modification by smoking.   Diabetes Care. 2018;41(9):1878-1886. doi:10.2337/dc17-2508PubMedGoogle ScholarCrossref
209.
Katzmarzyk  PT, Reeder  BA, Elliott  S,  et al.  Body mass index and risk of cardiovascular disease, cancer and all-cause mortality.   Can J Public Health. 2012;103(2):147-151. doi:10.1007/bf03404221PubMedGoogle ScholarCrossref
210.
Kitahara  CM, Flint  AJ, Berrington de Gonzalez  A,  et al.  Association between class III obesity (BMI of 40-59 kg/m2) and mortality: a pooled analysis of 20 prospective studies.   PLoS Med. 2014;11(7):e1001673. doi:10.1371/journal.pmed.1001673PubMedGoogle Scholar
211.
Martini  DJ, Kline  MR, Liu  Y,  et al.  Adiposity may predict survival in patients with advanced stage cancer treated with immunotherapy in phase 1 clinical trials.   Cancer. 2020;126(3):575-582. doi:10.1002/cncr.32576PubMedGoogle ScholarCrossref
212.
Mathur  AK, Ghaferi  AA, Sell  K, Sonnenday  CJ, Englesbe  MJ, Welling  TH.  Influence of body mass index on complications and oncologic outcomes following hepatectomy for malignancy.   J Gastrointest Surg. 2010;14(5):849-857. doi:10.1007/s11605-010-1163-5PubMedGoogle ScholarCrossref
213.
Meyer  J, Rohrmann  S, Bopp  M, Faeh  D; Swiss National Cohort Study Group.  Impact of smoking and excess body weight on overall and site-specific cancer mortality risk.   Cancer Epidemiol Biomarkers Prev. 2015;24(10):1516-1522. doi:10.1158/1055-9965.EPI-15-0415PubMedGoogle ScholarCrossref
214.
Nechuta  SJ, Shu  XO, Li  HL,  et al.  Combined impact of lifestyle-related factors on total and cause-specific mortality among Chinese women: prospective cohort study.   PLoS Med. 2010;7(9):e1000339. doi:10.1371/journal.pmed.1000339PubMedGoogle Scholar
215.
Parr  CL, Batty  GD, Lam  TH,  et al; Asia-Pacific Cohort Studies Collaboration.  Body-mass index and cancer mortality in the Asia-Pacific Cohort Studies Collaboration: pooled analyses of 424,519 participants.   Lancet Oncol. 2010;11(8):741-752. doi:10.1016/S1470-2045(10)70141-8PubMedGoogle ScholarCrossref
216.
Sasazuki  S, Inoue  M, Tsuji  I,  et al; Research Group for the Development and Evaluation of Cancer Prevention Strategies in Japan.  Body mass index and mortality from all causes and major causes in Japanese: results of a pooled analysis of 7 large-scale cohort studies.   J Epidemiol. 2011;21(6):417-430. doi:10.2188/jea.JE20100180PubMedGoogle ScholarCrossref
217.
Silventoinen  K, Tynelius  P, Rasmussen  F.  Weight status in young adulthood and survival after cardiovascular diseases and cancer.   Int J Epidemiol. 2014;43(4):1197-1204. doi:10.1093/ije/dyu091PubMedGoogle ScholarCrossref
218.
Song  X, Pitkäniemi  J, Gao  W,  et al; DECODE Study Group.  Relationship between body mass index and mortality among Europeans.   Eur J Clin Nutr. 2012;66(2):156-165. doi:10.1038/ejcn.2011.145PubMedGoogle ScholarCrossref
219.
Taghizadeh  N, Boezen  HM, Schouten  JP, Schröder  CP, Elisabeth de Vries  EG, Vonk  JM.  BMI and lifetime changes in BMI and cancer mortality risk.   PLoS One. 2015;10(4):e0125261. doi:10.1371/journal.pone.0125261PubMedGoogle Scholar
220.
Tseng  CH.  Obesity paradox: differential effects on cancer and noncancer mortality in patients with type 2 diabetes mellitus.   Atherosclerosis. 2013;226(1):186-192. doi:10.1016/j.atherosclerosis.2012.09.004PubMedGoogle ScholarCrossref
221.
Tseng  CH.  Factors associated with cancer- and non-cancer-related deaths among Taiwanese patients with diabetes after 17 years of follow-up.   PLoS One. 2016;11(12):e0147916. doi:10.1371/journal.pone.0147916PubMedGoogle Scholar
222.
Valentijn  TM, Galal  W, Hoeks  SE, van Gestel  YR, Verhagen  HJ, Stolker  RJ.  Impact of obesity on postoperative and long-term outcomes in a general surgery population: a retrospective cohort study.   World J Surg. 2013;37(11):2561-2568. doi:10.1007/s00268-013-2162-yPubMedGoogle ScholarCrossref
223.
Xu  H, Cupples  LA, Stokes  A, Liu  CT.  Association of obesity with mortality over 24 years of weight history: findings from the Framingham Heart Study.   JAMA Netw Open. 2018;1(7):e184587. doi:10.1001/jamanetworkopen.2018.4587PubMedGoogle Scholar
224.
Yano  Y, Kario  K, Ishikawa  S,  et al; JMS Cohort Study Group.  Associations between diabetes, leanness, and the risk of death in the Japanese general population: the Jichi Medical School Cohort Study.   Diabetes Care. 2013;36(5):1186-1192. doi:10.2337/dc12-1736PubMedGoogle ScholarCrossref
225.
You  J, Huang  S, Huang  GQ,  et al.  Nonalcoholic fatty liver disease: a negative risk factor for colorectal cancer prognosis.   Medicine (Baltimore). 2015;94(5):e479. doi:10.1097/MD.0000000000000479PubMedGoogle Scholar
226.
Key  TJ, Appleby  PN, Reeves  GK,  et al; Endogenous Hormones Breast Cancer Collaborative Group.  Body mass index, serum sex hormones, and breast cancer risk in postmenopausal women.   J Natl Cancer Inst. 2003;95(16):1218-1226. doi:10.1093/jnci/djg022PubMedGoogle ScholarCrossref
227.
Campbell  KL, Foster-Schubert  KE, Alfano  CM,  et al.  Reduced-calorie dietary weight loss, exercise, and sex hormones in postmenopausal women: randomized controlled trial.   J Clin Oncol. 2012;30(19):2314-2326. doi:10.1200/JCO.2011.37.9792PubMedGoogle ScholarCrossref
228.
Campbell  PT, Newton  CC, Dehal  AN, Jacobs  EJ, Patel  AV, Gapstur  SM.  Impact of body mass index on survival after colorectal cancer diagnosis: the Cancer Prevention Study-II Nutrition Cohort.   J Clin Oncol. 2012;30(1):42-52. doi:10.1200/JCO.2011.38.0287PubMedGoogle ScholarCrossref
229.
Renehan  AG, Roberts  DL, Dive  C.  Obesity and cancer: pathophysiological and biological mechanisms.   Arch Physiol Biochem. 2008;114(1):71-83. doi:10.1080/13813450801954303PubMedGoogle ScholarCrossref
230.
Lippman  SM, Klein  EA, Goodman  PJ,  et al.  Effect of selenium and vitamin E on risk of prostate cancer and other cancers: The selenium and vitamin E cancer prevention trial (SELECT).   JAMA. 2009;301(1):39-51. doi:10.1001/jama.2008.864Google ScholarCrossref
231.
Discacciati  A, Orsini  N, Wolk  A.  Body mass index and incidence of localized and advanced prostate cancer—a dose-response meta-analysis of prospective studies.   Ann Oncol. 2012;23(7):1665-1671. doi:10.1093/annonc/mdr603PubMedGoogle ScholarCrossref
232.
Argilés  JM, Busquets  S, Stemmler  B, López-Soriano  FJ.  Cancer cachexia: understanding the molecular basis.   Nat Rev Cancer. 2014;14(11):754-762. doi:10.1038/nrc3829PubMedGoogle ScholarCrossref
233.
Scott  HR, McMillan  DC, Forrest  LM, Brown  DJF, McArdle  CS, Milroy  R.  The systemic inflammatory response, weight loss, performance status and survival in patients with inoperable non-small cell lung cancer.   Br J Cancer. 2002;87(3):264-267. doi:10.1038/sj.bjc.6600466PubMedGoogle ScholarCrossref
234.
Cortellini  A, Ricciuti  B, Tiseo  M,  et al.  Baseline BMI and BMI variation during first line pembrolizumab in NSCLC patients with a PD-L1 expression ≥ 50%: a multicenter study with external validation.   J Immunother Cancer. 2020;8(2):e001403. doi:10.1136/jitc-2020-001403PubMedGoogle Scholar
235.
Naik  GS, Waikar  SS, Johnson  AEW,  et al.  Complex inter-relationship of body mass index, gender and serum creatinine on survival: exploring the obesity paradox in melanoma patients treated with checkpoint inhibition.   J Immunother Cancer. 2019;7(1):89. doi:10.1186/s40425-019-0512-5PubMedGoogle ScholarCrossref
236.
Richtig  G, Hoeller  C, Wolf  M,  et al.  Body mass index may predict the response to ipilimumab in metastatic melanoma: an observational multi-centre study.   PLoS One. 2018;13(10):e0204729. doi:10.1371/journal.pone.0204729PubMedGoogle Scholar
237.
Rutkowski  P, Indini  A, De Luca  M,  et al.  Body mass index (BMI) and outcome of metastatic melanoma patients receiving targeted therapy and immunotherapy: a multicenter international retrospective study.   J Immunother Cancer. 2020;8(2):e001117. doi:10.1136/jitc-2020-001117PubMedGoogle Scholar
238.
Santoni  M, Cortellini  A, Buti  S.  Unlocking the secret of the obesity paradox in renal tumours.   Lancet Oncol. 2020;21(2):194-196. doi:10.1016/S1470-2045(19)30783-1PubMedGoogle ScholarCrossref
239.
Sanchez  A, Furberg  H, Kuo  F,  et al.  Transcriptomic signatures related to the obesity paradox in patients with clear cell renal cell carcinoma: a cohort study.   Lancet Oncol. 2020;21(2):283-293. doi:10.1016/S1470-2045(19)30797-1PubMedGoogle ScholarCrossref
240.
Han  SJ, Glatman Zaretsky  A, Andrade-Oliveira  V,  et al.  White adipose tissue is a reservoir for memory T cells and promotes protective memory responses to infection.   Immunity. 2017;47(6):1154-1168.e6. doi:10.1016/j.immuni.2017.11.009PubMedGoogle ScholarCrossref
241.
Bersanelli  M, Cortellini  A, Buti  S.  The interplay between cholesterol (and other metabolic conditions) and immune-checkpoint immunotherapy: shifting the concept from the “inflamed tumor” to the “inflamed patient.”   Hum Vaccin Immunother. 2021;00(00):1-5. doi:10.1080/21645515.2020.1852872PubMedGoogle ScholarCrossref
242.
Tucker  JM, Tucker  LA, Lecheminant  J, Bailey  B.  Obesity increases risk of declining physical activity over time in women: a prospective cohort study.   Obesity (Silver Spring). 2013;21(12):E715-E720. doi:10.1002/oby.20415PubMedGoogle ScholarCrossref
243.
Pietiläinen  KH, Kaprio  J, Borg  P,  et al.  Physical inactivity and obesity: a vicious circle.   Obesity (Silver Spring). 2008;16(2):409-414. doi:10.1038/oby.2007.72PubMedGoogle ScholarCrossref
244.
Spei  ME, Samoli  E, Bravi  F, La Vecchia  C, Bamia  C, Benetou  V.  Physical activity in breast cancer survivors: a systematic review and meta-analysis on overall and breast cancer survival.   Breast. 2019;44:144-152. doi:10.1016/j.breast.2019.02.001PubMedGoogle ScholarCrossref
245.
Je  Y, Jeon  JY, Giovannucci  EL, Meyerhardt  JA.  Association between physical activity and mortality in colorectal cancer: a meta-analysis of prospective cohort studies.   Int J Cancer. 2013;133(8):1905-1913. doi:10.1002/ijc.28208PubMedGoogle ScholarCrossref
246.
Whitlock  G, Lewington  S, Sherliker  P,  et al; Prospective Studies Collaboration.  Body-mass index and cause-specific mortality in 900 000 adults: collaborative analyses of 57 prospective studies.   Lancet. 2009;373(9669):1083-1096. doi:10.1016/S0140-6736(09)60318-4PubMedGoogle ScholarCrossref
247.
Renehan  AG, Harvie  M, Cutress  RI,  et al.  How to manage the obese patient with cancer.   J Clin Oncol. 2016;34(35):4284-4294. doi:10.1200/JCO.2016.69.1899PubMedGoogle ScholarCrossref
248.
Hourdequin  KC, Schpero  WL, McKenna  DR, Piazik  BL, Larson  RJ.  Toxic effect of chemotherapy dosing using actual body weight in obese versus normal-weight patients: a systematic review and meta-analysis.   Ann Oncol. 2013;24(12):2952-2962. doi:10.1093/annonc/mdt294PubMedGoogle ScholarCrossref
Limit 200 characters
Limit 25 characters
Conflicts of Interest Disclosure

Identify all potential conflicts of interest that might be relevant to your comment.

Conflicts of interest comprise financial interests, activities, and relationships within the past 3 years including but not limited to employment, affiliation, grants or funding, consultancies, honoraria or payment, speaker's bureaus, stock ownership or options, expert testimony, royalties, donation of medical equipment, or patents planned, pending, or issued.

Err on the side of full disclosure.

If you have no conflicts of interest, check "No potential conflicts of interest" in the box below. The information will be posted with your response.

Not all submitted comments are published. Please see our commenting policy for details.

Limit 140 characters
Limit 3600 characters or approximately 600 words
    Original Investigation
    Nutrition, Obesity, and Exercise
    March 29, 2021

    Association of Obesity With Survival Outcomes in Patients With Cancer: A Systematic Review and Meta-analysis

    Author Affiliations
    • 1Oncology Unit, Azienda Socio Sanitaria Territoriale Bergamo Ovest, Treviglio, Italy
    • 2Oncology Unit, Department of Biotechnology and Applied Clinical Sciences, San Salvatore Hospital, University of L’Aquila, L’Aquila, Italy
    • 3Oncology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Maggiore Policlinico, Milano, Italy
    • 4Oncology Unit, Azienda Socio Sanitaria Territoriale Sette Laghi, Ospedale di Circolo, Varese, Italy
    • 5Oncology Unit, University Hospital of Modena, Modena Cancer Centre, Modena, Italy
    • 6Oncology Unit, Azienda Socio Sanitaria Territoriale Bergamo Est, Seriate, Italy
    • 7Surgical Oncology Unit, Azienda Socio Sanitaria Territoriale Bergamo Ovest, Treviglio, Italy
    • 8Endocrine Diseases Unit–Diabetes Regional Center, Azienda Socio Sanitaria Territoriale Bergamo Ovest, Treviglio, Italia
    • 9Oncology Unit, Casa di Cura Igea, Milano, Italy
    • 10Oncology Unit, Fondazione Poliambulanza, Brescia, Italy
    JAMA Netw Open. 2021;4(3):e213520. doi:10.1001/jamanetworkopen.2021.3520
    Key Points

    Question  Is obesity associated with better prognosis in patients with cancer?

    Findings  This meta-analysis of 203 studies with more than 6.3 million participants found that obesity was associated with increased overall and cancer-specific mortality, especially among patients with breast, colon, and uterine cancer. In contrast, patients with obesity and renal cell carcinoma, lung cancer, or melanoma had better survival than patients without obesity.

    Meaning  These findings suggest that survival outcomes are poor among patients with obesity and cancer, except in lung cancer and melanoma.

    Abstract

    Importance  Obesity, defined as a body mass index (BMI) greater than 30, is associated with a significant increase in the risk of many cancers and in overall mortality. However, various studies have suggested that patients with cancer and no obesity (ie, BMI 20-25) have worse outcomes than patients with obesity.

    Objective  To assess the association between obesity and outcomes after a diagnosis of cancer.

    Data Sources  PubMed, the Cochrane Library, and EMBASE were searched from inception to January 2020.

    Study Selection  Studies reporting prognosis of patients with obesity using standard BMI categories and cancer were included. Studies that used nonstandard BMI categories, that were limited to children, or that were limited to patients with hematological malignant neoplasms were excluded. Screening was performed independently by multiple reviewers. Among 1892 retrieved studies, 203 (17%) met inclusion criteria for initial evaluation.

    Data Extraction and Synthesis  The Meta-analysis of Observational Studies in Epidemiology (MOOSE) and Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) reporting guidelines were reporting guideline was followed. Data were extracted by multiple independent reviewers. Risk of death, cancer-specific mortality, and recurrence were pooled to provide an adjusted hazard ratio (HR) with a 95% CI . A random-effects model was used for the retrospective nature of studies.

    Main Outcomes and Measures  The primary outcome of the study was overall survival (OS) in patients with cancer, with and without obesity. Secondary end points were cancer-specific survival (CSS) and progression-free survival (PFS) or disease-free survival (DFS). The risk of events was reported as HRs with 95% CIs, with an HR greater than 1 associated with a worse outcome among patients with obesity vs those without.

    Results  A total of 203 studies with 6 320 365 participants evaluated the association of OS, CSS, and/or PFS or DFS with obesity in patients with cancer. Overall, obesity was associated with a reduced OS (HR, 1.14; 95% CI, 1.09-1.19; P < .001) and CSS (HR, 1.17; 95% CI, 1.12-1.23; P < .001). Patients were also at increased risk of recurrence (HR, 1.13; 95% CI, 1.07-1.19; P < .001). Conversely, patients with obesity and lung cancer, renal cell carcinoma, or melanoma had better survival outcomes compared with patients without obesity and the same cancer (lung: HR, 0.86; 95% CI, 0.76-0.98; P = .02; renal cell: HR, 0.74; 95% CI, 0.53-0.89; P = .02; melanoma: HR, 0.74; 95% CI, 0.57-0.96; P < .001).

    Conclusions and Relevance  In this study, obesity was associated with greater mortality overall in patients with cancer. However, patients with obesity and lung cancer, renal cell carcinoma, and melanoma had a lower risk of death than patients with the same cancers without obesity. Weight-reducing strategies may represent effective measures for reducing mortality in these patients.

    Introduction

    Obesity, defined as a body mass index (BMI; calculated as weight in kilograms divided by height in meters squared) greater than 30, is a chronic disease with increasing prevalence around the world, largely contributing to important health issues in most countries.1 Alongside body fat, which is a general risk factor for serious illness (eg, metabolic syndrome), greater cardiometabolic risk has also been associated with the localization of excess fat in the visceral adipose tissue and ectopic deposits.2 Several large epidemiologic studies have evaluated the association between obesity and mortality. In particular, a meta-analysis of 230 cohort studies including more than 30 million individuals3 found that both obesity and overweight were associated with an increased risk of all-cause mortality. Despite the evidence that excess mortality increases with increasing BMI, some studies have reached the conclusion that elevated BMI may improve survival in patients with cardiovascular disease, a phenomenon called the obesity paradox.4

    Increased BMI is also associated with an increased risk of multiple cancer types.5 In addition, obesity and overweight may increase cancer mortality.6 During last decades, we have observed a more rapid increase in obesity among adult cancer survivors compared with the general population.7 The mechanisms contributing to higher cancer incidence and mortality may include alterations in sex hormone metabolism, insulin and insulin-like growth factor levels, and adipokine pathways.8,9

    Various studies have suggested that patients with cancer and a normal BMI (ie, 20-25) have worse outcomes than patients with obesity. This phenomenon (ie, the obesity paradox) in cancer is not well understood and presents controversial explanations.10-12 Three different meta-analyses have led to different results, in particular in lung and renal cell carcinomas.13-15 In lung cancer, obesity is favorably associated with long-term survival of surgical patients. Moreover, in renal cell carcinoma, an inconsistent association of BMI with cancer-specific survival (CSS) was found. Conversely, breast, ovarian, and colorectal cancer are invariably associated with increased mortality in patients with obesity.16-18 The main explanations for these observations include the general poor health status of patients with very low BMI. Additionally, weight loss may be associated with frailty and other risk factors (eg, smoking).11 In cancer, obesity is also associated with increased efficacy of programmed cell death 1 and programmed cell death ligand 1 (PD-1/PD-L1) blockade in both tumor-bearing mice and patients.12 This updated systematic review and meta-analysis was conducted to evaluate the prognosis of patients with cancer who have obesity vs those without obesity.

    Methods
    Search Strategy and Inclusion Criteria

    We followed the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) reporting guideline and the Meta-analysis of Observational Studies in Epidemiology (MOOSE) reporting guideline19,20 A systematic search was conducted of EMBASE, PubMed, and the Cochrane Library for articles published from database inception until September 30, 2020. The following search terms were used: ((carcinoma or cancer or sarcoma or melanoma or (“Neoplasms”[MESH])) AND (obese OR obesity OR 30 kg/m2 OR “body mass index”) AND (hazard ratio) AND survival AND (multivariate OR cox or multivariable). The reference lists of identified articles were then manually searched to identify potentially relevant omitted citations. Articles that were not published in English were not included.

    Retrospective and observational studies (ie, cohort, case-control) or prospective trials were selected when they reported the association of obesity, defined as a BMI of at least 30, with the risk of death (ie, overall survival [OS]), CSS, disease-free survival (DFS), or progression-free survival (PFS) in patients with cancer compared with counterparts without obesity (ie, BMI <30). We placed no restrictions on study setting, size, race, or country. Included studies were limited to those reporting hazard ratios (HRs) and their corresponding 95% CIs. Studies were restricted to adult patients with solid tumors. Hematologic malignant neoplasms were excluded. Short-term survival studies (eg, postsurgical mortality) were also excluded. Baseline-only BMI evaluation was considered (eg, BMI captured at cancer diagnosis in early-stage cancers or at metastatic disease in advanced-stage cancers).

    The most up-to-date versions of full-text publications were included. Study selection was performed in 2 stages. First, titles and abstracts were screened; then, selected full-text articles were included according to the eligibility criteria. If pooled analyses of more than 1 study were evaluated for inclusion, the included articles were manually evaluated for duplicate inclusion compared with the other eligible articles. Screening was performed independently by 10 authors (M.G., G.T., A.G., A. Indini, A.C., O.N., V.R., A. Iaculli, L.D., M.S.), and conflicts were handled by consensus with a senior author (F.P.).

    Data Collection and Quality Assessment

    Data were collected independently by using a predesigned spreadsheet (Excel version 2007 [Microsoft Corp]). Collected data items included authors, year of publication, study setting and design, median follow-up, treatments received, outcomes, and type of analysis. The primary outcome was OS; secondary end points were CSS and PFS or DFS. Along with data extraction, 1 author (F.P.) assessed study quality according to a modified Newcastle Ottawa Scale (NOS; range 1-9, with 1-3 indicating low quality, 4-6 indicating moderate quality, and 7-9 indicating high quality).21

    Statistical Analysis

    First, pooled HRs with 95% CIs were estimated using random-effects meta-analysis with the generic inverse-variance method for studies that provided fully adjusted HRs. Inconsistency across studies was measured with the I2 method. Cutoff values of 25%, 50%, and 75% indicated low, moderate, and high heterogeneity, respectively. When I2 was larger than 50%, a random-effects model was primarily used because of the retrospective nature of included studies. To examine heterogeneity, we performed exploratory analyses of predefined subgroups based on type of disease, type of study, duration of follow-up, and race. Additionally, to address potential bias and verify our results, we performed sensitivity analyses using a leave-one-out method and the trim-and-fill method.22 These methods explore whether there are potential dominant studies that may have driven the results. Finally, to investigate the risk of publication bias, we applied the Egger test and visually inspected the funnel plots (ie, the Begg test).23 If the distribution of studies is symmetrical, the meta-analysis most likely does not have problems with publication bias. All statistical tests were 2-sided using a significance level of P < .05. All analyses were carried out using Comprehensive Meta-Analysis software version 3.3.070.

    Results

    Our literature search yielded 1892 articles, of which 203 (17%) met the inclusion criteria for our overall systematic review of the association of obesity with cancer outcomes (Figure). Most excluded studies did not use the prespecified cutoff value for obesity (ie, BMI values different from 30 in 437 studies) or used a continuous cutoff for risk of death (eg, 1 unit-increase in BMI in 235 studies). Of the 203 articles, 170 (84%) were eligible for inclusion in the systematic review of the association of obesity with OS, 109 (54%) for association with CSS, and 79 (39%) for association with DFS or PFS. Descriptive data for studies included in our meta-analysis are listed in Table 1.12,24-225 Overall, the included studies included a total of 6 320 365 patients. Sample sizes ranged from 41 to 1 096 492 patients, with a median of 1543. Most studies were retrospective in nature (132 studies [63%]); the minority were prospective cohort or observational studies (63 studies [31%]) or pooled analyses or randomized trials (8 studies [4%]). Multivariable analysis was performed in 197 studies. Overall, 136 studies (63%) reported a significant association of obesity with the outcome in at least 1 end point. The mean NOS score was 7 (median, 7.5; range, 5-9), indicating that the overall quality of articles was good.

    OS and Obesity in Patients With Cancer

    A total of 170 studies reported data on OS. Because the heterogeneity test showed a high level of heterogeneity (I2 = 79.7%; P < .001) among studies, a random-effects model was used for the analysis. OS among patients with obesity was significantly worse than that among patients without obesity (HR, 1.14; 95% CI, 1.09-1.19; P < .001) (eFigure 1 in the Supplement). The association of obesity with outcomes was independent by other main cancer prognostic factors, including stage (100%), sex (85%), age (100%), race (80%), smoking status (83%), and other comorbidities according to multivariable analysis.

    CSS and Obesity in Patients With Cancer

    Similarly, obesity was associated with reduced CSS in 109 studies (HR, 1.17; 95% CI, 1.12-1.23; P < .001) (eFigure 2 in the Supplement). Heterogeneity was high (I2 = 73.9%; P < .001), so a random-effects model was used.

    DFS or PFS and Obesity in Patients With Cancer

    In 79 studies, obesity was associated with worse DFS or PFS compared with not having obesity (HR, 1.13; 95% CI, 1.07-1.19; P < .001) (eFigure 3 in the Supplement). Heterogeneity was high (I2 = 73.7%; P < .001), so a random-effects model was used.

    Subgroup Analysis

    A subgroup analysis for OS was performed according to type of disease (Table 2, Table 3, and Table 4). Patients with breast, colorectal, or uterine cancers and obesity had higher overall mortality than those without obesity (breast: HR, 1.26; 95% CI, 1.2-1.33; P < .001; colorectal: HR, 1.22; 95% CI, 1.14-1.31; P < .001; HR, 1.20; 95% CI, 1.04-1.38; P = .01). Patients with obesity and lung cancer, renal cell carcinoma, or melanoma had better survival outcomes compared with patients without obesity and the same cancer (lung: HR, 0.86; 95% CI, 0.76-0.98; P = .02; renal cell: HR, 0.74; 95% CI, 0.53-0.89; P = .02; melanoma: HR, 0.74; 95% CI, 0.57-0.96; P < .001). CSS was decreased in patients with obesity and breast, colorectal, prostate, and pancreatic cancers (breast: 1.23; 95% CI, 1.15-1.32; P < .001; colorectal: HR, 1.24; 95% CI, 1.16-1.32; P < .001; prostate: HR, 1.26; 95% CI, 1.08-1.47; P = .01; pancreatic: HR, 1.28; 95% CI, 1.05-1.57; P = .01). DFS was decreased in patients with obesity and breast, colorectal, prostate, and gastroesophageal cancers (breast: HR, 1.14; 95% CI, 1.1-1.19; P < .001; colorectal: HR, 1.15; 95% CI, 1.01-1.3; P = .01; prostate: HR, 1.29; 95% CI, 1.07-1.56; P < .001; gastroesophageal: HR, 1.62; 95% CI, 1.13-2.32; P < .001). Additional subgroup analyses included type of study (retrospective: HR, 1.07; 95% CI, 1.07-1.18; P < .001; prospective: HR, 1.14; 95% CI, 1.05-1.23; P < .001), duration of follow up (>10 years: HR, 1.16; 95% CI, 0.86-1.58; P = .08; <10 years: HR, 1.23; 95% CI, 0.84-1.63; P = .09), race (non-Asian race: HR, 1.22; 95% CI, 0.86-1.66, P = .06; Asian race: HR, 1.22; 95% CI, 0.74-1.72; P = .09), and stage of disease (early: HR, 1.20; 95% CI, 0.99-1.25; P = .07; advanced: HR, 1.2; 95% CI, 1.12-1.28; P = .01). Regression analysis according to NOS score was not significant.

    Publication Bias

    A funnel plot was used to assess publication bias in the studies evaluating OS in patients with and without obesity. No publication bias was detected by funnel plot inspection (Begg test). Egger test was instead significant (eFigure 4 in the Supplement). According to the trim-and-fill method, 18 studies were placed to the left of the mean, and according the random-effect model, the final result for OS was similar (HR, 1.08; 95% CI, 1.03-1.13). After the leave-one-out procedure, HRs for OS ranged from 1.14 to 1.15.

    Discussion

    This meta-analysis found that overall mortality was increased in patients with obesity and breast, colorectal, or uterine cancers. Cancer mortality was increased in breast, colorectal, prostate, and pancreatic cancers. Finally, the relapse rate was increased in breast, colorectal, prostate and gastroesophageal cancers. The obesity paradox, which describes improved cancer and all-cause mortality rates among patients with obesity, was observed in lung cancer and in melanoma; however, these data derive from only 12 studies. We used a categorical BMI definition of obesity (ie, BMI ≥30), because a more standardized definition would permit the comparison and synthesis of studies better than other categories (eg, continuous measures or unit of BMI increase).

    The magnitude of effect size was similar for both OS and CSS in breast, colorectal, and lung cancer. This means that obesity may affect both the natural history of cancer and noncancer-related deaths.

    Various factors are potentially associated with increased cancer mortality in some malignant neoplasms. Hormonal factors, reduced physical activity, more lethal or aggressive disease behavior, metabolic syndromes, and potential undertreatment in patients with obesity are possible reasons. It is well known that postmenopausal women with higher BMI have an increased risk of breast cancer because of higher estrogen levels resulting from the peripheral conversion of estrogen precursors (from adipose tissue) to estrogen.226 In these patients, weight loss and exercise may reduce cancer risk by lowering exposure to breast cancer biomarkers.227 In colorectal cancer, prediagnosis BMI was associated with increased all-cause, cardiovascular, and colorectal cancer–specific mortality.228 The reason for this association is not presently understood, although insulin, insulin-like growth factors, their binding proteins, chronic inflammation, oxidative stress, and impaired immune surveillance have been supposed to be causative factors.229 In pancreatic cancer, higher prediagnostic BMI was associated with more advanced stage at diagnosis, with 72.5% of patients with obesity presenting with metastatic disease vs 59.4% of patients with reference-range BMI (P = .02) in 2 large prospective cohort studies.161 Lastly, in prostate cancer, obesity may be a consequence of androgen deprivation therapy but seems also associated with more aggressive disease (ie, Gleason score ≥7)230 or more advanced disease at diagnosis.231

    Our results showed that patients with obesity and lung cancer had significantly prolonged CSS and OS compared with patients without obesity. When considering these findings, we must take into account that 9 of 11 evaluated studies included patients with advanced and/or metastatic disease. Cancer cachexia mechanisms are not completely defined, but research has shown that the systemic inflammatory status induced either by the tumor or host response is a key moment in the development of cachexia.232 Lung cancers are indeed known to be aggressive, and patients with advanced disease usually have poorer performance statuses and experience significant weight loss at the time of diagnosis, which underlies a systemic inflammatory response.233 In our studies, obesity was positively associated with OS, independent of smoking status, in patients with lung cancer. Interestingly, a post hoc pooled analysis of randomized prospective trials comparing a PD-L1 checkpoint inhibitor (atezolizumab) with docetaxel in patients with advanced non–small cell lung cancer (NSCLC), revealed that the OS benefit for patients with obesity vs those with reference-range BMI was restricted to patients who received immunotherapy; no association was found in the group receiving docetaxel.147 Another study also explored the role of baseline BMI and BMI variation during treatment in a cohort of patients with advanced NSCLC and PD-L1 expression of at least 50% who received first-line pembrolizumab (a PD-1 checkpoint inhibitor) and in a control cohort of patients with NSCLC receiving first-line standard chemotherapy, confirming that the survival benefit for patients with obesity was restricted to those receiving immunotherapy.234

    Similar findings have been described in patients with melanoma receiving immunotherapy, and a survival benefit for patients with obesity was reported in the single study205 included in our meta-analysis. However, despite some evidence showing that patients with obesity and melanoma who were receiving immune-checkpoint inhibitors achieved better outcomes,235,236 the association is currently questioned, given that opposite results have been reported in a multicenter study.237

    Interestingly, patients with obesity and renal cell carcinoma also had a significantly longer OS compared with the patients without obesity. It has been hypothesized that the perinephric white adipose tissue acts as a reservoir of activated immune cells, with increased characteristics of hypoxia, infiltration of T helper type 1 cells, regulatory T cells, dendritic cells, and type 1 macrophages. However, only 1 of 6 studies included patients who were receiving immunotherapy.238,239

    Intriguingly, we found that the association between obesity and better clinical outcomes was confirmed for those malignant neoplasms in which immune checkpoint inhibitors have first (and strongly) proved to be effective; however, studies involving patients receiving immune checkpoint inhibitors are poorly represented in this meta-analysis. Such results might be an epiphenomenon; however, we speculate that white adipose tissue could be considered an immune organ, which somehow plays a role in the antitumor immune response. It has been observed that the adipocyte-derived hormone leptin could alter T cell function, resulting in improved response to anti–PD-1 therapy.12 Moreover, another preclinical study reported that white adipose tissue acts as a reservoir for a peculiar population of memory T cells, which elicit some effective responses in the case of antigenic re-exposure during infections (and why not in case of exposure to cancer-specific antigens?).240 Finally, considering that immune checkpoint inhibitors exert their action within the tumor microenvironment, modulating the interactions between the tumor and the host, it has been proposed that systemic metabolic conditions, including high blood cholesterol, obesity, hyperglycemia and diabetes, atherosclerosis, and hypertension, may represent the epiphenomena of an inflamed patient. Such a patient might be characterized by an enrichment of cytokines and pro-inflammatory mediators (both in the innate and adaptive compartments) and by a condition of T cell exhaustion, with defective cellular-mediated mechanisms. Nevertheless, in these patients, immune checkpoint blockade might be more effective in reversing this immunological anergy both at the tumor and at the systemic levels.241

    Patients with obesity are also at increased risk of reduced physical activity. Various studies highlighted this concept. Physical activity decreases over time in patients with obesity.242,243 In particular, physical activity is strictly associated with breast cancer and colorectal cancer mortality.244,245 Therefore physical activity (or inactivity) should be a major target of obesity prevention and treatment in particular for patients with cancer. Type 2 diabetes is strongly associated with obesity in the metabolic syndrome. More than 80% of cases of type 2 diabetes can be attributed to obesity, which may also account for many diabetes-related deaths. The association between BMI and cause-specific mortality was also illustrated in the Prospective Studies Collaboration analysis.246 In the upper BMI range (ie, 25 to 50), each 5-unit increase in BMI was associated with a significant increase in mortality from coronary heart disease, stroke, diabetes, chronic kidney disease, and many cancers. In the same analysis, individuals with BMI less than 22.5 had higher mortality compared with individuals with a BMI of 22.5 to 25. The excess mortality was predominantly associated with smoking-related diseases (ie, respiratory disease and cancer). However, there are no clear recommendations about dosing of chemotherapy in patients with obesity, so caution is recommended for high-risk regimens.247 The hypothesis that a reduced dose according to ideal body weight may lead to a worse outcome cannot be confirmed by prospective studies but may be considered a potential reason for the observed results in some settings (eg, breast cancer). In a pooled analysis of toxic effects in patients with and without obesity, rates of toxic effects were similar or lower in patients with obesity.248

    Limitations

    This study has several limitations. First, we combined data for patients with obesity and compared their prognosis with patients with different weights (ie, normal weight or normal weight and overweight). Second, accurate measures of potentially self-reported weight and height are always a challenge in observational studies. The evaluation often takes place before diagnosis, but in some studies the timing of the obesity diagnosis was not described. Patients with obesity have a generally poor prognosis in terms of overall mortality and noncancer mortality, so it seems obvious that their prognosis would be worse than patients without obesity. However, almost all studies provided a multivariate analysis according to main prognostic factor for oncological outcome so that obesity remains generally an independent prognostic factor in patients with cancer. The outcome was almost never adjusted for private medical insurance, but obesity can increase costs for cancer treatment and complications. Therefore, patients with a lower socioeconomic status may have had reduced access to medical facilities (ie, access to anticancer treatments), rehabilitation, or follow-up intensity and therefore had inferior outcomes. Duration of follow-up, treatments received, and countries were heterogeneous even if subgroup analyses did not explain results with these different variables. Furthermore, this meta-analysis compared mortality between patients belonging to a fixed category of obesity (ie, BMI >30), and thus, we are not able to provide an effect size per unit increment.

    Conclusions

    In this study, the results supported the notion that obesity is a competing risk factor for overall and cancer specific mortality as well as recurrence in various cancers treated with curative intent or for metastatic disease, except for lung cancer and melanoma, in which obesity was associated with reduced mortality (obesity paradox). These results suggest that oncologists should increase their efforts to manage patients in multidisciplinary teams for care and cure of both cancer and obesity. Improving lifestyle factors (eg, physical activity, caloric intake, care and prevention of cardiovascular complications), more intensive follow-ups of cancer in patients with obesity, and adequate dose of medical therapies are all proven measures that may improve prognosis for patients with cancer and obesity.

    Back to top
    Article Information

    Accepted for Publication: February 8, 2021.

    Published: March 29, 2021. doi:10.1001/jamanetworkopen.2021.3520

    Open Access: This is an open access article distributed under the terms of the CC-BY License. © 2021 Petrelli F et al. JAMA Network Open.

    Corresponding Author: Fausto Petrelli, Oncology Unit, Medical Sciences Department, Azienda Socio Sanitaria Territoriale Bergamo Ovest, Piazzale Ospedale 1, 24047, Treviglio (BG) Italy (faupe@libero.it).

    Author Contributions: Dr Petrelli had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

    Concept and design: Cortellini, Salati, Dottorini, Iaculli, Rampulla, Barni, Cabiddu, A. Ghidini, Zaniboni.

    Acquisition, analysis, or interpretation of data: Petrelli, Cortellini, Indini, Tomasello, M. Ghidini, Nigro, Iaculli, Varricchio, Rampulla, Bossi, A. Ghidini.

    Drafting of the manuscript: Petrelli, Cortellini, Indini, Tomasello, M. Ghidini, Nigro, Dottorini, Iaculli, Varricchio, Rampulla, A. Ghidini.

    Critical revision of the manuscript for important intellectual content: Cortellini, Indini, Salati, Barni, Cabiddu, Bossi, Zaniboni.

    Statistical analysis: Petrelli, Cortellini, Dottorini, Varricchio.

    Obtained funding: Salati.

    Administrative, technical, or material support: Nigro, Rampulla, Bossi, A. Ghidini.

    Supervision: Cortellini, Indini, M. Ghidini, Iaculli, Barni, Bossi, A. Ghidini, Zaniboni.

    Conflict of Interest Disclosures: Dr Cortellini reported receiving grants from AstraZeneca, Roche, Merck Sharpe and Dohme, Bristol Myers Squibb, Astellas, and Novartis outside the submitted work. Dr Bossi reported receiving grants from Lilly Italia, Novo Nordisk, Bayer, Merck Sharpe and Dohme Italia, Sanofi, and Pikdare outside the submitted work. No other disclosures were reported.

    References
    1.
    World Health Organization.  Obesity: Preventing and Managing the Global Epidemic. World Health Organization; 2000. Accessed February 24, 2021. https://www.who.int/nutrition/publications/obesity/WHO_TRS_894/en/
    2.
    Chooi  YC, Ding  C, Magkos  F.  The epidemiology of obesity.   Metabolism. 2019;92:6-10. doi:10.1016/j.metabol.2018.09.005PubMedGoogle ScholarCrossref
    3.
    Aune  D, Sen  A, Prasad  M,  et al.  BMI and all cause mortality: systematic review and non-linear dose-response meta-analysis of 230 cohort studies with 3.74 million deaths among 30.3 million participants.   BMJ. 2016;353:i2156. doi:10.1136/bmj.i2156PubMedGoogle ScholarCrossref
    4.
    Lavie  CJ, Sharma  A, Alpert  MA,  et al.  Update on obesity and obesity paradox in heart failure.   Prog Cardiovasc Dis. 2016;58(4):393-400. doi:10.1016/j.pcad.2015.12.003PubMedGoogle ScholarCrossref
    5.
    Guh  DP, Zhang  W, Bansback  N, Amarsi  Z, Birmingham  CL, Anis  AH.  The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis.   BMC Public Health. 2009;9:88. doi:10.1186/1471-2458-9-88PubMedGoogle ScholarCrossref
    6.
    Calle  EE, Rodriguez  C, Walker-Thurmond  K, Thun  MJ.  Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults.   N Engl J Med. 2003;348(17):1625-1638. doi:10.1056/NEJMoa021423PubMedGoogle ScholarCrossref
    7.
    Greenlee  H, Shi  Z, Sardo Molmenti  CL, Rundle  A, Tsai  WY.  Trends in obesity prevalence in adults with a history of cancer: results from the US National Health Interview Survey, 1997 to 2014.   J Clin Oncol. 2016;34(26):3133-3140. doi:10.1200/JCO.2016.66.4391PubMedGoogle ScholarCrossref
    8.
    Gallagher  EJ, LeRoith  D.  Obesity and diabetes: the increased risk of cancer and cancer-related mortality.   Physiol Rev. 2015;95(3):727-748. doi:10.1152/physrev.00030.2014PubMedGoogle ScholarCrossref
    9.
    Khandekar  MJ, Cohen  P, Spiegelman  BM.  Molecular mechanisms of cancer development in obesity.   Nat Rev Cancer. 2011;11(12):886-895. doi:10.1038/nrc3174PubMedGoogle ScholarCrossref
    10.
    Lennon  H, Sperrin  M, Badrick  E, Renehan  AG.  The obesity paradox in cancer: a review.   Curr Oncol Rep. 2016;18(9):56. doi:10.1007/s11912-016-0539-4PubMedGoogle ScholarCrossref
    11.
    Shachar  SS, Williams  GR.  The obesity paradox in cancer-moving beyond BMI.   Cancer Epidemiol Biomarkers Prev. 2017;26(6):981. doi:10.1158/1055-9965.EPI-17-0144PubMedGoogle ScholarCrossref
    12.
    Wang  Z, Aguilar  EG, Luna  JI,  et al.  Paradoxical effects of obesity on T cell function during tumor progression and PD-1 checkpoint blockade.   Nat Med. 2019;25(1):141-151. doi:10.1038/s41591-018-0221-5PubMedGoogle ScholarCrossref
    13.
    Li  S, Wang  Z, Huang  J,  et al.  Systematic review of prognostic roles of body mass index for patients undergoing lung cancer surgery: does the “obesity paradox” really exist?   Eur J Cardio-thoracic Surg. 2017;51(5):817-828. doi:10.1093/ejcts/ezw386Google Scholar
    14.
    Bagheri  M, Speakman  JR, Shemirani  F, Djafarian  K.  Renal cell carcinoma survival and body mass index: a dose-response meta-analysis reveals another potential paradox within a paradox.   Int J Obes (Lond). 2016;40(12):1817-1822. doi:10.1038/ijo.2016.171PubMedGoogle ScholarCrossref
    15.
    Shen  N, Fu  P, Cui  B, Bu  C-Y, Bi  J-W.  Associations between body mass index and the risk of mortality from lung cancer: a dose-response PRISMA-compliant meta-analysis of prospective cohort studies.   Medicine (Baltimore). 2017;96(34):e7721. doi:10.1097/MD.0000000000007721Google Scholar
    16.
    Chan  DSM, Vieira  AR, Aune  D,  et al.  Body mass index and survival in women with breast cancer-systematic literature review and meta-analysis of 82 follow-up studies.   Ann Oncol. 2014;25(10):1901-1914. doi:10.1093/annonc/mdu042PubMedGoogle ScholarCrossref
    17.
    Wu  S, Liu  J, Wang  X, Li  M, Gan  Y, Tang  Y.  Association of obesity and overweight with overall survival in colorectal cancer patients: a meta-analysis of 29 studies.   Cancer Causes Control. 2014;25(11):1489-1502. doi:10.1007/s10552-014-0450-yPubMedGoogle ScholarCrossref
    18.
    Protani  MM, Nagle  CM, Webb  PM.  Obesity and ovarian cancer survival: a systematic review and meta-analysis.   Cancer Prev Res (Phila). 2012;5(7):901-910. doi:10.1158/1940-6207.CAPR-12-0048PubMedGoogle ScholarCrossref
    19.
    Liberati  A, Altman  DG, Tetzlaff  J,  et al.  The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration.   J Clin Epidemiol. 2009;62(10):e1-e34. doi:10.1016/j.jclinepi.2009.06.006PubMedGoogle ScholarCrossref
    20.
    Stroup  DF, Berlin  JA, Morton  SC,  et al.  Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group.   JAMA. 2000;283(15):2008-2012. doi:10.1001/jama.283.15.2008PubMedGoogle ScholarCrossref
    21.
    Wells  GA, Shea  B, O’connell  D,  et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Accessed August 13, 2014. http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp
    22.
    Shi  L, Lin  L, Omboni  S.  The trim-and-fill method for publication bias: practical guidelines and recommendations based on a large database of meta-analyses.   Medicine (Baltimore). 2019;98(23):e1598. doi:10.1097/MD.0000000000015987Google Scholar
    23.
    Begg  CB, Mazumdar  M.  Operating characteristics of a rank correlation test for publication bias.   Biometrics. 1994;50(4):1088-1101.Google ScholarCrossref
    24.
    Chromecki  TF, Cha  EK, Fajkovic  H,  et al.  Obesity is associated with worse oncological outcomes in patients treated with radical cystectomy.   BJU Int. 2013;111(2):249-255. doi:10.1111/j.1464-410X.2012.11322.xPubMedGoogle ScholarCrossref
    25.
    Ferro  M, Vartolomei  MD, Russo  GI,  et al.  An increased body mass index is associated with a worse prognosis in patients administered BCG immunotherapy for T1 bladder cancer.   World J Urol. 2019;37(3):507-514. doi:10.1007/s00345-018-2397-1PubMedGoogle ScholarCrossref
    26.
    Siegel  EM, Nabors  LB, Thompson  RC,  et al.  Prediagnostic body weight and survival in high grade glioma.   J Neurooncol. 2013;114(1):79-84. doi:10.1007/s11060-013-1150-2PubMedGoogle ScholarCrossref
    27.
    Abrahamson  PE, Gammon  MD, Lund  MJ,  et al.  General and abdominal obesity and survival among young women with breast cancer.   Cancer Epidemiol Biomarkers Prev. 2006;15(10):1871-1877. doi:10.1158/1055-9965.EPI-06-0356PubMedGoogle ScholarCrossref
    28.
    Abubakar  M, Sung  H, Bcr  D,  et al.  Breast cancer risk factors, survival and recurrence, and tumor molecular subtype: analysis of 3012 women from an indigenous Asian population.   Breast Cancer Res. 2018;20(1):114. doi:10.1186/s13058-018-1033-8PubMedGoogle ScholarCrossref
    29.
    Alarfi  H, Salamoon  M, Kadri  M,  et al.  The impact of baseline body mass index on clinical outcomes in metastatic breast cancer: a prospective study.   BMC Res Notes. 2017;10(1):550. doi:10.1186/s13104-017-2876-2PubMedGoogle ScholarCrossref
    30.
    Alsaker  MDK, Opdahl  S, Åsvold  BO, Romundstad  PR, Vatten  LJ.  The association of reproductive factors and breastfeeding with long term survival from breast cancer.   Breast Cancer Res Treat. 2011;130(1):175-182. doi:10.1007/s10549-011-1566-3PubMedGoogle ScholarCrossref
    31.
    Arce-Salinas  C, Aguilar-Ponce  JL, Villarreal-Garza  C,  et al.  Overweight and obesity as poor prognostic factors in locally advanced breast cancer patients.   Breast Cancer Res Treat. 2014;146(1):183-188. doi:10.1007/s10549-014-2977-8PubMedGoogle ScholarCrossref
    32.
    Beasley  JM, Kwan  ML, Chen  WY,  et al.  Meeting the physical activity guidelines and survival after breast cancer: findings from the after breast cancer pooling project.   Breast Cancer Res Treat. 2012;131(2):637-643. doi:10.1007/s10549-011-1770-1PubMedGoogle ScholarCrossref
    33.
    Blair  CK, Wiggins  CL, Nibbe  AM,  et al.  Obesity and survival among a cohort of breast cancer patients is partially mediated by tumor characteristics.   NPJ Breast Cancer. 2019;5(1):33. doi:10.1038/s41523-019-0128-4PubMedGoogle ScholarCrossref
    34.
    Braithwaite  D, Satariano  WA, Sternfeld  B,  et al.  Long-term prognostic role of functional limitations among women with breast cancer.   J Natl Cancer Inst. 2010;102(19):1468-1477. doi:10.1093/jnci/djq344PubMedGoogle ScholarCrossref
    35.
    Buono  G, Crispo  A, Giuliano  M,  et al.  Combined effect of obesity and diabetes on early breast cancer outcome: a prospective observational study.   Oncotarget. 2017;8(70):115709-115717. doi:10.18632/oncotarget.22977PubMedGoogle ScholarCrossref
    36.
    Caan  BJ, Kwan  ML.  Pre-diagnosis body mass index, post-diagnosis weight change and prognosis among women with early stage breast cancer.   Cancers Causes Control. 2008;19(10):1319-1328. doi:10.1007/s10552-008-9203-0Google ScholarCrossref
    37.
    Cecchini  RS, Swain  SM, Costantino  JP,  et al.  Body mass index at diagnosis and breast cancer survival prognosis in clinical trial populations from NRG oncology/NSABP B-30, B-31, B-34, and B-38.   Cancer Epidemiol Biomarkers Prev. 2016;25(1):51-59. doi:10.1158/1055-9965.EPI-15-0334-TPubMedGoogle ScholarCrossref
    38.
    Chang  S, Alderfer  JR, Asmar  L, Buzdar  AU.  Inflammatory breast cancer survival: the role of obesity and menopausal status at diagnosis.   Breast Cancer Res Treat. 2000;64(2):157-163. doi:10.1023/A:1006489100283PubMedGoogle ScholarCrossref
    39.
    Chen  X, Lu  W, Zheng  W,  et al.  Obesity and weight change in relation to breast cancer survival.   Breast Cancer Res Treat. 2010;122(3):823-833. doi:10.1007/s10549-009-0708-3PubMedGoogle ScholarCrossref
    40.
    Chung  IY, Lee  JW, Lee  JS,  et al.  Interaction between body mass index and hormone-receptor status as a prognostic factor in lymph-node-positive breast cancer.   PLoS One. 2017;12(3):e0170311. doi:10.1371/journal.pone.0170311PubMedGoogle Scholar
    41.
    Cleveland  RJ, North  KE, Stevens  J, Teitelbaum  SL, Neugut  AI, Gammon  MD.  The association of diabetes with breast cancer incidence and mortality in the Long Island Breast Cancer Study Project.   Cancer Causes Control. 2012;23(7):1193-1203. doi:10.1007/s10552-012-9989-7PubMedGoogle ScholarCrossref
    42.
    Connor  AE, Visvanathan  K, Baumgartner  KB,  et al.  Ethnic differences in the relationships between diabetes, early age adiposity and mortality among breast cancer survivors: the Breast Cancer Health Disparities Study.   Breast Cancer Res Treat. 2016;157(1):167-178. doi:10.1007/s10549-016-3810-3PubMedGoogle ScholarCrossref
    43.
    Conroy  SM, Maskarinec  G, Wilkens  LR, White  KK, Henderson  BE, Kolonel  LN.  Obesity and breast cancer survival in ethnically diverse postmenopausal women: the Multiethnic Cohort Study.   Breast Cancer Res Treat. 2011;129(2):565-574. doi:10.1007/s10549-011-1468-4PubMedGoogle ScholarCrossref
    44.
    Copson  ER, Cutress  RI, Maishman  T,  et al; POSH Study Steering Group.  Obesity and the outcome of young breast cancer patients in the UK: the POSH study.   Ann Oncol. 2015;26(1):101-112. doi:10.1093/annonc/mdu509PubMedGoogle ScholarCrossref
    45.
    Crozier  JA, Moreno-Aspitia  A, Ballman  KV, Dueck  AC, Pockaj  BA, Perez  EA.  Effect of body mass index on tumor characteristics and disease-free survival in patients from the HER2-positive adjuvant trastuzumab trial N9831.   Cancer. 2013;119(13):2447-2454. doi:10.1002/cncr.28051PubMedGoogle ScholarCrossref
    46.
    Dal Maso  L, Zucchetto  A, Talamini  R,  et al; Prospective Analysis of Case-control studies on Environmental factors and health (PACE) study group.  Effect of obesity and other lifestyle factors on mortality in women with breast cancer.   Int J Cancer. 2008;123(9):2188-2194. doi:10.1002/ijc.23747PubMedGoogle ScholarCrossref
    47.
    Dignam  JJ, Wieand  K, Johnson  KA, Fisher  B, Xu  L, Mamounas  EP.  Obesity, tamoxifen use, and outcomes in women with estrogen receptor-positive early-stage breast cancer.   J Natl Cancer Inst. 2003;95(19):1467-1476. doi:10.1093/jnci/djg060PubMedGoogle ScholarCrossref
    48.
    Dignam  JJ, Wieand  K, Johnson  KA,  et al.  Effects of obesity and race on prognosis in lymph node-negative, estrogen receptor-negative breast cancer.   Breast Cancer Res Treat. 2006;97(3):245-254. doi:10.1007/s10549-005-9118-3PubMedGoogle ScholarCrossref
    49.
    Elwood  JM, Tin Tin  S, Kuper-Hommel  M, Lawrenson  R, Campbell  I.  Obesity and breast cancer outcomes in chemotherapy patients in New Zealand—a population-based cohort study.   BMC Cancer. 2018;18(1):76. doi:10.1186/s12885-017-3971-4PubMedGoogle ScholarCrossref
    50.
    Emaus  A, Veierød  MB, Tretli  S,  et al.  Metabolic profile, physical activity, and mortality in breast cancer patients.   Breast Cancer Res Treat. 2010;121(3):651-660. doi:10.1007/s10549-009-0603-yPubMedGoogle ScholarCrossref
    51.
    Feliciano  EMC, Kroenke  CH, Meyerhardt  JA,  et al.  Association of systemic inflammation and sarcopenia with survival in nonmetastatic colorectal cancer: results from the C SCANS Study.   JAMA Oncol. 2017;3(12):e172319. doi:10.1001/jamaoncol.2017.2319PubMedGoogle Scholar
    52.
    Goodwin  PJ, Ennis  M, Pritchard  KI,  et al.  Insulin- and obesity-related variables in early-stage breast cancer: correlations and time course of prognostic associations.   J Clin Oncol. 2012;30(2):164-171. doi:10.1200/JCO.2011.36.2723PubMedGoogle ScholarCrossref
    53.
    He  X, Esteva  FJ, Ensor  J, Hortobagyi  GN, Lee  MH, Yeung  SC.  Metformin and thiazolidinediones are associated with improved breast cancer-specific survival of diabetic women with HER2+ breast cancer.   Ann Oncol. 2012;23(7):1771-1780. doi:10.1093/annonc/mdr534PubMedGoogle ScholarCrossref
    54.
    Hellmann  SS, Thygesen  LC, Tolstrup  JS, Grønbaek  M.  Modifiable risk factors and survival in women diagnosed with primary breast cancer: results from a prospective cohort study.   Eur J Cancer Prev. 2010;19(5):366-373. doi:10.1097/CEJ.0b013e32833b4828PubMedGoogle ScholarCrossref
    55.
    His  M, Fagherazzi  G, Mesrine  S, Boutron-Ruault  MC, Clavel-Chapelon  F, Dossus  L.  Prediagnostic body size and breast cancer survival in the E3N cohort study.   Int J Cancer. 2016;139(5):1053-1064. doi:10.1002/ijc.30158PubMedGoogle ScholarCrossref
    56.
    Jeon  YW, Kang  SH, Park  MH, Lim  W, Cho  SH, Suh  YJ.  Relationship between body mass index and the expression of hormone receptors or human epidermal growth factor receptor 2 with respect to breast cancer survival.   BMC Cancer. 2015;15(1):865. doi:10.1186/s12885-015-1879-4PubMedGoogle ScholarCrossref
    57.
    Jiralerspong  S, Kim  ES, Dong  W, Feng  L, Hortobagyi  GN, Giordano  SH.  Obesity, diabetes, and survival outcomes in a large cohort of early-stage breast cancer patients.   Ann Oncol. 2013;24(10):2506-2514. doi:10.1093/annonc/mdt224PubMedGoogle ScholarCrossref
    58.
    Kawai  M, Tomotaki  A, Miyata  H,  et al.  Body mass index and survival after diagnosis of invasive breast cancer: a study based on the Japanese National Clinical Database-Breast Cancer Registry.   Cancer Med. 2016;5(6):1328-1340. doi:10.1002/cam4.678PubMedGoogle ScholarCrossref
    59.
    Keegan  THM, Milne  RL, Andrulis  IL,  et al.  Past recreational physical activity, body size, and all-cause mortality following breast cancer diagnosis: results from the Breast Cancer Family Registry.   Breast Cancer Res Treat. 2010;123(2):531-542. doi:10.1007/s10549-010-0774-6PubMedGoogle ScholarCrossref
    60.
    Kwan  ML, Chen  WY, Kroenke  CH,  et al.  Pre-diagnosis body mass index and survival after breast cancer in the After Breast Cancer Pooling Project.   Breast Cancer Res Treat. 2012;132(2):729-739. doi:10.1007/s10549-011-1914-3PubMedGoogle ScholarCrossref
    61.
    Kwan  ML, John  EM, Caan  BJ,  et al.  Obesity and mortality after breast cancer by race/ethnicity: the California Breast Cancer Survivorship Consortium.   Am J Epidemiol. 2014;179(1):95-111. doi:10.1093/aje/kwt233PubMedGoogle ScholarCrossref
    62.
    Ladoire  S, Dalban  C, Roché  H,  et al.  Effect of obesity on disease-free and overall survival in node-positive breast cancer patients in a large French population: a pooled analysis of two randomised trials.   Eur J Cancer. 2014;50(3):506-516. doi:10.1016/j.ejca.2013.11.013PubMedGoogle ScholarCrossref
    63.
    Larsen  SB, Kroman  N, Ibfelt  EH, Christensen  J, Tjønneland  A, Dalton  SO.  Influence of metabolic indicators, smoking, alcohol and socioeconomic position on mortality after breast cancer.   Acta Oncol. 2015;54(5):780-788. doi:10.3109/0284186X.2014.998774PubMedGoogle ScholarCrossref
    64.
    Loi  S, Milne  RL, Friedlander  ML,  et al.  Obesity and outcomes in premenopausal and postmenopausal breast cancer.   Cancer Epidemiol Biomarkers Prev. 2005;14(7):1686-1691. doi:10.1158/1055-9965.EPI-05-0042PubMedGoogle ScholarCrossref
    65.
    Maskarinec  G, Pagano  I, Lurie  G, Bantum  E, Gotay  CC, Issell  BF.  Factors affecting survival among women with breast cancer in Hawaii.   J Womens Health (Larchmt). 2011;20(2):231-237. doi:10.1089/jwh.2010.2114PubMedGoogle ScholarCrossref
    66.
    McCullough  ML, Feigelson  HS, Diver  WR, Patel  AV, Thun  MJ, Calle  EE.  Risk factors for fatal breast cancer in African-American women and White women in a large US prospective cohort.   Am J Epidemiol. 2005;162(8):734-742. doi:10.1093/aje/kwi278PubMedGoogle ScholarCrossref
    67.
    McCullough  LE, Chen  J, Cho  YH,  et al.  DNA methylation modifies the association between obesity and survival after breast cancer diagnosis.   Breast Cancer Res Treat. 2016;156(1):183-194. doi:10.1007/s10549-016-3724-0PubMedGoogle ScholarCrossref
    68.
    Nichols  HB, Trentham-Dietz  A, Egan  KM,  et al.  Body mass index before and after breast cancer diagnosis: associations with all-cause, breast cancer, and cardiovascular disease mortality.   Cancer Epidemiol Biomarkers Prev. 2010;18(5):1403-1409. doi:10.1158/1055-9965.EPI-08-1094Google ScholarCrossref
    69.
    Nur  U, El Reda  D, Hashim  D, Weiderpass  E.  A prospective investigation of oral contraceptive use and breast cancer mortality: findings from the Swedish women’s lifestyle and health cohort.   BMC Cancer. 2019;19(1):807. doi:10.1186/s12885-019-5985-6PubMedGoogle ScholarCrossref
    70.
    Oh  SW, Park  CY, Lee  ES,  et al.  Adipokines, insulin resistance, metabolic syndrome, and breast cancer recurrence: a cohort study.   Breast Cancer Res. 2011;13(2):R34. doi:10.1186/bcr2856PubMedGoogle ScholarCrossref
    71.
    Oudanonh  T, Nabi  H, Ennour-Idrissi  K,  et al.  Progesterone receptor status modifies the association between body mass index and prognosis in women diagnosed with estrogen receptor positive breast cancer.   Int J Cancer. 2020;146(10):2736-2745. doi:10.1002/ijc.32621PubMedGoogle ScholarCrossref
    72.
    Pajares  B, Pollán  M, Martín  M,  et al.  Obesity and survival in operable breast cancer patients treated with adjuvant anthracyclines and taxanes according to pathological subtypes: a pooled analysis.   Breast Cancer Res. 2013;15(6):R105. doi:10.1186/bcr3572PubMedGoogle ScholarCrossref
    73.
    Pfeiler  G, Stöger  H, Dubsky  P,  et al; ABCSG.  Efficacy of tamoxifen ± aminoglutethimide in normal weight and overweight postmenopausal patients with hormone receptor-positive breast cancer: an analysis of 1509 patients of the ABCSG-06 trial.   Br J Cancer. 2013;108(7):1408-1414. doi:10.1038/bjc.2013.114PubMedGoogle ScholarCrossref
    74.
    Pierce  JP, Stefanick  ML, Flatt  SW,  et al.  Greater survival after breast cancer in physically active women with high vegetable-fruit intake regardless of obesity.   J Clin Oncol. 2007;25(17):2345-2351. doi:10.1200/JCO.2006.08.6819PubMedGoogle ScholarCrossref
    75.
    Probst-Hensch  NM, Steiner  JHB, Schraml  P,  et al.  IGFBP2 and IGFBP3 protein expressions in human breast cancer: association with hormonal factors and obesity.   Clin Cancer Res. 2010;16(3):1025-1032. doi:10.1158/1078-0432.CCR-09-0957PubMedGoogle ScholarCrossref
    76.
    Senie  RT, Rosen  PP, Rhodes  P, Lesser  ML, Kinne  DW.  Obesity at diagnosis of breast carcinoma influences duration of disease-free survival.   Ann Intern Med. 1992;116(1):26-32. doi:10.7326/0003-4819-116-1-26PubMedGoogle ScholarCrossref
    77.
    Sparano  JA, Wang  M, Zhao  F,  et al.  Race and hormone receptor-positive breast cancer outcomes in a randomized chemotherapy trial.   J Natl Cancer Inst. 2012;104(5):406-414. doi:10.1093/jnci/djr543PubMedGoogle ScholarCrossref
    78.
    Sparano  JA, Wang  M, Zhao  F,  et al.  Obesity at diagnosis is associated with inferior outcomes in hormone receptor-positive operable breast cancer.   Cancer. 2012;118(23):5937-5946. doi:10.1002/cncr.27527PubMedGoogle ScholarCrossref
    79.
    Su  HI, Sue  LY, Flatt  SW, Natarajan  L, Patterson  RE, Pierce  JP.  Endogenous estradiol is not associated with poor physical health in postmenopausal breast cancer survivors.   J Womens Health (Larchmt). 2013;22(12):1043-1048. doi:10.1089/jwh.2013.4375PubMedGoogle ScholarCrossref
    80.
    Sun  X, Nichols  HB, Robinson  W, Sherman  ME, Olshan  AF, Troester  MA.  Post-diagnosis adiposity and survival among breast cancer patients: influence of breast cancer subtype.   Cancer Causes Control. 2015;26(12):1803-1811. doi:10.1007/s10552-015-0673-6PubMedGoogle ScholarCrossref
    81.
    Sun  L, Zhu  Y, Qian  Q, Tang  L.  Body mass index and prognosis of breast cancer: an analysis by menstruation status when breast cancer diagnosis.   Medicine (Baltimore). 2018;97(26):e11220. doi:10.1097/MD.0000000000011220PubMedGoogle Scholar
    82.
    Tait  S, Pacheco  JM, Gao  F, Bumb  C, Ellis  MJ, Ma  CX.  Body mass index, diabetes, and triple-negative breast cancer prognosis.   Breast Cancer Res Treat. 2014;146(1):189-197. doi:10.1007/s10549-014-3002-yPubMedGoogle ScholarCrossref
    83.
    Warren  LEG, Ligibel  JA, Chen  YH, Truong  L, Catalano  PJ, Bellon  JR.  Body mass index and locoregional recurrence in women with early-stage breast cancer.   Ann Surg Oncol. 2016;23(12):3870-3879. doi:10.1245/s10434-016-5437-3PubMedGoogle ScholarCrossref
    84.
    Widschwendter  P, Friedl  TWP, Schwentner  L,  et al.  The influence of obesity on survival in early, high-risk breast cancer: results from the randomized SUCCESS A trial.   Breast Cancer Res. 2015;17(1):129. doi:10.1186/s13058-015-0639-3PubMedGoogle ScholarCrossref
    85.
    Xiao  Y, Zhang  S, Hou  G, Zhang  X, Hao  X, Zhang  J.  Clinical pathological characteristics and prognostic analysis of diabetic women with luminal subtype breast cancer.   Tumour Biol. 2014;35(3):2035-2045. doi:10.1007/s13277-013-1270-5PubMedGoogle ScholarCrossref
    86.
    Mazzarella  L, Disalvatore  D, Bagnardi  V,  et al.  Obesity increases the incidence of distant metastases in oestrogen receptor-negative human epidermal growth factor receptor 2-positive breast cancer patients.   Eur J Cancer. 2013;49(17):3588-3597. doi:10.1016/j.ejca.2013.07.016PubMedGoogle ScholarCrossref
    87.
    Rosenberg  L, Czene  K, Hall  P.  Obesity and poor breast cancer prognosis: an illusion because of hormone replacement therapy?   Br J Cancer. 2009;100(9):1486-1491. doi:10.1038/sj.bjc.6605025PubMedGoogle ScholarCrossref
    88.
    Ademuyiwa  FO, Groman  A, O’Connor  T, Ambrosone  C, Watroba  N, Edge  SB.  Impact of body mass index on clinical outcomes in triple-negative breast cancer.   Cancer. 2011;117(18):4132-4140. doi:10.1002/cncr.26019PubMedGoogle ScholarCrossref
    89.
    Dawood  S, Lei  X, Litton  JK, Buchholz  TA, Hortobagyi  GN, Gonzalez-Angulo  AM.  Impact of body mass index on survival outcome among women with early stage triple-negative breast cancer.   Clin Breast Cancer. 2012;12(5):364-372. doi:10.1016/j.clbc.2012.07.013PubMedGoogle ScholarCrossref
    90.
    Melhem-Bertrandt  A, Chavez-Macgregor  M, Lei  X,  et al.  Beta-blocker use is associated with improved relapse-free survival in patients with triple-negative breast cancer.   J Clin Oncol. 2011;29(19):2645-2652. doi:10.1200/JCO.2010.33.4441PubMedGoogle ScholarCrossref
    91.
    Frumovitz  M, Jhingran  A, Soliman  PT, Klopp  AH, Schmeler  KM, Eifel  PJ.  Morbid obesity as an independent risk factor for disease-specific mortality in women with cervical cancer.   Obstet Gynecol. 2014;124(6):1098-1104. doi:10.1097/AOG.0000000000000558PubMedGoogle ScholarCrossref
    92.
    Fedirko  V, Romieu  I, Aleksandrova  K,  et al.  Pre-diagnostic anthropometry and survival after colorectal cancer diagnosis in Western European populations.   Int J Cancer. 2014;135(8):1949-1960. doi:10.1002/ijc.28841PubMedGoogle ScholarCrossref
    93.
    Boyle  T, Fritschi  L, Platell  C, Heyworth  J.  Lifestyle factors associated with survival after colorectal cancer diagnosis.   Br J Cancer. 2013;109(3):814-822. doi:10.1038/bjc.2013.310PubMedGoogle ScholarCrossref
    94.
    Campbell  PT, Newton  CC, Newcomb  PA,  et al.  Association between body mass index and mortality for colorectal cancer survivors: overall and by tumor molecular phenotype.   Cancer Epidemiol Biomarkers Prev. 2015;24(8):1229-1238. doi:10.1158/1055-9965.EPI-15-0094PubMedGoogle ScholarCrossref
    95.
    Cespedes Feliciano  EM, Kwan  ML, Kushi  LH,  et al.  Body mass index, PAM50 subtype, recurrence, and survival among patients with nonmetastatic breast cancer.   Cancer. 2017;123(13):2535-2542. doi:10.1002/cncr.30637PubMedGoogle ScholarCrossref
    96.
    Clark  W, Siegel  EM, Chen  YA,  et al.  Quantitative measures of visceral adiposity and body mass index in predicting rectal cancer outcomes after neoadjuvant chemoradiation.   J Am Coll Surg. 2013;216(6):1070-1081. doi:10.1016/j.jamcollsurg.2013.01.007PubMedGoogle ScholarCrossref
    97.
    Dahdaleh  FS, Sherman  SK, Poli  EC,  et al.  Obstruction predicts worse long-term outcomes in stage III colon cancer: a secondary analysis of the N0147 trial.   Surgery. 2018;164(6):1223-1229. doi:10.1016/j.surg.2018.06.044PubMedGoogle ScholarCrossref
    98.
    Dignam  JJ, Polite  BN, Yothers  G,  et al.  Body mass index and outcomes in patients who receive adjuvant chemotherapy for colon cancer.   J Natl Cancer Inst. 2006;98(22):1647-1654. doi:10.1093/jnci/djj442PubMedGoogle ScholarCrossref
    99.
    Jayasekara  H, English  DR, Haydon  A,  et al.  Associations of alcohol intake, smoking, physical activity and obesity with survival following colorectal cancer diagnosis by stage, anatomic site and tumor molecular subtype.   Int J Cancer. 2018;142(2):238-250. doi:10.1002/ijc.31049PubMedGoogle ScholarCrossref
    100.
    Kaidar-Person  O, Badarna  H, Bar-Sela  G.  Bevacizumab for metastatic colon cancer: does patient BMI influence survival?   Anticancer Drugs. 2015;26(3):363-366. doi:10.1097/CAD.0000000000000201PubMedGoogle ScholarCrossref
    101.
    Kalb  M, Langheinrich  MC, Merkel  S,  et al.  Influence of body mass index on long-term outcome in patients with rectal cancer-a single centre experience.   Cancers (Basel). 2019;11(5):E609. doi:10.3390/cancers11050609PubMedGoogle Scholar
    102.
    Meyerhardt  JA, Catalano  PJ, Haller  DG,  et al.  Influence of body mass index on outcomes and treatment-related toxicity in patients with colon carcinoma.   Cancer. 2003;98(3):484-495. doi:10.1002/cncr.11544PubMedGoogle ScholarCrossref
    103.
    Meyerhardt  JA, Tepper  JE, Niedzwiecki  D,  et al.  Impact of body mass index on outcomes and treatment-related toxicity in patients with stage II and III rectal cancer: findings from Intergroup Trial 0114.   J Clin Oncol. 2004;22(4):648-657. doi:10.1200/JCO.2004.07.121PubMedGoogle ScholarCrossref
    104.
    Meyerhardt  JA, Niedzwiecki  D, Hollis  D,  et al; Cancer and Leukemia Group B 89803.  Impact of body mass index and weight change after treatment on cancer recurrence and survival in patients with stage III colon cancer: findings from Cancer and Leukemia Group B 89803.   J Clin Oncol. 2008;26(25):4109-4115. doi:10.1200/JCO.2007.15.6687PubMedGoogle ScholarCrossref
    105.
    Morikawa  T, Kuchiba  A, Liao  X,  et al.  Tumor TP53 expression status, body mass index and prognosis in colorectal cancer.   Int J Cancer. 2012;131(5):1169-1178. doi:10.1002/ijc.26495PubMedGoogle ScholarCrossref
    106.
    Ogino  S, Nosho  K, Baba  Y,  et al.  A cohort study of STMN1 expression in colorectal cancer: body mass index and prognosis.   Am J Gastroenterol. 2009;104(8):2047-2056. doi:10.1038/ajg.2009.281PubMedGoogle ScholarCrossref
    107.
    Patel  GS, Ullah  S, Beeke  C,  et al.  Association of BMI with overall survival in patients with mCRC who received chemotherapy versus EGFR and VEGF-targeted therapies.   Cancer Med. 2015;4(10):1461-1471. doi:10.1002/cam4.490PubMedGoogle ScholarCrossref
    108.
    Pelser  C, Arem  H, Pfeiffer  RM,  et al.  Prediagnostic lifestyle factors and survival after colon and rectal cancer diagnosis in the National Institutes of Health (NIH)-AARP Diet and Health Study.   Cancer. 2014;120(10):1540-1547. doi:10.1002/cncr.28573PubMedGoogle ScholarCrossref
    109.
    Prizment  AE, Flood  A, Anderson  KE, Folsom  AR.  Survival of women with colon cancer in relation to precancer anthropometric characteristics: the Iowa Women’s Health Study.   Cancer Epidemiol Biomarkers Prev. 2010;19(9):2229-2237. doi:10.1158/1055-9965.EPI-10-0522PubMedGoogle ScholarCrossref
    110.
    Schlesinger  S, Siegert  S, Koch  M,  et al.  Postdiagnosis body mass index and risk of mortality in colorectal cancer survivors: a prospective study and meta-analysis.   Cancer Causes Control. 2014;25(10):1407-1418. doi:10.1007/s10552-014-0435-xPubMedGoogle ScholarCrossref
    111.
    Shah  MS, Fogelman  DR, Raghav  KPS,  et al.  Joint prognostic effect of obesity and chronic systemic inflammation in patients with metastatic colorectal cancer.   Cancer. 2015;121(17):2968-2975. doi:10.1002/cncr.29440PubMedGoogle ScholarCrossref
    112.
    Sinicrope  FA, Foster  NR, Yoon  HH,  et al.  Association of obesity with DNA mismatch repair status and clinical outcome in patients with stage II or III colon carcinoma participating in NCCTG and NSABP adjuvant chemotherapy trials.   J Clin Oncol. 2012;30(4):406-412. doi:10.1200/JCO.2011.39.2563PubMedGoogle ScholarCrossref
    113.
    Sinicrope  FA, Foster  NR, Yothers  G,  et al; Adjuvant Colon Cancer Endpoints (ACCENT) Group.  Body mass index at diagnosis and survival among colon cancer patients enrolled in clinical trials of adjuvant chemotherapy.   Cancer. 2013;119(8):1528-1536. doi:10.1002/cncr.27938PubMedGoogle ScholarCrossref
    114.
    Sorbye  H, Mauer  M, Gruenberger  T,  et al; EORTC Gastro-Intestinal Tract Cancer Group; Cancer Research UK (CRUK); Arbeitsgruppe Lebermetastasen und-tumoren in der Chirurgischen Arbeitsgemeinschaft Onkologie (ALM-CAO); Australasian Gastro-Intestinal Trials Group (AGITG); Fédération Francophone de Cancérologie Digestive (FFCD).  Predictive factors for the benefit of perioperative FOLFOX for resectable liver metastasis in colorectal cancer patients (EORTC Intergroup Trial 40983).   Ann Surg. 2012;255(3):534-539. doi:10.1097/SLA.0b013e3182456aa2PubMedGoogle ScholarCrossref
    115.
    Wang  N, Khankari  NK, Cai  H,  et al.  Prediagnosis body mass index and waist-hip circumference ratio in association with colorectal cancer survival.   Int J Cancer. 2017;140(2):292-301. doi:10.1002/ijc.30459PubMedGoogle ScholarCrossref
    116.
    Zheng  J, Li  Y, Zhu  S,  et al.  NDRG4 stratifies the prognostic value of body mass index in colorectal cancer.   Oncotarget. 2016;7(2):1311-1322. doi:10.18632/oncotarget.6182PubMedGoogle ScholarCrossref
    117.
    Doria-Rose  VP, Newcomb  PA, Morimoto  LM, Hampton  JM, Trentham-Dietz  A.  Body mass index and the risk of death following the diagnosis of colorectal cancer in postmenopausal women (United States).   Cancer Causes Control. 2006;17(1):63-70. doi:10.1007/s10552-005-0360-0PubMedGoogle ScholarCrossref
    118.
    Kristensen  AB, Hare-Bruun  H, Høgdall  CK, Rudnicki  M.  Influence of body mass index on tumor pathology and survival in uterine cancer: a Danish register study.   Int J Gynecol Cancer. 2017;27(2):281-288. doi:10.1097/IGC.0000000000000874PubMedGoogle ScholarCrossref
    119.
    Nagle  CM, Crosbie  EJ, Brand  A,  et al; Australian National Endometrial Cancer Study Group.  The association between diabetes, comorbidities, body mass index and all-cause and cause-specific mortality among women with endometrial cancer.   Gynecol Oncol. 2018;150(1):99-105. doi:10.1016/j.ygyno.2018.04.006PubMedGoogle ScholarCrossref
    120.
    Nicholas  Z, Hu  N, Ying  J, Soisson  P, Dodson  M, Gaffney  DK.  Impact of comorbid conditions on survival in endometrial cancer.   Am J Clin Oncol. 2014;37(2):131-134. doi:10.1097/COC.0b013e318277d5f4PubMedGoogle ScholarCrossref
    121.
    Todo  Y, Okamoto  K, Minobe  S, Kato  H.  Clinical significance of surgical staging for obese women with endometrial cancer: a retrospective analysis in a Japanese cohort.   Jpn J Clin Oncol. 2014;44(10):903-909. doi:10.1093/jjco/hyu106PubMedGoogle ScholarCrossref
    122.
    Yoon  LS, Goodman  MT, Rimel  BJ, Jeon  CY.  Statin use and survival in elderly patients with endometrial cancer.   Gynecol Oncol. 2015;137(2):252-257. doi:10.1016/j.ygyno.2015.01.549PubMedGoogle ScholarCrossref
    123.
    Hynes  O, Anandavadivelan  P, Gossage  J, Johar  AM, Lagergren  J, Lagergren  P.  The impact of pre- and post-operative weight loss and body mass index on prognosis in patients with oesophageal cancer.   Eur J Surg Oncol. 2017;43(8):1559-1565. doi:10.1016/j.ejso.2017.05.023PubMedGoogle ScholarCrossref
    124.
    Spreafico  A, Coate  L, Zhai  R,  et al.  Early adulthood body mass index, cumulative smoking, and esophageal adenocarcinoma survival.   Cancer Epidemiol. 2017;47:28-34. doi:10.1016/j.canep.2016.11.009PubMedGoogle ScholarCrossref
    125.
    Sundelöf  M, Lagergren  J, Ye  W.  Patient demographics and lifestyle factors influencing long-term survival of oesophageal cancer and gastric cardia cancer in a nationwide study in Sweden.   Eur J Cancer. 2008;44(11):1566-1571. doi:10.1016/j.ejca.2008.04.002PubMedGoogle ScholarCrossref
    126.
    Yoon  HH, Lewis  MA, Shi  Q,  et al.  Prognostic impact of body mass index stratified by smoking status in patients with esophageal adenocarcinoma.   J Clin Oncol. 2011;29(34):4561-4567. doi:10.1200/JCO.2011.37.1260PubMedGoogle ScholarCrossref
    127.
    Thrift  AP, Nagle  CM, Fahey  PP, Smithers  BM, Watson  DI, Whiteman  DC.  Predictors of survival among patients diagnosed with adenocarcinoma of the esophagus and gastroesophageal junction.   Cancer Causes Control. 2012;23(4):555-564. doi:10.1007/s10552-012-9913-1PubMedGoogle ScholarCrossref
    128.
    Trivers  KF, De Roos  AJ, Gammon  MD,  et al.  Demographic and lifestyle predictors of survival in patients with esophageal or gastric cancers.   Clin Gastroenterol Hepatol. 2005;3(3):225-230. doi:10.1016/S1542-3565(04)00613-5PubMedGoogle ScholarCrossref
    129.
    Potharaju  M, Mangaleswaran  B, Mathavan  A,  et al.  Body mass index as a prognostic marker in glioblastoma multiforme: a clinical outcome.   Int J Radiat Oncol Biol Phys. 2018;102(1):204-209. doi:10.1016/j.ijrobp.2018.05.024PubMedGoogle ScholarCrossref
    130.
    Gama  RR, Song  Y, Zhang  Q,  et al.  Body mass index and prognosis in patients with head and neck cancer.   Head Neck. 2017;39(6):1226-1233. doi:10.1002/hed.24760PubMedGoogle ScholarCrossref
    131.
    Grossberg  AJ, Chamchod  S, Fuller  CD,  et al.  Association of body composition with survival and locoregional control of radiotherapy-treated head and neck squamous cell carcinoma.   JAMA Oncol. 2016;2(6):782-789. doi:10.1001/jamaoncol.2015.6339PubMedGoogle ScholarCrossref
    132.
    Hu  Q, Peng  J, Chen  X,  et al.  Obesity and genes related to lipid metabolism predict poor survival in oral squamous cell carcinoma.   Oral Oncol. 2019;89:14-22. doi:10.1016/j.oraloncology.2018.12.006PubMedGoogle ScholarCrossref
    133.
    Ata  N, Ayloo  S, Tsung  A, Molinari  M.  Recipient obesity does not affect survival after deceased donor liver transplantation for hepatocellular carcinoma: a national retrospective cohort study in the United States.   HPB (Oxford). 2019;21(1):67-76. doi:10.1016/j.hpb.2018.06.1797PubMedGoogle ScholarCrossref
    134.
    Carr  BI, Giannelli  G, Guerra  V,  et al.  Plasma cholesterol and lipoprotein levels in relation to tumor aggressiveness and survival in HCC patients.   Int J Biol Markers. 2018;33(4):423-431. doi:10.1177/1724600818776838PubMedGoogle ScholarCrossref
    135.
    Yang  T, Liu  K, Liu  CF,  et al.  Impact of postoperative infective complications on long-term survival after liver resection for hepatocellular carcinoma.   Br J Surg. 2019;106(9):1228-1236. doi:10.1002/bjs.11231PubMedGoogle ScholarCrossref
    136.
    Roque  DR, Taylor  KN, Palisoul  M,  et al.  Gemcitabine and docetaxel compared with observation, radiation, or other chemotherapy regimens as adjuvant treatment for stage I-to-IV uterine leiomyosarcoma.   Int J Gynecol Cancer. 2016;26(3):505-511. doi:10.1097/IGC.0000000000000634PubMedGoogle ScholarCrossref
    137.
    McMahon  BJ, Bruden  D, Townshend-Bulson  L,  et al.  Infection With hepatitis C virus genotype 3 is an independent risk factor for end-stage liver disease, hepatocellular carcinoma, and liver-related death.   Clin Gastroenterol Hepatol. 2017;15(3):431-437.e2. doi:10.1016/j.cgh.2016.10.012PubMedGoogle ScholarCrossref
    138.
    Abdel-Rahman  O.  Pre-diagnostic body mass index trajectory in relationship to lung cancer incidence and mortality; findings from the PLCO trial.   Expert Rev Respir Med. 2019;13(10):1029-1035. doi:10.1080/17476348.2019.1656532PubMedGoogle ScholarCrossref
    139.
    Leung  CC, Lam  TH, Yew  WW, Chan  WM, Law  WS, Tam  CM.  Lower lung cancer mortality in obesity.   Int J Epidemiol. 2011;40(1):174-182. doi:10.1093/ije/dyq134PubMedGoogle ScholarCrossref
    140.
    Nonemaker  JM, Garrett-Mayer  E, Carpenter  MJ,  et al.  The risk of dying from lung cancer by race: a prospective cohort study in a biracial cohort in Charleston, South Carolina.   Ann Epidemiol. 2009;19(5):304-310. doi:10.1016/j.annepidem.2008.12.017PubMedGoogle ScholarCrossref
    141.
    Qi  Y, Schild  SE, Mandrekar  SJ,  et al.  Pretreatment quality of life is an independent prognostic factor for overall survival in patients with advanced stage non-small cell lung cancer.   J Thorac Oncol. 2009;4(9):1075-1082. doi:10.1097/JTO.0b013e3181ae27f5PubMedGoogle ScholarCrossref
    142.
    Shepshelovich  D, Xu  W, Lu  L,  et al.  Body mass index (BMI), BMI change, and overall survival in patients with SCLC and NSCLC: a pooled analysis of the International Lung Cancer Consortium.   J Thorac Oncol. 2019;14(9):1594-1607. doi:10.1016/j.jtho.2019.05.031PubMedGoogle ScholarCrossref
    143.
    Turner  MC, Krewski  D, Pope  CA  III, Chen  Y, Gapstur  SM, Thun  MJ.  Long-term ambient fine particulate matter air pollution and lung cancer in a large cohort of never-smokers.   Am J Respir Crit Care Med. 2011;184(12):1374-1381. doi:10.1164/rccm.201106-1011OCPubMedGoogle ScholarCrossref
    144.
    Xie  HJ, Zhang  X, Wei  ZQ, Long  H, Rong  TH, Su  XD.  Effect of body mass index on survival of patients with stage I non-small cell lung cancer.   Chin J Cancer. 2017;36(1):7. doi:10.1186/s40880-016-0170-7PubMedGoogle ScholarCrossref
    145.
    McQuade  JL, Daniel  CR, Hess  PKR,  et al.  Association of body-mass index and outcomes in patients with metastatic melanoma treated with targeted therapy, immunotherapy, or chemotherapy: a retrospective, multicohort analysis.   Lancet Oncol. 2018;19(3):310-322. doi:10.1016/S1470-2045(18)30078-0Google ScholarCrossref
    146.
    Aldrich  MC, Grogan  EL, Munro  HM, Signorello  LB, Blot  WJ.  Stage-adjusted lung cancer survival does not differ between low-income Blacks and Whites.   J Thorac Oncol. 2013;8(10):1248-1254. doi:10.1097/JTO.0b013e3182a406f6PubMedGoogle ScholarCrossref
    147.
    Kichenadasse  G, Miners  JO, Mangoni  AA, Rowland  A, Hopkins  AM, Sorich  MJ.  Association between body mass index and overall survival with immune checkpoint inhibitor therapy for advanced non-small cell lung cancer.   JAMA Oncol. 2020;6(4):512-518. doi:10.1001/jamaoncol.2019.5241PubMedGoogle ScholarCrossref
    148.
    Nakagawa  T, Toyazaki  T, Chiba  N, Ueda  Y, Gotoh  M.  Prognostic value of body mass index and change in body weight in postoperative outcomes of lung cancer surgery.   Interact Cardiovasc Thorac Surg. 2016;23(4):560-566. doi:10.1093/icvts/ivw175PubMedGoogle ScholarCrossref
    149.
    Bandera  EV, Lee  VS, Rodriguez-Rodriguez  L, Powell  CB, Kushi  LH.  Impact of chemotherapy dosing on ovarian cancer survival according to body mass index.   JAMA Oncol. 2015;1(6):737-745. doi:10.1001/jamaoncol.2015.1796PubMedGoogle ScholarCrossref
    150.
    Kotsopoulos  J, Moody  JRK, Fan  I,  et al.  Height, weight, BMI and ovarian cancer survival.   Gynecol Oncol. 2012;127(1):83-87. doi:10.1016/j.ygyno.2012.05.038PubMedGoogle ScholarCrossref
    151.
    Minlikeeva  AN, Cannioto  R, Jensen  A,  et al; Australian Ovarian Cancer Study Group; Ovarian Cancer Association Consortium.  Joint exposure to smoking, excessive weight, and physical inactivity and survival of ovarian cancer patients, evidence from the Ovarian Cancer Association Consortium.   Cancer Causes Control. 2019;30(5):537-547. doi:10.1007/s10552-019-01157-3PubMedGoogle ScholarCrossref
    152.
    Previs  RA, Kilgore  J, Craven  R,  et al.  Obesity is associated with worse overall survival in women with low-grade papillary serous epithelial ovarian cancer.   Int J Gynecol Cancer. 2014;24(4):670-675. doi:10.1097/IGC.0000000000000109PubMedGoogle ScholarCrossref
    153.
    Tyler  CP, Whiteman  MK, Zapata  LB,  et al.  The effect of body mass index and weight change on epithelial ovarian cancer survival in younger women: a long-term follow-up study.   J Womens Health (Larchmt). 2012;21(8):865-871. doi:10.1089/jwh.2012.3487PubMedGoogle ScholarCrossref
    154.
    Yang  L, Klint  A, Lambe  M,  et al.  Predictors of ovarian cancer survival: a population-based prospective study in Sweden.   Int J Cancer. 2008;123(3):672-679. doi:10.1002/ijc.23429PubMedGoogle ScholarCrossref
    155.
    Dalal  S, Hui  D, Bidaut  L,  et al.  Relationships among body mass index, longitudinal body composition alterations, and survival in patients with locally advanced pancreatic cancer receiving chemoradiation: a pilot study.   J Pain Symptom Manage. 2012;44(2):181-191. doi:10.1016/j.jpainsymman.2011.09.010PubMedGoogle ScholarCrossref
    156.
    Genkinger  JM, Kitahara  CM, Bernstein  L,  et al.  Central adiposity, obesity during early adulthood, and pancreatic cancer mortality in a pooled analysis of cohort studies.   Ann Oncol. 2015;26(11):2257-2266. doi:10.1093/annonc/mdv355PubMedGoogle ScholarCrossref
    157.
    Gong  Z, Holly  EA, Bracci  PM.  Obesity and survival in population-based patients with pancreatic cancer in the San Francisco Bay Area.   Cancer Causes Control. 2012;23(12):1929-1937. doi:10.1007/s10552-012-0070-3PubMedGoogle ScholarCrossref
    158.
    Li  D, Morris  JS, Liu  J,  et al.  Body mass index and risk, age of onset, and survival in patients with pancreatic cancer.   JAMA. 2009;301(24):2553-2562.PubMedGoogle ScholarCrossref
    159.
    Lin  Y, Fu  R, Grant  E,  et al.  Association of body mass index and risk of death from pancreas cancer in Asians: findings from the Asia Cohort Consortium.   Eur J Cancer Prev. 2013;22(3):244-250. doi:10.1097/CEJ.0b013e3283592cefPubMedGoogle ScholarCrossref
    160.
    Olson  SH, Chou  JF, Ludwig  E,  et al.  Allergies, obesity, other risk factors and survival from pancreatic cancer.   Int J Cancer. 2010;127(10):2412-2419. doi:10.1002/ijc.25240PubMedGoogle ScholarCrossref
    161.
    Yuan  C, Bao  Y, Wu  C,  et al.  Prediagnostic body mass index and pancreatic cancer survival.   J Clin Oncol. 2013;31(33):4229-4234. doi:10.1200/JCO.2013.51.7532PubMedGoogle ScholarCrossref
    162.
    Tsai  S, Choti  MA, Assumpcao  L,  et al.  Impact of obesity on perioperative outcomes and survival following pancreaticoduodenectomy for pancreatic cancer: a large single-institution study.   J Gastrointest Surg. 2010;14(7):1143-1150. doi:10.1007/s11605-010-1201-3PubMedGoogle ScholarCrossref
    163.
    Bassett  JK, Severi  G, Baglietto  L,  et al.  Weight change and prostate cancer incidence and mortality.   Int J Cancer. 2012;131(7):1711-1719. doi:10.1002/ijc.27414PubMedGoogle ScholarCrossref
    164.
    Bonn  SE, Wiklund  F, Sjölander  A,  et al.  Body mass index and weight change in men with prostate cancer: progression and mortality.   Cancer Causes Control. 2014;25(8):933-943. doi:10.1007/s10552-014-0393-3PubMedGoogle ScholarCrossref
    165.
    Dickerman  BA, Ahearn  TU, Giovannucci  E,  et al.  Weight change, obesity and risk of prostate cancer progression among men with clinically localized prostate cancer.   Int J Cancer. 2017;141(5):933-944. doi:10.1002/ijc.30803PubMedGoogle ScholarCrossref
    166.
    Efstathiou  JA, Bae  K, Shipley  WU,  et al.  Obesity and mortality in men with locally advanced prostate cancer: analysis of RTOG 85-31.   Cancer. 2007;110(12):2691-2699. doi:10.1002/cncr.23093PubMedGoogle ScholarCrossref
    167.
    Farris  MS, Courneya  KS, Kopciuk  KA, McGregor  SE, Friedenreich  CM.  Anthropometric measurements and survival after a prostate cancer diagnosis.   Br J Cancer. 2018;118(4):607-610. doi:10.1038/bjc.2017.440PubMedGoogle ScholarCrossref
    168.
    Froehner  M, Kellner  AE, Koch  R, Baretton  GB, Hakenberg  OW, Wirth  MP.  A combined index to classify prognostic comorbidity in candidates for radical prostatectomy.   BMC Urol. 2014;14(1):28. doi:10.1186/1471-2490-14-28PubMedGoogle ScholarCrossref
    169.
    Gong  Z, Agalliu  I, Lin  DW, Stanford  JL, Kristal  AR.  Obesity is associated with increased risks of prostate cancer metastasis and death after initial cancer diagnosis in middle-aged men.   Cancer. 2007;109(6):1192-1202. doi:10.1002/cncr.22534PubMedGoogle ScholarCrossref
    170.
    Han  M, Trock  BJ, Partin  AW,  et al.  The impact of preoperative erectile dysfunction on survival after radical prostatectomy.   BJU Int. 2010;106(11):1612-1617. doi:10.1111/j.1464-410X.2010.09472.xPubMedGoogle ScholarCrossref
    171.
    Ho  T, Gerber  L, Aronson  WJ,  et al.  Obesity, prostate-specific antigen nadir, and biochemical recurrence after radical prostatectomy: biology or technique? results from the SEARCH database.   Eur Urol. 2012;62(5):910-916. doi:10.1016/j.eururo.2012.08.015PubMedGoogle ScholarCrossref
    172.
    Kelly  SP, Graubard  BI, Andreotti  G, Younes  N, Cleary  SD, Cook  MB.  Prediagnostic body mass index trajectories in relation to prostate cancer incidence and mortality in the PLCO cancer screening trial.   J Natl Cancer Inst. 2016;109(3):1-9. doi:10.1093/jnci/djw225PubMedGoogle Scholar
    173.
    Kenfield  SA, Batista  JL, Jahn  JL,  et al.  Development and application of a lifestyle score for prevention of lethal prostate cancer.   J Natl Cancer Inst. 2015;108(3):djv329. doi:10.1093/jnci/djv329PubMedGoogle Scholar
    174.
    Khan  S, Cai  J, Nielsen  ME,  et al.  The association of diabetes and obesity with prostate cancer progression: HCaP-NC.   Prostate. 2017;77(8):878-887. doi:10.1002/pros.23342PubMedGoogle ScholarCrossref
    175.
    Ma  J, Li  H, Giovannucci  E,  et al.  Prediagnostic body-mass index, plasma C-peptide concentration, and prostate cancer-specific mortality in men with prostate cancer: a long-term survival analysis.   Lancet Oncol. 2008;9(11):1039-1047. doi:10.1016/S1470-2045(08)70235-3PubMedGoogle ScholarCrossref
    176.
    Maj-Hes  AB, Mathieu  R, Özsoy  M,  et al.  Obesity is associated with biochemical recurrence after radical prostatectomy: a multi-institutional extended validation study.   Urol Oncol. 2017;35(7):460.e1-460.e8. doi:10.1016/j.urolonc.2017.01.022PubMedGoogle ScholarCrossref
    177.
    Møller  H, Roswall  N, Van Hemelrijck  M,  et al.  Prostate cancer incidence, clinical stage and survival in relation to obesity: a prospective cohort study in Denmark.   Int J Cancer. 2015;136(8):1940-1947. doi:10.1002/ijc.29238PubMedGoogle ScholarCrossref
    178.
    Rudman  SM, Gray  KP, Batista  JL,  et al.  Risk of prostate cancer-specific death in men with baseline metabolic aberrations treated with androgen deprivation therapy for biochemical recurrence.   BJU Int. 2016;118(6):919-926. doi:10.1111/bju.13428PubMedGoogle ScholarCrossref
    179.
    Schiffmann  J, Salomon  G, Tilki  D,  et al.  Radical prostatectomy neutralizes obesity-driven risk of prostate cancer progression.   Urol Oncol. 2017;35(5):243-249. doi:10.1016/j.urolonc.2016.12.014PubMedGoogle ScholarCrossref
    180.
    Spangler  E, Zeigler-Johnson  CM, Coomes  M, Malkowicz  SB, Wein  A, Rebbeck  TR.  Association of obesity with tumor characteristics and treatment failure of prostate cancer in African-American and European American men.   J Urol. 2007;178(5):1939-1944. doi:10.1016/j.juro.2007.07.021PubMedGoogle ScholarCrossref
    181.
    Vidal  AC, Howard  LE, Sun  SX,  et al.  Obesity and prostate cancer-specific mortality after radical prostatectomy: results from the Shared Equal Access Regional Cancer Hospital (SEARCH) database.   Prostate Cancer Prostatic Dis. 2017;20(1):72-78. doi:10.1038/pcan.2016.47PubMedGoogle ScholarCrossref
    182.
    Wu  W, Liu  X, Chaftari  P,  et al.  Association of body composition with outcome of docetaxel chemotherapy in metastatic prostate cancer: a retrospective review.   PLoS One. 2015;10(3):e0122047. doi:10.1371/journal.pone.0122047PubMedGoogle Scholar
    183.
    Montgomery  RB, Goldman  B, Tangen  CM,  et al; Southwest Oncology Group.  Association of body mass index with response and survival in men with metastatic prostate cancer: Southwest Oncology Group trials 8894 and 9916.   J Urol. 2007;178(5):1946-1951. doi:10.1016/j.juro.2007.07.026PubMedGoogle ScholarCrossref
    184.
    Halabi  S, Ou  SS, Vogelzang  NJ, Small  EJ.  Inverse correlation between body mass index and clinical outcomes in men with advanced castration-recurrent prostate cancer.   Cancer. 2007;110(7):1478-1484. doi:10.1002/cncr.22932PubMedGoogle ScholarCrossref
    185.
    Keizman  D, Gottfried  M, Ish-Shalom  M,  et al.  Active smoking may negatively affect response rate, progression-free survival, and overall survival of patients with metastatic renal cell carcinoma treated with sunitinib.   Oncologist. 2014;19(1):51-60. doi:10.1634/theoncologist.2012-0335PubMedGoogle ScholarCrossref
    186.
    Lee  WK, Byun  SS, Kim  HH,  et al.  Characteristics and prognosis of chromophobe non-metastatic renal cell carcinoma: a multicenter study.   Int J Urol. 2010;17(11):898-904. doi:10.1111/j.1442-2042.2010.02630.xPubMedGoogle ScholarCrossref
    187.
    Parker  AS, Lohse  CM, Cheville  JC, Thiel  DD, Leibovich  BC, Blute  ML.  Greater body mass index is associated with better pathologic features and improved outcome among patients treated surgically for clear cell renal cell carcinoma.   Urology. 2006;68(4):741-746. doi:10.1016/j.urology.2006.05.024PubMedGoogle ScholarCrossref
    188.
    Psutka  SP, Boorjian  SA, Moynagh  MR,  et al.  Decreased skeletal muscle mass is associated with an increased risk of mortality after radical nephrectomy for localized renal cell cancer.   J Urol. 2016;195(2):270-276. doi:10.1016/j.juro.2015.08.072PubMedGoogle ScholarCrossref
    189.
    Spiess  PE, Kurian  T, Lin  HY,  et al.  Preoperative metastatic status, level of thrombus and body mass index predict overall survival in patients undergoing nephrectomy and inferior vena cava thrombectomy.   BJU Int. 2012;110(11 Pt B):E470-E474. doi:10.1111/j.1464-410X.2012.11155.xGoogle ScholarCrossref
    190.
    Yu  ML, Asal  NR, Geyer  JR.  Later recurrence and longer survival among obese patients with renal cell carcinoma.   Cancer. 1991;68(7):1648-1655. doi:10.1002/1097-0142(19911001)68:7<1648:aid-cncr2820680731>3.0.co;2-5PubMedGoogle ScholarCrossref
    191.
    Hung  CY, Lai  CC, Chen  PT,  et al.  Impact of body mass index on long-term survival outcome in Asian populations with solid cancer who underwent curative-intent surgery: a six-year multicenter observational cohort study.   J Cancer. 2018;9(18):3316-3325. doi:10.7150/jca.25729PubMedGoogle ScholarCrossref
    192.
    Houdek  MT, Griffin  AM, Ferguson  PC, Wunder  JS.  Morbid obesity increases the risk of postoperative wound complications, infection, and repeat surgical procedures following upper extremity limb salvage surgery for soft tissue sarcoma.   Hand (N Y). 2019;14(1):114-120. doi:10.1177/1558944718797336PubMedGoogle ScholarCrossref
    193.
    Iyengar  NM, Kochhar  A, Morris  PG,  et al.  Impact of obesity on the survival of patients with early‐stage squamous cell carcinoma of the oral tongue.   Cancer. 2014;120(7):983-991. doi:10.1002/cncr.28532Google ScholarCrossref
    194.
    Xu  H, Tan  P, Zheng  X,  et al.  Metabolic syndrome and upper tract urothelial carcinoma: A retrospective analysis from a large Chinese cohort.   Urol Oncol. 2019;37(4):291.e19-291.e28. doi:10.1016/j.urolonc.2018.12.005PubMedGoogle ScholarCrossref
    195.
    Arem  H, Park  Y, Pelser  C,  et al.  Prediagnosis body mass index, physical activity, and mortality in endometrial cancer patients.   J Natl Cancer Inst. 2013;105(5):342-349. doi:10.1093/jnci/djs530PubMedGoogle ScholarCrossref
    196.
    Matsuo  K, Moeini  A, Cahoon  SS,  et al.  Weight change pattern and survival outcome of women with endometrial cancer.   Ann Surg Oncol. 2016;23(9):2988-2997. doi:10.1245/s10434-016-5237-9PubMedGoogle ScholarCrossref
    197.
    Ruterbusch  JJ, Ali-Fehmi  R, Olson  SH,  et al.  The influence of comorbid conditions on racial disparities in endometrial cancer survival.   Am J Obstet Gynecol. 2014;211(6):627.e1-627.e9. doi:10.1016/j.ajog.2014.06.036PubMedGoogle ScholarCrossref
    198.
    Seidelin  UH, Ibfelt  E, Andersen  I,  et al.  Does stage of cancer, comorbidity or lifestyle factors explain educational differences in survival after endometrial cancer? a cohort study among Danish women diagnosed 2005-2009.   Acta Oncol. 2016;55(6):680-685. doi:10.3109/0284186X.2015.1136750PubMedGoogle ScholarCrossref
    199.
    Abdullah  A, Wolfe  R, Stoelwinder  JU,  et al.  The number of years lived with obesity and the risk of all-cause and cause-specific mortality.   Int J Epidemiol. 2011;40(4):985-996. doi:10.1093/ije/dyr018PubMedGoogle ScholarCrossref
    200.
    Akinyemiju  T, Moore  JX, Pisu  M,  et al.  A prospective study of obesity, metabolic health, and cancer mortality.   Obesity (Silver Spring). 2018;26(1):193-201. doi:10.1002/oby.22067.AGoogle ScholarCrossref
    201.
    Barroso  M, Goday  A, Ramos  R,  et al; FRESCO Investigators.  Interaction between cardiovascular risk factors and body mass index and 10-year incidence of cardiovascular disease, cancer death, and overall mortality.   Prev Med. 2018;107(107):81-89. doi:10.1016/j.ypmed.2017.11.013PubMedGoogle ScholarCrossref
    202.
    Boggs  DA, Rosenberg  L, Cozier  YC,  et al.  General and abdominal obesity and risk of death among black women.   N Engl J Med. 2011;365(10):901-908. doi:10.1056/NEJMoa1104119PubMedGoogle ScholarCrossref
    203.
    Cortellini  A, Bersanelli  M, Buti  S,  et al.  A multicenter study of body mass index in cancer patients treated with anti-PD-1/PD-L1 immune checkpoint inhibitors: when overweight becomes favorable.   J Immunother Cancer. 2019;7(1):57. doi:10.1186/s40425-019-0527-yPubMedGoogle ScholarCrossref
    204.
    Drake  I, Gullberg  B, Sonestedt  E,  et al.  Type 2 diabetes, adiposity and cancer morbidity and mortality risk taking into account competing risk of noncancer deaths in a prospective cohort setting.   Int J Cancer. 2017;141(6):1170-1180. doi:10.1002/ijc.30824PubMedGoogle ScholarCrossref
    205.
    Han  X, Stevens  J, Truesdale  KP,  et al.  Body mass index at early adulthood, subsequent weight change and cancer incidence and mortality.   Int J Cancer. 2014;135(12):2900-2909. doi:10.1002/ijc.28930PubMedGoogle ScholarCrossref
    206.
    Izumida  T, Nakamura  Y, Ishikawa  S.  Impact of body mass index and metabolically unhealthy status on mortality in the Japanese general population: the JMS cohort study.   PLoS One. 2019;14(11):e0224802. doi:10.1371/journal.pone.0224802PubMedGoogle Scholar
    207.
    Janssen  SJ, van der Heijden  AS, van Dijke  M,  et al.  2015 Marshall Urist Young Investigator Award: prognostication in patients with long bone metastases: does a boosting algorithm improve survival estimates?   Clin Orthop Relat Res. 2015;473(10):3112-3121. doi:10.1007/s11999-015-4446-zPubMedGoogle ScholarCrossref
    208.
    Jenkins  DA, Bowden  J, Robinson  HA,  et al.  Adiposity-mortality relationships in type 2 diabetes, coronary heart disease, and cancer subgroups in the UK Biobank, and their modification by smoking.   Diabetes Care. 2018;41(9):1878-1886. doi:10.2337/dc17-2508PubMedGoogle ScholarCrossref
    209.
    Katzmarzyk  PT, Reeder  BA, Elliott  S,  et al.  Body mass index and risk of cardiovascular disease, cancer and all-cause mortality.   Can J Public Health. 2012;103(2):147-151. doi:10.1007/bf03404221PubMedGoogle ScholarCrossref
    210.
    Kitahara  CM, Flint  AJ, Berrington de Gonzalez  A,  et al.  Association between class III obesity (BMI of 40-59 kg/m2) and mortality: a pooled analysis of 20 prospective studies.   PLoS Med. 2014;11(7):e1001673. doi:10.1371/journal.pmed.1001673PubMedGoogle Scholar
    211.
    Martini  DJ, Kline  MR, Liu  Y,  et al.  Adiposity may predict survival in patients with advanced stage cancer treated with immunotherapy in phase 1 clinical trials.   Cancer. 2020;126(3):575-582. doi:10.1002/cncr.32576PubMedGoogle ScholarCrossref
    212.
    Mathur  AK, Ghaferi  AA, Sell  K, Sonnenday  CJ, Englesbe  MJ, Welling  TH.  Influence of body mass index on complications and oncologic outcomes following hepatectomy for malignancy.   J Gastrointest Surg. 2010;14(5):849-857. doi:10.1007/s11605-010-1163-5PubMedGoogle ScholarCrossref
    213.
    Meyer  J, Rohrmann  S, Bopp  M, Faeh  D; Swiss National Cohort Study Group.  Impact of smoking and excess body weight on overall and site-specific cancer mortality risk.   Cancer Epidemiol Biomarkers Prev. 2015;24(10):1516-1522. doi:10.1158/1055-9965.EPI-15-0415PubMedGoogle ScholarCrossref
    214.
    Nechuta  SJ, Shu  XO, Li  HL,  et al.  Combined impact of lifestyle-related factors on total and cause-specific mortality among Chinese women: prospective cohort study.   PLoS Med. 2010;7(9):e1000339. doi:10.1371/journal.pmed.1000339PubMedGoogle Scholar
    215.
    Parr  CL, Batty  GD, Lam  TH,  et al; Asia-Pacific Cohort Studies Collaboration.  Body-mass index and cancer mortality in the Asia-Pacific Cohort Studies Collaboration: pooled analyses of 424,519 participants.   Lancet Oncol. 2010;11(8):741-752. doi:10.1016/S1470-2045(10)70141-8PubMedGoogle ScholarCrossref
    216.
    Sasazuki  S, Inoue  M, Tsuji  I,  et al; Research Group for the Development and Evaluation of Cancer Prevention Strategies in Japan.  Body mass index and mortality from all causes and major causes in Japanese: results of a pooled analysis of 7 large-scale cohort studies.   J Epidemiol. 2011;21(6):417-430. doi:10.2188/jea.JE20100180PubMedGoogle ScholarCrossref
    217.
    Silventoinen  K, Tynelius  P, Rasmussen  F.  Weight status in young adulthood and survival after cardiovascular diseases and cancer.   Int J Epidemiol. 2014;43(4):1197-1204. doi:10.1093/ije/dyu091PubMedGoogle ScholarCrossref
    218.
    Song  X, Pitkäniemi  J, Gao  W,  et al; DECODE Study Group.  Relationship between body mass index and mortality among Europeans.   Eur J Clin Nutr. 2012;66(2):156-165. doi:10.1038/ejcn.2011.145PubMedGoogle ScholarCrossref
    219.
    Taghizadeh  N, Boezen  HM, Schouten  JP, Schröder  CP, Elisabeth de Vries  EG, Vonk  JM.  BMI and lifetime changes in BMI and cancer mortality risk.   PLoS One. 2015;10(4):e0125261. doi:10.1371/journal.pone.0125261PubMedGoogle Scholar
    220.
    Tseng  CH.  Obesity paradox: differential effects on cancer and noncancer mortality in patients with type 2 diabetes mellitus.   Atherosclerosis. 2013;226(1):186-192. doi:10.1016/j.atherosclerosis.2012.09.004PubMedGoogle ScholarCrossref
    221.
    Tseng  CH.  Factors associated with cancer- and non-cancer-related deaths among Taiwanese patients with diabetes after 17 years of follow-up.   PLoS One. 2016;11(12):e0147916. doi:10.1371/journal.pone.0147916PubMedGoogle Scholar
    222.
    Valentijn  TM, Galal  W, Hoeks  SE, van Gestel  YR, Verhagen  HJ, Stolker  RJ.  Impact of obesity on postoperative and long-term outcomes in a general surgery population: a retrospective cohort study.   World J Surg. 2013;37(11):2561-2568. doi:10.1007/s00268-013-2162-yPubMedGoogle ScholarCrossref
    223.
    Xu  H, Cupples  LA, Stokes  A, Liu  CT.  Association of obesity with mortality over 24 years of weight history: findings from the Framingham Heart Study.   JAMA Netw Open. 2018;1(7):e184587. doi:10.1001/jamanetworkopen.2018.4587PubMedGoogle Scholar
    224.
    Yano  Y, Kario  K, Ishikawa  S,  et al; JMS Cohort Study Group.  Associations between diabetes, leanness, and the risk of death in the Japanese general population: the Jichi Medical School Cohort Study.   Diabetes Care. 2013;36(5):1186-1192. doi:10.2337/dc12-1736PubMedGoogle ScholarCrossref
    225.
    You  J, Huang  S, Huang  GQ,  et al.  Nonalcoholic fatty liver disease: a negative risk factor for colorectal cancer prognosis.   Medicine (Baltimore). 2015;94(5):e479. doi:10.1097/MD.0000000000000479PubMedGoogle Scholar
    226.
    Key  TJ, Appleby  PN, Reeves  GK,  et al; Endogenous Hormones Breast Cancer Collaborative Group.  Body mass index, serum sex hormones, and breast cancer risk in postmenopausal women.   J Natl Cancer Inst. 2003;95(16):1218-1226. doi:10.1093/jnci/djg022PubMedGoogle ScholarCrossref
    227.
    Campbell  KL, Foster-Schubert  KE, Alfano  CM,  et al.  Reduced-calorie dietary weight loss, exercise, and sex hormones in postmenopausal women: randomized controlled trial.   J Clin Oncol. 2012;30(19):2314-2326. doi:10.1200/JCO.2011.37.9792PubMedGoogle ScholarCrossref
    228.
    Campbell  PT, Newton  CC, Dehal  AN, Jacobs  EJ, Patel  AV, Gapstur  SM.  Impact of body mass index on survival after colorectal cancer diagnosis: the Cancer Prevention Study-II Nutrition Cohort.   J Clin Oncol. 2012;30(1):42-52. doi:10.1200/JCO.2011.38.0287PubMedGoogle ScholarCrossref
    229.
    Renehan  AG, Roberts  DL, Dive  C.  Obesity and cancer: pathophysiological and biological mechanisms.   Arch Physiol Biochem. 2008;114(1):71-83. doi:10.1080/13813450801954303PubMedGoogle ScholarCrossref
    230.
    Lippman  SM, Klein  EA, Goodman  PJ,  et al.  Effect of selenium and vitamin E on risk of prostate cancer and other cancers: The selenium and vitamin E cancer prevention trial (SELECT).   JAMA. 2009;301(1):39-51. doi:10.1001/jama.2008.864Google ScholarCrossref
    231.
    Discacciati  A, Orsini  N, Wolk  A.  Body mass index and incidence of localized and advanced prostate cancer—a dose-response meta-analysis of prospective studies.   Ann Oncol. 2012;23(7):1665-1671. doi:10.1093/annonc/mdr603PubMedGoogle ScholarCrossref
    232.
    Argilés  JM, Busquets  S, Stemmler  B, López-Soriano  FJ.  Cancer cachexia: understanding the molecular basis.   Nat Rev Cancer. 2014;14(11):754-762. doi:10.1038/nrc3829PubMedGoogle ScholarCrossref
    233.
    Scott  HR, McMillan  DC, Forrest  LM, Brown  DJF, McArdle  CS, Milroy  R.  The systemic inflammatory response, weight loss, performance status and survival in patients with inoperable non-small cell lung cancer.   Br J Cancer. 2002;87(3):264-267. doi:10.1038/sj.bjc.6600466PubMedGoogle ScholarCrossref
    234.
    Cortellini  A, Ricciuti  B, Tiseo  M,  et al.  Baseline BMI and BMI variation during first line pembrolizumab in NSCLC patients with a PD-L1 expression ≥ 50%: a multicenter study with external validation.   J Immunother Cancer. 2020;8(2):e001403. doi:10.1136/jitc-2020-001403PubMedGoogle Scholar
    235.
    Naik  GS, Waikar  SS, Johnson  AEW,  et al.  Complex inter-relationship of body mass index, gender and serum creatinine on survival: exploring the obesity paradox in melanoma patients treated with checkpoint inhibition.   J Immunother Cancer. 2019;7(1):89. doi:10.1186/s40425-019-0512-5PubMedGoogle ScholarCrossref
    236.
    Richtig  G, Hoeller  C, Wolf  M,  et al.  Body mass index may predict the response to ipilimumab in metastatic melanoma: an observational multi-centre study.   PLoS One. 2018;13(10):e0204729. doi:10.1371/journal.pone.0204729PubMedGoogle Scholar
    237.
    Rutkowski  P, Indini  A, De Luca  M,  et al.  Body mass index (BMI) and outcome of metastatic melanoma patients receiving targeted therapy and immunotherapy: a multicenter international retrospective study.   J Immunother Cancer. 2020;8(2):e001117. doi:10.1136/jitc-2020-001117PubMedGoogle Scholar
    238.
    Santoni  M, Cortellini  A, Buti  S.  Unlocking the secret of the obesity paradox in renal tumours.   Lancet Oncol. 2020;21(2):194-196. doi:10.1016/S1470-2045(19)30783-1PubMedGoogle ScholarCrossref
    239.
    Sanchez  A, Furberg  H, Kuo  F,  et al.  Transcriptomic signatures related to the obesity paradox in patients with clear cell renal cell carcinoma: a cohort study.   Lancet Oncol. 2020;21(2):283-293. doi:10.1016/S1470-2045(19)30797-1PubMedGoogle ScholarCrossref
    240.
    Han  SJ, Glatman Zaretsky  A, Andrade-Oliveira  V,  et al.  White adipose tissue is a reservoir for memory T cells and promotes protective memory responses to infection.   Immunity. 2017;47(6):1154-1168.e6. doi:10.1016/j.immuni.2017.11.009PubMedGoogle ScholarCrossref
    241.
    Bersanelli  M, Cortellini  A, Buti  S.  The interplay between cholesterol (and other metabolic conditions) and immune-checkpoint immunotherapy: shifting the concept from the “inflamed tumor” to the “inflamed patient.”   Hum Vaccin Immunother. 2021;00(00):1-5. doi:10.1080/21645515.2020.1852872PubMedGoogle ScholarCrossref
    242.
    Tucker  JM, Tucker  LA, Lecheminant  J, Bailey  B.  Obesity increases risk of declining physical activity over time in women: a prospective cohort study.   Obesity (Silver Spring). 2013;21(12):E715-E720. doi:10.1002/oby.20415PubMedGoogle ScholarCrossref
    243.
    Pietiläinen  KH, Kaprio  J, Borg  P,  et al.  Physical inactivity and obesity: a vicious circle.   Obesity (Silver Spring). 2008;16(2):409-414. doi:10.1038/oby.2007.72PubMedGoogle ScholarCrossref
    244.
    Spei  ME, Samoli  E, Bravi  F, La Vecchia  C, Bamia  C, Benetou  V.  Physical activity in breast cancer survivors: a systematic review and meta-analysis on overall and breast cancer survival.   Breast. 2019;44:144-152. doi:10.1016/j.breast.2019.02.001PubMedGoogle ScholarCrossref
    245.
    Je  Y, Jeon  JY, Giovannucci  EL, Meyerhardt  JA.  Association between physical activity and mortality in colorectal cancer: a meta-analysis of prospective cohort studies.   Int J Cancer. 2013;133(8):1905-1913. doi:10.1002/ijc.28208PubMedGoogle ScholarCrossref
    246.
    Whitlock  G, Lewington  S, Sherliker  P,  et al; Prospective Studies Collaboration.  Body-mass index and cause-specific mortality in 900 000 adults: collaborative analyses of 57 prospective studies.   Lancet. 2009;373(9669):1083-1096. doi:10.1016/S0140-6736(09)60318-4PubMedGoogle ScholarCrossref
    247.
    Renehan  AG, Harvie  M, Cutress  RI,  et al.  How to manage the obese patient with cancer.   J Clin Oncol. 2016;34(35):4284-4294. doi:10.1200/JCO.2016.69.1899PubMedGoogle ScholarCrossref
    248.
    Hourdequin  KC, Schpero  WL, McKenna  DR, Piazik  BL, Larson  RJ.  Toxic effect of chemotherapy dosing using actual body weight in obese versus normal-weight patients: a systematic review and meta-analysis.   Ann Oncol. 2013;24(12):2952-2962. doi:10.1093/annonc/mdt294PubMedGoogle ScholarCrossref
    ×