Association of Race/Ethnicity, Gender, and Socioeconomic Status With Sodium-Glucose Cotransporter 2 Inhibitor Use Among Patients With Diabetes in the US | Cardiology | JAMA Network Open | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 35.170.64.36. Please contact the publisher to request reinstatement.
1.
Sarwar  N, Gao  P, Seshasai  SR,  et al; Emerging Risk Factors Collaboration.  Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies.   Lancet. 2010;375(9733):2215-2222. doi:10.1016/S0140-6736(10)60484-9 PubMedGoogle ScholarCrossref
2.
Beckman  JA, Creager  MA, Libby  P.  Diabetes and atherosclerosis: epidemiology, pathophysiology, and management.   JAMA. 2002;287(19):2570-2581. doi:10.1001/jama.287.19.2570 PubMedGoogle ScholarCrossref
3.
Gallo  LA, Wright  EM, Vallon  V.  Probing SGLT2 as a therapeutic target for diabetes: basic physiology and consequences.   Diab Vasc Dis Res. 2015;12(2):78-89. doi:10.1177/1479164114561992PubMedGoogle ScholarCrossref
4.
Zinman  B, Wanner  C, Lachin  JM,  et al; EMPA-REG OUTCOME Investigators.  Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes.   N Engl J Med. 2015;373(22):2117-2128. doi:10.1056/NEJMoa1504720 PubMedGoogle ScholarCrossref
5.
Ghosh  RK, Ghosh  GC, Gupta  M,  et al.  Sodium glucose co-transporter 2 inhibitors and heart failure.   Am J Cardiol. 2019;124(11):1790-1796. doi:10.1016/j.amjcard.2019.08.038 PubMedGoogle ScholarCrossref
6.
Neal  B, Perkovic  V, Mahaffey  KW,  et al; CANVAS Program Collaborative Group.  Canagliflozin and cardiovascular and renal events in type 2 diabetes.   N Engl J Med. 2017;377(7):644-657. doi:10.1056/NEJMoa1611925 PubMedGoogle ScholarCrossref
7.
McMurray  JJV, Solomon  SD, Inzucchi  SE,  et al; DAPA-HF Trial Committees and Investigators.  Dapagliflozin in patients with heart failure and reduced ejection fraction.   N Engl J Med. 2019;381(21):1995-2008. doi:10.1056/NEJMoa1911303 PubMedGoogle ScholarCrossref
8.
Packer  M, Anker  SD, Butler  J,  et al; EMPEROR-Reduced Trial Investigators.  Cardiovascular and renal outcomes with empagliflozin in heart failure.   N Engl J Med. 2020;383(15):1413-1424. doi:10.1056/NEJMoa2022190 PubMedGoogle ScholarCrossref
9.
Heerspink  HJL, Stefánsson  BV, Correa-Rotter  R,  et al; DAPA-CKD Trial Committees and Investigators.  Dapagliflozin in patients with chronic kidney disease.   N Engl J Med. 2020;383(15):1436-1446. doi:10.1056/NEJMoa2024816 PubMedGoogle ScholarCrossref
10.
American Diabetes Association.  Pharmacologic approaches to glycemic treatment: Standards of Medical Care in Diabetes–2020.   Diabetes Care. 2020;43(suppl 1):S98-S110. doi:10.2337/dc20-S009 PubMedGoogle ScholarCrossref
11.
Das  SR, Everett  BM, Birtcher  KK,  et al.  2020 Expert consensus decision pathway on novel therapies for cardiovascular risk reduction in patients with type 2 diabetes: a report of the American College of Cardiology Solution Set Oversight Committee.   J Am Coll Cardiol. 2020;76(9):1117-1145. doi:10.1016/j.jacc.2020.05.037 PubMedGoogle ScholarCrossref
12.
Choi  AI, Rodriguez  RA, Bacchetti  P, Bertenthal  D, Hernandez  GT, O’Hare  AM.  White/black racial differences in risk of end-stage renal disease and death.   Am J Med. 2009;122(7):672-678. doi:10.1016/j.amjmed.2008.11.021 PubMedGoogle ScholarCrossref
13.
Tarver-Carr  ME, Powe  NR, Eberhardt  MS,  et al.  Excess risk of chronic kidney disease among African-American versus white subjects in the United States: a population-based study of potential explanatory factors.   J Am Soc Nephrol. 2002;13(9):2363-2370. doi:10.1097/01.ASN.0000026493.18542.6A PubMedGoogle ScholarCrossref
14.
Xue  JL, Eggers  PW, Agodoa  LY, Foley  RN, Collins  AJ.  Longitudinal study of racial and ethnic differences in developing end-stage renal disease among aged Medicare beneficiaries.   J Am Soc Nephrol. 2007;18(4):1299-1306. doi:10.1681/ASN.2006050524 PubMedGoogle ScholarCrossref
15.
Klag  MJ, Whelton  PK, Randall  BL, Neaton  JD, Brancati  FL, Stamler  J.  End-stage renal disease in African-American and white men. 16-year MRFIT findings.   JAMA. 1997;277(16):1293-1298. doi:10.1001/jama.1997.03540400043029 PubMedGoogle ScholarCrossref
16.
Benjamin  EJ, Blaha  MJ, Chiuve  SE,  et al; American Heart Association Statistics Committee and Stroke Statistics Subcommittee.  Heart disease and stroke statistics—2017 update: a report from the American Heart Association.   Circulation. 2017;135(10):e146-e603. doi:10.1161/CIR.0000000000000485 PubMedGoogle ScholarCrossref
17.
Loehr  LR, Rosamond  WD, Chang  PP, Folsom  AR, Chambless  LE.  Heart failure incidence and survival (from the Atherosclerosis Risk in Communities study).   Am J Cardiol. 2008;101(7):1016-1022. doi:10.1016/j.amjcard.2007.11.061 PubMedGoogle ScholarCrossref
18.
Bibbins-Domingo  K, Pletcher  MJ, Lin  F,  et al.  Racial differences in incident heart failure among young adults.   N Engl J Med. 2009;360(12):1179-1190. doi:10.1056/NEJMoa0807265 PubMedGoogle ScholarCrossref
19.
Durstenfeld  MS, Ogedegbe  O, Katz  SD, Park  H, Blecker  S.  Racial and ethnic differences in heart failure readmissions and mortality in a large municipal healthcare system.   JACC Heart Fail. 2016;4(11):885-893. doi:10.1016/j.jchf.2016.05.008 PubMedGoogle ScholarCrossref
20.
Chen  J, Normand  SL, Wang  Y, Drye  EE, Schreiner  GC, Krumholz  HM.  Recent declines in hospitalizations for acute myocardial infarction for Medicare fee-for-service beneficiaries: progress and continuing challenges.   Circulation. 2010;121(11):1322-1328. doi:10.1161/CIRCULATIONAHA.109.862094 PubMedGoogle ScholarCrossref
21.
Mensah  GA, Mokdad  AH, Ford  ES, Greenlund  KJ, Croft  JB.  State of disparities in cardiovascular health in the United States.   Circulation. 2005;111(10):1233-1241. doi:10.1161/01.CIR.0000158136.76824.04 PubMedGoogle ScholarCrossref
22.
Nadruz  W  Jr, Claggett  B, Henglin  M,  et al.  Widening racial differences in risks for coronary heart disease.   Circulation. 2018;137(11):1195-1197. doi:10.1161/CIRCULATIONAHA.117.030564 PubMedGoogle ScholarCrossref
23.
Institute of Medicine.  Unequal Treatment: Confronting Racial and Ethnic Disparities in Health Care. National Academies Press; 2003.
24.
Adler  NE, Rehkopf  DHUS.  U.S. disparities in health: descriptions, causes, and mechanisms.   Annu Rev Public Health. 2008;29:235-252. doi:10.1146/annurev.publhealth.29.020907.090852 PubMedGoogle ScholarCrossref
25.
Katz  DF, Maddox  TM, Turakhia  M,  et al.  Contemporary trends in oral anticoagulant prescription in atrial fibrillation patients at low to moderate risk of stroke after guideline-recommended change in use of the CHADS2 to the CHA2DS2-VASc score for thromboembolic risk assessment: analysis from the National Cardiovascular Data Registry’s Outpatient Practice Innovation and Clinical Excellence Atrial Fibrillation Registry.   Circ Cardiovasc Qual Outcomes. 2017;10(5):e003476. doi:10.1161/CIRCOUTCOMES.116.003476 PubMedGoogle Scholar
26.
Nathan  AS, Geng  Z, Dayoub  EJ,  et al.  Racial, ethnic, and socioeconomic inequities in the prescription of direct oral anticoagulants in patients with venous thromboembolism in the United States.   Circ Cardiovasc Qual Outcomes. 2019;12(4):e005600. doi:10.1161/CIRCOUTCOMES.119.005600 PubMedGoogle Scholar
27.
Essien  UR, Holmes  DN, Jackson  LR  II,  et al.  Association of race/ethnicity with oral anticoagulant use in patients with atrial fibrillation: findings from the Outcomes Registry for Better Informed Treatment of Atrial Fibrillation II.   JAMA Cardiol. 2018;3(12):1174-1182. doi:10.1001/jamacardio.2018.3945 PubMedGoogle ScholarCrossref
28.
Elixhauser  A, Steiner  C, Harris  DR, Coffey  RM.  Comorbidity measures for use with administrative data.   Med Care. 1998;36(1):8-27. doi:10.1097/00005650-199801000-00004 PubMedGoogle ScholarCrossref
29.
Vaduganathan  M, Fonarow  GC, Greene  SJ,  et al.  et al. Contemporary treatment patterns and clinical outcomes of comorbid diabetes mellitus and HFrEF: the CHAMP-HF Registry.   JACC Heart Fail. 2020;8(6):469-480. doi:10.1016/j.jchf.2019.12.015 PubMedGoogle ScholarCrossref
30.
Chin  MH, Zhang  JX, Merrell  K.  Diabetes in the African-American Medicare population: morbidity, quality of care, and resource utilization.   Diabetes Care. 1998;21(7):1090-1095. doi:10.2337/diacare.21.7.1090 PubMedGoogle ScholarCrossref
31.
Bonds  DE, Zaccaro  DJ, Karter  AJ, Selby  JV, Saad  M, Goff  DC  Jr.  Ethnic and racial differences in diabetes care: the Insulin Resistance Atherosclerosis Study.   Diabetes Care. 2003;26(4):1040-1046. doi:10.2337/diacare.26.4.1040 PubMedGoogle ScholarCrossref
32.
McBean  AM, Huang  Z, Virnig  BA, Lurie  N, Musgrave  D.  Racial variation in the control of diabetes among elderly medicare managed care beneficiaries.   Diabetes Care. 2003;26(12):3250-3256. doi:10.2337/diacare.26.12.3250 PubMedGoogle ScholarCrossref
33.
Heisler  M, Smith  DM, Hayward  RA, Krein  SL, Kerr  EA.  Racial disparities in diabetes care processes, outcomes, and treatment intensity.   Med Care. 2003;41(11):1221-1232. doi:10.1097/01.MLR.0000093421.64618.9C PubMedGoogle ScholarCrossref
34.
Chin  MH, Auerbach  SB, Cook  S,  et al.  Quality of diabetes care in community health centers.   Am J Public Health. 2000;90(3):431-434. doi:10.2105/AJPH.90.3.431 PubMedGoogle ScholarCrossref
35.
Larme  AC, Pugh  JA.  Attitudes of primary care providers toward diabetes: barriers to guideline implementation.   Diabetes Care. 1998;21(9):1391-1396. doi:10.2337/diacare.21.9.1391 PubMedGoogle ScholarCrossref
36.
Eberly  LA, Richterman  A, Beckett  AG,  et al.  Identification of racial inequities in access to specialized inpatient heart failure care at an academic medical center.   Circ Heart Fail. 2019;12(11):e006214. doi:10.1161/CIRCHEARTFAILURE.119.006214 PubMedGoogle Scholar
37.
Cook  NL, Ayanian  JZ, Orav  EJ, Hicks  LS.  Differences in specialist consultations for cardiovascular disease by race, ethnicity, gender, insurance status, and site of primary care.   Circulation. 2009;119(18):2463-2470. doi:10.1161/CIRCULATIONAHA.108.825133 PubMedGoogle ScholarCrossref
38.
Breathett  K, Liu  WG, Allen  LA,  et al.  African Americans are less likely to receive care by a cardiologist during an intensive care unit admission for heart failure.   JACC Heart Fail. 2018;6(5):413-420. doi:10.1016/j.jchf.2018.02.015 PubMedGoogle ScholarCrossref
39.
Lee  S, Martinez  G, Ma  GX,  et al.  Barriers to health care access in 13 Asian American communities.   Am J Health Behav. 2010;34(1):21-30. doi:10.5993/AJHB.34.1.3 PubMedGoogle ScholarCrossref
40.
Ngo-Metzger  Q, Legedza  ATR, Phillips  RS.  Asian Americans’ reports of their health care experiences: results of a national survey.   J Gen Intern Med. 2004;19(2):111-119. doi:10.1111/j.1525-1497.2004.30143.x PubMedGoogle ScholarCrossref
41.
Ford  CL, Airhihenbuwa  CO.  The public health critical race methodology: praxis for antiracism research.   Soc Sci Med. 2010;71(8):1390-1398. doi:10.1016/j.socscimed.2010.07.030 PubMedGoogle ScholarCrossref
42.
Stafford  RS, Saglam  D, Blumenthal  D.  National patterns of angiotensin-converting enzyme inhibitor use in congestive heart failure.   Arch Intern Med. 1997;157(21):2460-2464. doi:10.1001/archinte.1997.00440420092008 PubMedGoogle ScholarCrossref
43.
Mejhert  M, Holmgren  J, Wändell  P, Persson  H, Edner  M.  Diagnostic tests, treatment and follow-up in heart failure patients—is there a gender bias in the coherence to guidelines?   Eur J Heart Fail. 1999;1(4):407-410. doi:10.1016/S1388-9842(99)00053-7 PubMedGoogle ScholarCrossref
44.
Bungard  TJ, McAlister  FA, Johnson  JA, Tsuyuki  RT.  Underutilisation of ACE inhibitors in patients with congestive heart failure.   Drugs. 2001;61(14):2021-2033. doi:10.2165/00003495-200161140-00002 PubMedGoogle ScholarCrossref
45.
Opasich  C, De Feo  S, Ambrosio  GA,  et al; TEMISTOCLE Investigators.  The ‘real’ woman with heart failure: impact of sex on current in-hospital management of heart failure by cardiologists and internists.   Eur J Heart Fail. 2004;6(6):769-779. doi:10.1016/j.ejheart.2003.11.021 PubMedGoogle ScholarCrossref
46.
Nicol  ED, Fittall  B, Roughton  M, Cleland  JGF, Dargie  H, Cowie  MR.  NHS heart failure survey: a survey of acute heart failure admissions in England, Wales and Northern Ireland.   Heart. 2008;94(2):172-177. doi:10.1136/hrt.2007.124107 PubMedGoogle ScholarCrossref
47.
Okunrintemi  V, Valero-Elizondo  J, Patrick  B,  et al.  Gender differences in patient-reported outcomes among adults with atherosclerotic cardiovascular disease.   J Am Heart Assoc. 2018;7(24):e010498. doi:10.1161/JAHA.118.010498 PubMedGoogle Scholar
48.
American Diabetes Association.  Pharmacologic approaches to glycemic treatment: Standards of Medical Care in Diabetes—2019.   Diabetes Care. 2019;42(suppl 1):S90-S102. doi:10.2337/dc19-S009 PubMedGoogle ScholarCrossref
49.
Das  SR, Everett  BM, Birtcher  KK,  et al.  2018 ACC expert consensus decision pathway on novel therapies for cardiovascular risk reduction in patients with type 2 diabetes and atherosclerotic cardiovascular disease.   J Am Coll Cardiol. 2018;72(24):3200-3223. doi:10.1016/j.jacc.2018.09.020 PubMedGoogle ScholarCrossref
50.
Walmart. $4 Prescriptions. Accessed April 22, 2020. https://www.walmart.com/cp/$4-prescriptions/1078664
51.
Lopez  JMS, Macomson  B, Ektare  V, Patel  D, Botteman  M.  Evaluating drug cost per response with SGLT2 inhibitors in patients with type 2 diabetes mellitus.   Am Health Drug Benefits. 2015;8(6):309-318.PubMedGoogle Scholar
52.
Luo  J, Feldman  R, Rothenberger  SD, Hernandez  I, Gellad  WF. Coverage, formulary restrictions, and out-of-pocket costs for sodium-glucose cotransporter 2 inhibitors and glucagon-like peptide 1 receptor agonists in the Medicare Part D program. JAMA Netw Open. 2020;3(10):e2020969. doi:10.1001/jamanetworkopen.2020.20969
53.
Yoshida  Y, Cheng  X, Shao  H, Fonseca  VA, Shi  L.  A systematic review of cost-effectiveness of sodium-glucose cotransporter inhibitors for type 2 diabetes.   Curr Diab Rep. 2020;20(4):12. doi:10.1007/s11892-020-1292-5 PubMedGoogle ScholarCrossref
54.
van Ryn  M, Burke  J.  The effect of patient race and socio-economic status on physicians’ perceptions of patients.   Soc Sci Med. 2000;50(6):813-828. doi:10.1016/S0277-9536(99)00338-X PubMedGoogle ScholarCrossref
Limit 200 characters
Limit 25 characters
Conflicts of Interest Disclosure

Identify all potential conflicts of interest that might be relevant to your comment.

Conflicts of interest comprise financial interests, activities, and relationships within the past 3 years including but not limited to employment, affiliation, grants or funding, consultancies, honoraria or payment, speaker's bureaus, stock ownership or options, expert testimony, royalties, donation of medical equipment, or patents planned, pending, or issued.

Err on the side of full disclosure.

If you have no conflicts of interest, check "No potential conflicts of interest" in the box below. The information will be posted with your response.

Not all submitted comments are published. Please see our commenting policy for details.

Limit 140 characters
Limit 3600 characters or approximately 600 words
    1 Comment for this article
    Poverty and Diabetes Treatment
    Jeoffry Gordon, MD, MPH | Family Practice
    Yes Optum gets data, big data (900,000+ patients) and shows how discriminatory quality medical care in the USA can be. Actually this study is grossly distorted. There is a marked underestimate of discrimination because their study population included no Medicaid patients. Corporate commercial medicine likes to behave like they do not exist.
    CONFLICT OF INTEREST: None Reported
    Views 4,636
    Citations 0
    Original Investigation
    Health Policy
    April 15, 2021

    Association of Race/Ethnicity, Gender, and Socioeconomic Status With Sodium-Glucose Cotransporter 2 Inhibitor Use Among Patients With Diabetes in the US

    Author Affiliations
    • 1Cardiovascular Division, Perelman School of Medicine at the University of Pennsylvania, Philadelphia
    • 2Center for Cardiovascular Outcomes, Quality, and Evaluative Research, University of Pennsylvania, Philadelphia
    • 3Penn Cardiovascular Center for Health Equity and Social Justice, University of Pennsylvania, Philadelphia
    • 4Leonard Davis Institute of Health Economics at the University of Pennsylvania, Philadelphia
    • 5Renal-Electrolyte and Hypertension Division, Perelman School of Medicine at the University of Pennsylvania, Philadelphia
    • 6Division of General Internal Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
    • 7Center for Health Equity Research and Promotion, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
    • 8Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania
    • 9Division of General Internal Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia
    JAMA Netw Open. 2021;4(4):e216139. doi:10.1001/jamanetworkopen.2021.6139
    Key Points

    Question  Are race/ethnicity, gender, and socioeconomic status associated with use of sodium-glucose cotransporter 2 (SGLT2) inhibitors among patients with type 2 diabetes in the US?

    Findings  In a 5-year cohort study of 934 737 commercially insured US patients with type 2 diabetes, the frequency of SGLT2 inhibitor use increased, but use remained low even among patients with heart failure, kidney disease, and cardiovascular disease. Black race, female gender, and lower household income were associated with lower rates of SGLT2 inhibitor use.

    Meaning  In this study, racial/ethnic, gender, and socioeconomic inequities were present in access to SGLT2 inhibitor treatment, which if unaddressed, may widen disparities in kidney and cardiovascular outcomes in the US.

    Abstract

    Importance  Sodium-glucose cotransporter 2 (SGLT2) inhibitors significantly reduce deaths from cardiovascular conditions, hospitalizations for heart failure, and progression of kidney disease among patients with type 2 diabetes. Black individuals have a disproportionate burden of cardiovascular and chronic kidney disease (CKD). Adoption of novel therapeutics has been slower among Black and female patients and among patients with low socioeconomic status than among White or male patients or patients with higher socioeconomic status.

    Objective  To assess whether inequities based on race/ethnicity, gender, and socioeconomic status exist in SGLT2 inhibitor use among patients with type 2 diabetes in the US.

    Design, Setting, and Participants  This retrospective cohort study of commercially insured patients in the US was performed from October 1, 2015, to June 30, 2019, using the Optum Clinformatics Data Mart. Adult patients with a diagnosis of type 2 diabetes, including those with heart failure with reduced ejection fraction (HFrEF), atherosclerotic cardiovascular disease (ASCVD), or CKD, were evaluated in the analysis.

    Main Outcomes and Measures  Prescription of an SGLT2 inhibitor. Multivariable logistic regression models were used to assess the association of race/ethnicity, gender, and socioeconomic status with SGLT2 inhibitor use.

    Results  Of 934 737 patients with type 2 diabetes (mean [SD] age, 65.4 [12.9] years; 50.7% female; 57.6% White), 81 007 (8.7%) were treated with an SGLT2 inhibitor during the study period. Between 2015 and 2019, the percentage of patients with type 2 diabetes treated with an SGLT2 inhibitor increased from 3.8% to 11.9%. Among patients with type 2 diabetes and cardiovascular or kidney disease, the rate of SGLT2 inhibitor use increased but was lower than that among all patients with type 2 diabetes (HFrEF: 1.9% to 7.6%; ASCVD: 3.0% to 9.8%; CKD: 2.1% to 7.5%). In multivariable analyses, Black race (adjusted odds ratio [aOR], 0.83; 95% CI, 0.81-0.85), Asian race (aOR, 0.94; 95% CI, 0.90-0.98), and female gender (aOR, 0.84; 95% CI, 0.82-0.85) were associated with lower rates of SGLT2 inhibitor use, whereas higher median household income (≥$100 000: aOR, 1.08 [95% CI, 1.05-1.10]; $50 000-$99 999: aOR, 1.05 [95% CI, 1.03-1.07] vs <$50 000) was associated with a higher rate of SGLT2 inhibitor use. These results were similar among patients with HFrEF, ASCVD, and CKD.

    Conclusions and Relevance  In this cohort study, use of an SGLT2 inhibitor treatment increased among patients with type 2 diabetes from 2015 to 2019 but remained low, particularly among patients with HFrEF, CKD, and ASCVD. Black and female patients and patients with low socioeconomic status were less likely to receive an SGLT2 inhibitor, suggesting that interventions to ensure more equitable use are essential to prevent worsening of well-documented disparities in cardiovascular and kidney outcomes in the US.

    ×