Underlying Medical Conditions Associated With Severe COVID-19 Illness Among Children | Asthma | JAMA Network Open | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 35.170.64.36. Please contact the publisher to request reinstatement.
1.
Tsankov  BK, Allaire  JM, Irvine  MA,  et al.  Severe COVID-19 infection and pediatric comorbidities: a systematic review and meta-analysis.   Int J Infect Dis. 2021;103:246-256. doi:10.1016/j.ijid.2020.11.163PubMedGoogle ScholarCrossref
2.
Kim  L, Whitaker  M, O’Halloran  A,  et al; COVID-NET Surveillance Team.  Hospitalization rates and characteristics of children aged <18 years hospitalized with laboratory-confirmed COVID-19—COVID-NET, 14 states, March 1–July 25, 2020.   MMWR Morb Mortal Wkly Rep. 2020;69(32):1081-1088. doi:10.15585/mmwr.mm6932e3 PubMedGoogle ScholarCrossref
3.
Shekerdemian  LS, Mahmood  NR, Wolfe  KK,  et al; International COVID-19 PICU Collaborative.  Characteristics and outcomes of children with coronavirus disease 2019 (COVID-19) infection admitted to US and Canadian pediatric intensive care units.   JAMA Pediatr. 2020;174(9):868-873. doi:10.1001/jamapediatrics.2020.1948 PubMedGoogle ScholarCrossref
4.
Alsaied  T, Aboulhosn  JA, Cotts  TB,  et al.  Coronavirus disease 2019 (COVID-19) pandemic implications in pediatric and adult congenital heart disease.   J Am Heart Assoc. 2020;9(12):e017224. doi:10.1161/JAHA.120.017224 PubMedGoogle Scholar
5.
Bellino  S, Punzo  O, Rota  MC,  et al; COVID-19 WORKING GROUP.  COVID-19 disease severity risk factors for pediatric patients in Italy.   Pediatrics. 2020;146(4):e2020009399. doi:10.1542/peds.2020-009399 PubMedGoogle Scholar
6.
Götzinger  F, Santiago-García  B, Noguera-Julián  A,  et al; ptbnet COVID-19 Study Group.  COVID-19 in children and adolescents in Europe: a multinational, multicentre cohort study.   Lancet Child Adolesc Health. 2020;4(9):653-661. doi:10.1016/S2352-4642(20)30177-2 PubMedGoogle ScholarCrossref
7.
Graff  K, Smith  C, Silveira  L,  et al.  Risk factors for severe COVID-19 in children.   Pediatr Infect Dis J. 2021;40(4):e137-e145. doi:10.1097/INF.0000000000003043PubMedGoogle ScholarCrossref
8.
Van Cleave  J, Gortmaker  SL, Perrin  JM.  Dynamics of obesity and chronic health conditions among children and youth.   JAMA. 2010;303(7):623-630. doi:10.1001/jama.2010.104 PubMedGoogle ScholarCrossref
9.
von Elm  E, Altman  DG, Egger  M, Pocock  SJ, Gøtzsche  PC, Vandenbroucke  JP; STROBE Initiative.  The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies.   Ann Intern Med. 2007;147(8):573-577. doi:10.7326/0003-4819-147-8-200710160-00010 PubMedGoogle ScholarCrossref
10.
Premier. Premier Healthcare Database (COVID-19): data that informs and performs. Published April 10, 2020. Accessed February 08, 2021. http://offers.premierinc.com/rs/381-NBB-525/images/PHD_COVID-19_White_Paper.pdf
11.
US Centers for Disease Control and Prevention. New ICD-10-CM code for the 2019 novel coronavirus (COVID-19). April 1, 2020. Accessed April 26, 2021. https://www.cdc.gov/nchs/data/icd/Announcement-New-ICD-code-for-coronavirus-3-18-2020.pdf
12.
US Centers for Disease Control and Prevention. COVID-19 racial and ethnic health disparities. December 10, 2020. Accessed May 11, 2021. https://www.cdc.gov/coronavirus/2019-ncov/community/health-equity/racial-ethnic-disparities/index.html
13.
Agency for Healthcare Research and Quality. Chronic Condition Indicator (CCI) for ICD-10-CM (beta version). Accessed April 26, 2021. https://www.hcup-us.ahrq.gov/toolssoftware/chronic_icd10/chronic_icd10.jsp
14.
Agency for Healthcare Research and Quality. Clinical Classifications Software Refined (CCSR). Published November 2020. Accessed April 26, 2021. https://www.hcup-us.ahrq.gov/toolssoftware/ccsr/ccs_refined.jsp
15.
Wells  BJ, Lenoir  KM, Wagenknecht  LE,  et al.  Detection of diabetes status and type in youth using electronic health records: the SEARCH for Diabetes in Youth Study.   Diabetes Care. 2020;43(10):2418-2425. doi:10.2337/dc20-0063 PubMedGoogle ScholarCrossref
16.
Simon  TD, Haaland  W, Hawley  K, Lambka  K, Mangione-Smith  R.  Development and validation of the Pediatric Medical Complexity Algorithm (PMCA) version 3.0.   Acad Pediatr. 2018;18(5):577-580. doi:10.1016/j.acap.2018.02.010 PubMedGoogle ScholarCrossref
17.
Spiegelman  D, Hertzmark  E.  Easy SAS calculations for risk or prevalence ratios and differences.   Am J Epidemiol. 2005;162(3):199-200. doi:10.1093/aje/kwi188 PubMedGoogle ScholarCrossref
18.
Zou  G.  A modified Poisson regression approach to prospective studies with binary data.   Am J Epidemiol. 2004;159(7):702-706. doi:10.1093/aje/kwh090 PubMedGoogle ScholarCrossref
19.
White  H.  A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity.   Econometrica. 1980;48(4):817-838. doi:10.2307/1912934 Google ScholarCrossref
20.
Simpson  M, Collins  C, Nash  DB, Panesar  LE, Oster  ME.  Coronavirus disease 2019 infection in children with pre-existing heart disease.   J Pediatr. 2020;227:302-307.e2. doi:10.1016/j.jpeds.2020.07.069 PubMedGoogle ScholarCrossref
21.
Barron  E, Bakhai  C, Kar  P,  et al.  Associations of type 1 and type 2 diabetes with COVID-19-related mortality in England: a whole-population study.   Lancet Diabetes Endocrinol. 2020;8(10):813-822. doi:10.1016/S2213-8587(20)30272-2 PubMedGoogle ScholarCrossref
22.
Rabbone  I, Schiaffini  R, Cherubini  V, Maffeis  C, Scaramuzza  A; Diabetes Study Group of the Italian Society for Pediatric Endocrinology and Diabetes.  Has COVID-19 delayed the diagnosis and worsened the presentation of type 1 diabetes in children?   Diabetes Care. 2020;43(11):2870-2872. doi:10.2337/dc20-1321 PubMedGoogle ScholarCrossref
23.
Kamrath  C, Mönkemöller  K, Biester  T,  et al.  Ketoacidosis in children and adolescents with newly diagnosed type 1 diabetes during the COVID-19 pandemic in Germany.   JAMA. 2020;324(8):801-804. doi:10.1001/jama.2020.13445 PubMedGoogle ScholarCrossref
24.
Cherubini  V, Gohil  A, Addala  A,  et al.  Unintended consequences of coronavirus disease-2019: remember general pediatrics.   J Pediatr. 2020;223:197-198. doi:10.1016/j.jpeds.2020.05.004 PubMedGoogle ScholarCrossref
25.
Basatemur  E, Jones  A, Peters  M, Ramnarayan  P.  Paediatric critical care referrals of children with diabetic ketoacidosis during the COVID-19 pandemic.   Arch Dis Child. 2021;106(4):e21. doi:10.1136/archdischild-2020-320471 PubMedGoogle Scholar
26.
Verma  A, Rajput  R, Verma  S, Balania  VKB, Jangra  B.  Impact of lockdown in COVID 19 on glycemic control in patients with type 1 diabetes mellitus.   Diabetes Metab Syndr. 2020;14(5):1213-1216. doi:10.1016/j.dsx.2020.07.016 PubMedGoogle ScholarCrossref
27.
Singh  AK, Singh  R.  Hyperglycemia without diabetes and new-onset diabetes are both associated with poorer outcomes in COVID-19.   Diabetes Res Clin Pract. 2020;167:108382. doi:10.1016/j.diabres.2020.108382 PubMedGoogle Scholar
28.
National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention. Data and statistics on children's mental health. Accessed November 11, 2020. https://www.cdc.gov/childrensmentalhealth/data.html
29.
Patrick  SW, Henkhaus  LE, Zickafoose  JS,  et al.  Well-being of parents and children during the COVID-19 pandemic: a national survey.   Pediatrics. 2020;146(4):e2020016824. doi:10.1542/peds.2020-016824 PubMedGoogle Scholar
30.
Leeb  RT, Bitsko  RH, Radhakrishnan  L, Martinez  P, Njai  R, Holland  KM.  Mental health-related emergency department visits among children aged <18 years during the COVID-19 pandemic—United States, January 1-October 17, 2020.   MMWR Morb Mortal Wkly Rep. 2020;69(45):1675-1680. doi:10.15585/mmwr.mm6945a3 PubMedGoogle ScholarCrossref
31.
US Centers for Disease Control and Prevention. Evidence used to update the list of underlying medical conditions that increase a person’s risk of severe illness from COVID-19. Updated March 29, 2021. Accessed April 26, 2021. https://www.cdc.gov/coronavirus/2019-ncov/need-extra-precautions/evidence-table.html
32.
Chang  TH, Chou  CC, Chang  LY.  Effect of obesity and body mass index on coronavirus disease 2019 severity: a systematic review and meta-analysis.   Obes Rev. 2020;21(11):e13089. doi:10.1111/obr.13089 PubMedGoogle Scholar
33.
Pranata  R, Lim  MA, Yonas  E,  et al.  Body mass index and outcome in patients with COVID-19: a dose-response meta-analysis.   Diabetes Metab. 2021;47(2):101178. doi:10.1016/j.diabet.2020.07.005 PubMedGoogle Scholar
34.
Tartof  SY, Qian  L, Hong  V,  et al.  Obesity and mortality among patients diagnosed with COVID-19: results from an integrated health care organization.   Ann Intern Med. 2020;173(10):773-781. doi:10.7326/M20-3742 PubMedGoogle ScholarCrossref
35.
Bixler  D, Miller  AD, Mattison  CP,  et al; Pediatric Mortality Investigation Team.  SARS-CoV-2-associated deaths among persons aged <21 years—United States, February 12-July 31, 2020.   MMWR Morb Mortal Wkly Rep. 2020;69(37):1324-1329. doi:10.15585/mmwr.mm6937e4 PubMedGoogle ScholarCrossref
36.
Zachariah  P, Johnson  CL, Halabi  KC,  et al; Columbia Pediatric COVID-19 Management Group.  Epidemiology, clinical features, and disease severity in patients with coronavirus disease 2019 (COVID-19) in a children’s hospital in New York City, New York.   JAMA Pediatr. 2020;174(10):e202430. doi:10.1001/jamapediatrics.2020.2430 PubMedGoogle Scholar
37.
Nogueira-de-Almeida  CA, Del Ciampo  LA, Ferraz  IS, Del Ciampo  IRL, Contini  AA, Ued  FDV.  COVID-19 and obesity in childhood and adolescence: a clinical review.   J Pediatr (Rio J). 2020;96(5):546-558. doi:10.1016/j.jped.2020.07.001 PubMedGoogle ScholarCrossref
38.
Cabezudo-García  P, Ciano-Petersen  NL, Mena-Vázquez  N, Pons-Pons  G, Castro-Sánchez  MV, Serrano-Castro  PJ.  Incidence and case fatality rate of COVID-19 in patients with active epilepsy.   Neurology. 2020;95(10):e1417-e1425. doi:10.1212/WNL.0000000000010033 PubMedGoogle ScholarCrossref
39.
Martin  JA, Hamilton  BE, Osterman  MJK.  Births in the United States, 2018.   NCHS Data Brief. 2019;(346):1-8.PubMedGoogle Scholar
40.
Saigal  S, Doyle  LW.  An overview of mortality and sequelae of preterm birth from infancy to adulthood.   Lancet. 2008;371(9608):261-269. doi:10.1016/S0140-6736(08)60136-1 PubMedGoogle ScholarCrossref
41.
Connors  JM, Levy  JH.  COVID-19 and its implications for thrombosis and anticoagulation.   Blood. 2020;135(23):2033-2040. doi:10.1182/blood.2020006000 PubMedGoogle ScholarCrossref
42.
Goldhaber  SZ.  Risk factors for venous thromboembolism.   J Am Coll Cardiol. 2010;56(1):1-7. doi:10.1016/j.jacc.2010.01.057 PubMedGoogle ScholarCrossref
43.
Di Filippo  L, Formenti  AM, Rovere-Querini  P,  et al.  Hypocalcemia is highly prevalent and predicts hospitalization in patients with COVID-19.   Endocrine. 2020;68(3):475-478. doi:10.1007/s12020-020-02383-5 PubMedGoogle ScholarCrossref
44.
Liu  J, Han  P, Wu  J, Gong  J, Tian  D.  Prevalence and predictive value of hypocalcemia in severe COVID-19 patients.   J Infect Public Health. 2020;13(9):1224-1228. doi:10.1016/j.jiph.2020.05.029 PubMedGoogle ScholarCrossref
45.
Zhao  Q, Meng  M, Kumar  R,  et al.  Lymphopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: a systemic review and meta-analysis.   Int J Infect Dis. 2020;96:131-135. doi:10.1016/j.ijid.2020.04.086 PubMedGoogle ScholarCrossref
46.
Huang  G, Kovalic  AJ, Graber  CJ.  Prognostic value of leukocytosis and lymphopenia for coronavirus disease severity.   Emerg Infect Dis. 2020;26(8):1839-1841. doi:10.3201/eid2608.201160 PubMedGoogle ScholarCrossref
47.
Arah  OA.  The role of causal reasoning in understanding Simpson’s paradox, Lord’s paradox, and the suppression effect: covariate selection in the analysis of observational studies.   Emerg Themes Epidemiol. 2008;5:5. doi:10.1186/1742-7622-5-5 PubMedGoogle ScholarCrossref
48.
Kadri  SS, Gundrum  J, Warner  S,  et al.  Uptake and accuracy of the diagnosis code for COVID-19 among US hospitalizations.   JAMA. 2020;324(24):2553-2554. doi:10.1001/jama.2020.20323 PubMedGoogle ScholarCrossref
49.
Sharifi  M, Rifas-Shiman  SL, Marshall  R,  et al.  Evaluating the implementation of expert committee recommendations for obesity assessment.   Clin Pediatr (Phila). 2013;52(2):131-138. doi:10.1177/0009922812471712 PubMedGoogle ScholarCrossref
50.
Borgmeyer  A, Ercole  PM, Niesen  A, Strunk  RC.  Lack of recognition, diagnosis, and treatment of overweight/obesity in children hospitalized for asthma.   Hosp Pediatr. 2016;6(11):667-676. doi:10.1542/hpeds.2015-0242 PubMedGoogle ScholarCrossref
51.
Hales  CM, Carroll  MD, Fryar  CD, Ogden  CL.  Prevalence of obesity among adults and youth: United States, 2015-2016.   NCHS Data Brief. 2017;(288):1-8.PubMedGoogle Scholar
52.
Lovinsky-Desir  S, Deshpande  DR, De  A,  et al.  Asthma among hospitalized patients with COVID-19 and related outcomes.   J Allergy Clin Immunol. 2020;146(5):1027-1034.e4. doi:10.1016/j.jaci.2020.07.026 PubMedGoogle ScholarCrossref
53.
Debevec  T, Burtscher  J, Millet  GP.  Preterm birth: potential risk factor for greater COVID-19 severity?   Respir Physiol Neurobiol. 2020;280:103484. doi:10.1016/j.resp.2020.103484PubMedGoogle Scholar
Limit 200 characters
Limit 25 characters
Conflicts of Interest Disclosure

Identify all potential conflicts of interest that might be relevant to your comment.

Conflicts of interest comprise financial interests, activities, and relationships within the past 3 years including but not limited to employment, affiliation, grants or funding, consultancies, honoraria or payment, speaker's bureaus, stock ownership or options, expert testimony, royalties, donation of medical equipment, or patents planned, pending, or issued.

Err on the side of full disclosure.

If you have no conflicts of interest, check "No potential conflicts of interest" in the box below. The information will be posted with your response.

Not all submitted comments are published. Please see our commenting policy for details.

Limit 140 characters
Limit 3600 characters or approximately 600 words
    Original Investigation
    Pediatrics
    June 7, 2021

    Underlying Medical Conditions Associated With Severe COVID-19 Illness Among Children

    Author Affiliations
    • 1COVID-19 Response, US Centers for Disease Control and Prevention, Atlanta, Georgia
    • 2Epidemic Intelligence Service, Center for Surveillance, Epidemiology and Laboratory Services, US Centers for Disease Control and Prevention, Atlanta, Georgia
    • 3US Public Health Service Commissioned Corps, Rockville, Maryland
    JAMA Netw Open. 2021;4(6):e2111182. doi:10.1001/jamanetworkopen.2021.11182
    Key Points

    Question  Among children with a COVID-19 diagnosis, what conditions are common, and which are associated with severe COVID-19 illness?

    Findings  In this cross-sectional study of 43 465 patients aged 18 years or younger with COVID-19, more than one-quarter had 1 or more underlying condition; asthma, obesity, neurodevelopmental disorders, and certain mental health conditions were most common. Certain conditions as well as medical complexity were associated with a higher risk of severe COVID-19 illness.

    Meaning  These findings expand the knowledge available regarding children with COVID-19 and could inform pediatric clinical practice and public health priorities, such as prevention and mitigation of COVID-19.

    Abstract

    Importance  Information on underlying conditions and severe COVID-19 illness among children is limited.

    Objective  To examine the risk of severe COVID-19 illness among children associated with underlying medical conditions and medical complexity.

    Design, Setting, and Participants  This cross-sectional study included patients aged 18 years and younger with International Statistical Classification of Diseases, Tenth Revision, Clinical Modification code U07.1 (COVID-19) or B97.29 (other coronavirus) during an emergency department or inpatient encounter from March 2020 through January 2021. Data were collected from the Premier Healthcare Database Special COVID-19 Release, which included data from more than 800 US hospitals. Multivariable generalized linear models, controlling for patient and hospital characteristics, were used to estimate adjusted risk of severe COVID-19 illness associated with underlying medical conditions and medical complexity.

    Exposures  Underlying medical conditions and medical complexity (ie, presence of complex or noncomplex chronic disease).

    Main Outcomes and Measures  Hospitalization and severe illness when hospitalized (ie, combined outcome of intensive care unit admission, invasive mechanical ventilation, or death).

    Results  Among 43 465 patients with COVID-19 aged 18 years or younger, the median (interquartile range) age was 12 (4-16) years, 22 943 (52.8%) were female patients, and 12 491 (28.7%) had underlying medical conditions. The most common diagnosed conditions were asthma (4416 [10.2%]), neurodevelopmental disorders (1690 [3.9%]), anxiety and fear-related disorders (1374 [3.2%]), depressive disorders (1209 [2.8%]), and obesity (1071 [2.5%]). The strongest risk factors for hospitalization were type 1 diabetes (adjusted risk ratio [aRR], 4.60; 95% CI, 3.91-5.42) and obesity (aRR, 3.07; 95% CI, 2.66-3.54), and the strongest risk factors for severe COVID-19 illness were type 1 diabetes (aRR, 2.38; 95% CI, 2.06-2.76) and cardiac and circulatory congenital anomalies (aRR, 1.72; 95% CI, 1.48-1.99). Prematurity was a risk factor for severe COVID-19 illness among children younger than 2 years (aRR, 1.83; 95% CI, 1.47-2.29). Chronic and complex chronic disease were risk factors for hospitalization, with aRRs of 2.91 (95% CI, 2.63-3.23) and 7.86 (95% CI, 6.91-8.95), respectively, as well as for severe COVID-19 illness, with aRRs of 1.95 (95% CI, 1.69-2.26) and 2.86 (95% CI, 2.47-3.32), respectively.

    Conclusions and Relevance  This cross-sectional study found a higher risk of severe COVID-19 illness among children with medical complexity and certain underlying conditions, such as type 1 diabetes, cardiac and circulatory congenital anomalies, and obesity. Health care practitioners could consider the potential need for close observation and cautious clinical management of children with these conditions and COVID-19.

    ×