Congenital Cytomegalovirus Infection Burden and Epidemiologic Risk Factors in Countries With Universal Screening: A Systematic Review and Meta-analysis | Global Health | JAMA Network Open | JAMA Network
[Skip to Navigation]
Sign In
Figure 1.  Congenital Cytomegalovirus (CMV) Prevalence by World Bank Income Level in High-Income Countries (HICs) and Low- to Middle-Income Countries
Congenital Cytomegalovirus (CMV) Prevalence by World Bank Income Level in High-Income Countries (HICs) and Low- to Middle-Income Countries

Effect size values represent congenital CMV cases expressed as a percentage and their corresponding 95% CIs. Blue squares and their corresponding lines are the point estimates and 95% CIs. Diamonds represent the pooled estimate of each subgroup's prevalence (width denotes 95% CI). Heterogeneity by income level: low- to middle-income countries, I2 = 96 (23 studies); high-income countries, I2 = 92% (54 studies). Differences between subgroups were all significant at P < .001.

Figure 2.  Symptomatic Congenital Cytomegalovirus (CMV) Prevalence by World Bank Income Level in High-Income Countries and Low- to Middle-Income Countries
Symptomatic Congenital Cytomegalovirus (CMV) Prevalence by World Bank Income Level in High-Income Countries and Low- to Middle-Income Countries

Effect size values represent congenital CMV cases expressed as a percentage and their corresponding 95% CIs. Blue squares and their corresponding lines are the point estimates and 95% CIs. Diamonds represent the pooled estimate of each subgroup's prevalence (width denotes 95% CI). Heterogeneity by income level: low- to middle-income countries (I2 = 60%; heterogeneity P < .001; 18 studies); high-income countries (I2 = 74%; heterogeneity P < .001; 42 studies); test for subgroup differences P = .90.

Figure 3.  Determinants and Temporal Trends of Congenital Cytomegalovirus (cCMV)
Determinants and Temporal Trends of Congenital Cytomegalovirus (cCMV)

A, Maternal CMV seroprevalence is a significant determinant of congenital CMV. B, The prevalence of congenital CMV has remained consistent for the past 6 decades. Linear fit from linear regression model. Circles represent countries and are labeled by their International Organization for Standardization (ISO) code. The size of the circle is proportional to the sample size of each study and the colors represent the World Health Organization region. The ISO codes are defined in eTable 1 in the Supplement.

Table.  Metaregression Analysisa
Metaregression Analysisa
1.
Buca  D, Di Mascio  D, Rizzo  G,  et al.  Outcome of fetuses with congenital cytomegalovirus infection and normal ultrasound at diagnosis: systematic review and meta-analysis.   Ultrasound Obstet Gynecol. 2021;57(4):551-559. doi:10.1002/uog.23143PubMedGoogle ScholarCrossref
2.
Korndewal  MJ, Oudesluys-Murphy  AM, Kroes  ACM, van der Sande  MAB, de Melker  HE, Vossen  ACTM.  Long-term impairment attributable to congenital cytomegalovirus infection: a retrospective cohort study.   Dev Med Child Neurol. 2017;59(12):1261-1268. doi:10.1111/dmcn.13556 PubMedGoogle ScholarCrossref
3.
Dollard  SC, Grosse  SD, Ross  DS.  New estimates of the prevalence of neurological and sensory sequelae and mortality associated with congenital cytomegalovirus infection.   Rev Med Virol. 2007;17(5):355-363. doi:10.1002/rmv.544 PubMedGoogle ScholarCrossref
4.
Goderis  J, De Leenheer  E, Smets  K, Van Hoecke  H, Keymeulen  A, Dhooge  I.  Hearing loss and congenital CMV infection: a systematic review.   Pediatrics. 2014;134(5):972-982. doi:10.1542/peds.2014-1173 PubMedGoogle ScholarCrossref
5.
Manicklal  S, Emery  VC, Lazzarotto  T, Boppana  SB, Gupta  RK.  The “silent” global burden of congenital cytomegalovirus.   Clin Microbiol Rev. 2013;26(1):86-102. doi:10.1128/CMR.00062-12 PubMedGoogle ScholarCrossref
6.
Lantos  PM, Maradiaga-Panayotti  G, Barber  X,  et al.  Geographic and racial disparities in infant hearing loss.   Otolaryngol Head Neck Surg. 2018;194599818803305. doi:10.1177/0194599818803305 PubMedGoogle Scholar
7.
Mwaanza  N, Chilukutu  L, Tembo  J,  et al.  High rates of congenital cytomegalovirus infection linked with maternal HIV infection among neonatal admissions at a large referral center in sub-Saharan Africa.   Clin Infect Dis. 2014;58(5):728-735. doi:10.1093/cid/cit766 PubMedGoogle ScholarCrossref
8.
Puhakka  L, Lappalainen  M, Lönnqvist  T,  et al.  The burden of congenital cytomegalovirus infection: a prospective cohort study of 20 000 infants in Finland.   J Pediatric Infect Dis Soc. 2019;8(3):205-212. doi:10.1093/jpids/piy027 PubMedGoogle ScholarCrossref
9.
Kenneson  A, Cannon  MJ.  Review and meta-analysis of the epidemiology of congenital cytomegalovirus (CMV) infection.   Rev Med Virol. 2007;17(4):253-276. doi:10.1002/rmv.535 PubMedGoogle ScholarCrossref
10.
Griffiths  PD.  Natural history studies bring universal screening for congenital CMV infection closer.   Rev Med Virol. 2019;29(4):e2072. doi:10.1002/rmv.2072 PubMedGoogle Scholar
11.
Lüsebrink  N, Kieslich  M, Rabenau  HF, Schlößer  RL, Buxmann  H.  Retrospectively diagnosing congenital cytomegalovirus infections in symptomatic infants is challenging.   Acta Paediatr. 2021;110(1):197-202. doi:10.1111/apa.15305 PubMedGoogle ScholarCrossref
12.
Nagel  A, Dimitrakopoulou  E, Teig  N,  et al.  Characterization of a universal screening approach for congenital CMV infection based on a highly-sensitive, quantitative, multiplex real-time PCR assay.   PLoS One. 2020;15(1):e0227143. doi:10.1371/journal.pone.0227143 PubMedGoogle Scholar
13.
Hotez  PJ.  Neglected infections of poverty in the United States of America.   PLoS Negl Trop Dis. 2008;2(6):e256. doi:10.1371/journal.pntd.0000256 PubMedGoogle Scholar
14.
The World Bank.  World Bank Country and Lending Groups. World Bank; 2019.
15.
Stroup  DF, Berlin  JA, Morton  SC,  et al.  Meta-analysis of observational studies in epidemiology: a proposal for reporting: Meta-analysis of Observational Studies in Epidemiology (MOOSE) group.   JAMA. 2000;283(15):2008-2012. doi:10.1001/jama.283.15.2008 PubMedGoogle ScholarCrossref
16.
Moher  D, Liberati  A, Tetzlaff  J, Altman  DG; PRISMA Group.  Preferred Reporting Items for Systematic Reviews and Meta-Analyses: the PRISMA statement.   PLoS Med. 2009;6(7):e1000097. doi:10.1371/journal.pmed.1000097 PubMedGoogle Scholar
17.
Boppana  SB, Ross  SA, Novak  Z,  et al; National Institute on Deafness and Other Communication Disorders CMV and Hearing Multicenter Screening (CHIMES) Study.  Dried blood spot real-time polymerase chain reaction assays to screen newborns for congenital cytomegalovirus infection.   JAMA. 2010;303(14):1375-1382. doi:10.1001/jama.2010.423 PubMedGoogle ScholarCrossref
18.
Pinninti  SG, Ross  SA, Shimamura  M,  et al; National Institute on Deafness and Other Communication Disorders CMV and Hearing Multicenter Screening (CHIMES) Study.  Comparison of saliva PCR assay versus rapid culture for detection of congenital cytomegalovirus infection.   Pediatr Infect Dis J. 2015;34(5):536-537. doi:10.1097/INF.0000000000000609 PubMedGoogle ScholarCrossref
19.
Kimberlin  DW, Jester  PM, Sánchez  PJ,  et al; National Institute of Allergy and Infectious Diseases Collaborative Antiviral Study Group.  Valganciclovir for symptomatic congenital cytomegalovirus disease.   N Engl J Med. 2015;372(10):933-943. doi:10.1056/NEJMoa1404599 PubMedGoogle ScholarCrossref
20.
Rawlinson  WD, Boppana  SB, Fowler  KB,  et al.  Congenital cytomegalovirus infection in pregnancy and the neonate: consensus recommendations for prevention, diagnosis, and therapy.   Lancet Infect Dis. 2017;17(6):e177-e188. doi:10.1016/S1473-3099(17)30143-3 PubMedGoogle ScholarCrossref
21.
Peterson  J, Welch  V, Losos  M, Tugwell  P.  The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-analyses. Ottawa Hospital Research Institute; 2011.
22.
Schwarzer  G, Chemaitelly  H, Abu-Raddad  LJ, Rücker  G.  Seriously misleading results using inverse of Freeman-Tukey double arcsine transformation in meta-analysis of single proportions.   Res Synth Methods. 2019;10(3):476-483. doi:10.1002/jrsm.1348 PubMedGoogle ScholarCrossref
23.
Lin  L, Chu  H.  Meta-analysis of proportions using generalized linear mixed models.   Epidemiology. 2020;31(5):713-717. doi:10.1097/EDE.0000000000001232 PubMedGoogle ScholarCrossref
24.
Higgins  JP, Thompson  SG, Deeks  JJ, Altman  DG.  Measuring inconsistency in meta-analyses.   BMJ. 2003;327(7414):557-560. doi:10.1136/bmj.327.7414.557 PubMedGoogle ScholarCrossref
25.
Egger  M, Davey Smith  G, Schneider  M, Minder  C.  Bias in meta-analysis detected by a simple, graphical test.   BMJ. 1997;315(7109):629-634. doi:10.1136/bmj.315.7109.629 PubMedGoogle ScholarCrossref
26.
Begg  CB, Mazumdar  M.  Operating characteristics of a rank correlation test for publication bias.   Biometrics. 1994;50(4):1088-1101. doi:10.2307/2533446 PubMedGoogle ScholarCrossref
27.
Duval  S, Tweedie  R.  Trim and fill: a simple funnel-plot–based method of testing and adjusting for publication bias in meta-analysis.   Biometrics. 2000;56(2):455-463. doi:10.1111/j.0006-341X.2000.00455.x PubMedGoogle ScholarCrossref
28.
Patsopoulos  NA, Evangelou  E, Ioannidis  JP.  Sensitivity of between-study heterogeneity in meta-analysis: proposed metrics and empirical evaluation.   Int J Epidemiol. 2008;37(5):1148-1157. doi:10.1093/ije/dyn065 PubMedGoogle ScholarCrossref
29.
Schwarzer  G, Carpenter  JR, Rücker  G.  Meta-analysis With R. Springer; 2015. doi:10.1007/978-3-319-21416-0
30.
van der Sande  MA, Kaye  S, Miles  DJ,  et al.  Risk factors for and clinical outcome of congenital cytomegalovirus infection in a peri-urban West-African birth cohort.   PLoS One. 2007;2(6):e492. doi:10.1371/journal.pone.0000492 PubMedGoogle Scholar
31.
Olusanya  BO, Slusher  TM, Boppana  SB.  Prevalence of congenital cytomegalovirus infection in Nigeria: a pilot study.   Pediatr Infect Dis J. 2015;34(3):322-324. doi:10.1097/INF.0000000000000555 PubMedGoogle ScholarCrossref
32.
Pathirana  J, Groome  M, Dorfman  J,  et al.  Prevalence of congenital cytomegalovirus infection and associated risk of in utero human immunodeficiency virus (HIV) acquisition in a high-HIV prevalence setting, South Africa.   Clin Infect Dis. 2019;69(10):1789-1796. doi:10.1093/cid/ciz019 PubMedGoogle ScholarCrossref
33.
Madrid  L, Varo  R, Maculuve  S,  et al.  Congenital cytomegalovirus, parvovirus and enterovirus infection in Mozambican newborns at birth: a cross-sectional survey.   PLoS One. 2018;13(3):e0194186. doi:10.1371/journal.pone.0194186 PubMedGoogle Scholar
34.
Otieno  NA, Nyawanda  BO, Otiato  F,  et al.  The impact of maternal HIV and malaria infection on the prevalence of congenital cytomegalovirus infection in Western Kenya.   J Clin Virol. 2019;120:33-37. doi:10.1016/j.jcv.2019.09.007 PubMedGoogle ScholarCrossref
35.
Schopfer  K, Lauber  E, Krech  U.  Congenital cytomegalovirus infection in newborn infants of mothers infected before pregnancy.   Arch Dis Child. 1978;53(7):536-539. doi:10.1136/adc.53.7.536 PubMedGoogle ScholarCrossref
36.
Luchsinger  V, Suárez  M, Schultz  R,  et al.  Incidence of congenital cytomegalovirus infection in newborn infants of different socioeconomic strata [Spanish].   Rev Med Chil. 1996;124(4):403-408.PubMedGoogle Scholar
37.
Cardoso  ES, Jesus  BL, Gomes  LG, Sousa  SM, Gadelha  SR, Marin  LJ.  The use of saliva as a practical and feasible alternative to urine in large-scale screening for congenital cytomegalovirus infection increases inclusion and detection rates.   Rev Soc Bras Med Trop. 2015;48(2):206-207. doi:10.1590/0037-8682-0200-2014 PubMedGoogle ScholarCrossref
38.
Yamamoto  AY, Mussi-Pinhata  MM, Isaac  MdeL,  et al.  Congenital cytomegalovirus infection as a cause of sensorineural hearing loss in a highly immune population.   Pediatr Infect Dis J. 2011;30(12):1043-1046. doi:10.1097/INF.0b013e31822d9640 PubMedGoogle ScholarCrossref
39.
Noyola  DE, Mejía-Elizondo  AR, Canseco-Lima  JM, Allende-Carrera  R, Hernánsez-Salinas  AE, Ramírez-Zacarías  JL.  Congenital cytomegalovirus infection in San Luis Potosi, Mexico.   Pediatr Infect Dis J. 2003;22(1):89-90. doi:10.1097/00006454-200301000-00022 PubMedGoogle ScholarCrossref
40.
Estripeaut  D, Moreno  Y, Ahumada  SR, Martínez  A, Racine  J, Sáez-Llorens  X. Seroprevalence of cytomegalovirus infection in puerperal women and its impact on their newborns. Presented at: Anales de pediatria; Barcelona, Spain; 2007.
41.
Yamamoto  AY, Anastasio  ART, Massuda  ET,  et al.  Contribution of congenital cytomegalovirus infection to permanent hearing loss in a highly seropositive population: the Brazilian Cytomegalovirus Hearing and Maternal Secondary Infection Study.   Clin Infect Dis. 2020;70(7):1379-1384. doi:10.1093/cid/ciz413 PubMedGoogle ScholarCrossref
42.
Yamamoto  AY, Mussi-Pinhata  MM, Pinto  PC, Figueiredo  LT, Jorge  SM.  Usefulness of blood and urine samples collected on filter paper in detecting cytomegalovirus by the polymerase chain reaction technique.   J Virol Methods. 2001;97(1-2):159-164. doi:10.1016/S0166-0934(01)00347-0 PubMedGoogle ScholarCrossref
43.
Rico  A, Dollard  SC, Valencia  D,  et al.  Epidemiology of cytomegalovirus Infection among mothers and infants in Colombia.   J Med Virol. Published online January 21, 2021. doi:10.1002/jmv.26815 PubMedGoogle Scholar
44.
Stagno  S, Dworsky  ME, Torres  J, Mesa  T, Hirsh  T.  Prevalence and importance of congenital cytomegalovirus infection in three different populations.   J Pediatr. 1982;101(6):897-900. doi:10.1016/S0022-3476(82)80006-1 PubMedGoogle ScholarCrossref
45.
Fowler  KB, Stagno  S, Pass  RF.  Maternal age and congenital cytomegalovirus infection: screening of two diverse newborn populations, 1980-1990.   J Infect Dis. 1993;168(3):552-556. doi:10.1093/infdis/168.3.552 PubMedGoogle ScholarCrossref
46.
Boppana  SB, Fowler  KB, Britt  WJ, Stagno  S, Pass  RF.  Symptomatic congenital cytomegalovirus infection in infants born to mothers with preexisting immunity to cytomegalovirus.   Pediatrics. 1999;104(1, pt 1):55-60. doi:10.1542/peds.104.1.55 PubMedGoogle ScholarCrossref
47.
Kharrazi  M, Hyde  T, Young  S, Amin  MM, Cannon  MJ, Dollard  SC.  Use of screening dried blood spots for estimation of prevalence, risk factors, and birth outcomes of congenital cytomegalovirus infection.   J Pediatr. 2010;157(2):191-197. doi:10.1016/j.jpeds.2010.03.002 PubMedGoogle ScholarCrossref
48.
Boppana  SB, Ross  SA, Shimamura  M,  et al; National Institute on Deafness and Other Communication Disorders CHIMES Study.  Saliva polymerase-chain-reaction assay for cytomegalovirus screening in newborns.   N Engl J Med. 2011;364(22):2111-2118. doi:10.1056/NEJMoa1006561 PubMedGoogle ScholarCrossref
49.
Dollard  SC, Dreon  M, Hernandez-Alvarado  N,  et al.  Sensitivity of dried blood spot testing for detection of congenital cytomegalovirus infection.   JAMA Pediatr. 2021;175(3):e205441-e205441. doi:10.1001/jamapediatrics.2020.5441 PubMedGoogle ScholarCrossref
50.
Stagno  S, Pass  RF, Cloud  G,  et al.  Primary cytomegalovirus infection in pregnancy: incidence, transmission to fetus, and clinical outcome.   JAMA. 1986;256(14):1904-1908. doi:10.1001/jama.1986.03380140074025 PubMedGoogle ScholarCrossref
51.
Starr  JG, Bart  RD  Jr, Gold  E.  Inapparent congenital cytomegalovirus infection: clinical and epidemiologic characteristics in early infancy.   N Engl J Med. 1970;282(19):1075-1078. doi:10.1056/NEJM197005072821905 PubMedGoogle ScholarCrossref
52.
Birnbaum  G, Lynch  JI, Maribeth  AM, Lonergan  WM, Sever  JL.  Cytomegalovirus infections in newborn infants.   J Pediatr. 1969;75(5):789-795. doi:10.1016/S0022-3476(69)80301-X PubMedGoogle ScholarCrossref
53.
Stagno  S, Reynolds  DW, Huang  E-S, Thames  SD, Smith  RJ, Alford  CA  Jr.  Congenital cytomegalovirus infection.   N Engl J Med. 1977;296(22):1254-1258. doi:10.1056/NEJM197706022962203 PubMedGoogle ScholarCrossref
54.
Melish  ME, Hanshaw  JB.  Congenital cytomegalovirus infection: progress of infants detected by routine screening.   AJDC. 1973;126(2):190-194. doi:10.1001/archpedi.1973.02110190168011 PubMedGoogle Scholar
55.
Larke  RP, Wheatley  E, Saigal  S, Chernesky  MA.  Congenital cytomegalovirus infection in an urban Canadian community.   J Infect Dis. 1980;142(5):647-653. doi:10.1093/infdis/142.5.647 PubMedGoogle ScholarCrossref
56.
Yow  MD, Williamson  DW, Leeds  LJ,  et al.  Epidemiologic characteristics of cytomegalovirus infection in mothers and their infants.   Am J Obstet Gynecol. 1988;158(5):1189-1195. doi:10.1016/0002-9378(88)90252-9 PubMedGoogle ScholarCrossref
57.
Embil  JA, Macdonald  JM, Scott  KE.  Survey of a neonatal population for the prevalence of cytomegalovirus.   Scand J Infect Dis. 1975;7(3):165-167. doi:10.3109/inf.1975.7.issue-3.02 PubMedGoogle ScholarCrossref
58.
Hanshaw  JB, Steinfeld  HJ, White  CJ.  Fluorescent-antibody test for cytomegalovirus macroglobulin.   N Engl J Med. 1968;279(11):566-570. doi:10.1056/NEJM196809122791102 PubMedGoogle ScholarCrossref
59.
Montgomery  JR, Mason  EO  Jr, Williamson  AP, Desmond  MM, South  MA.  Prospective study of congenital cytomegalovirus infection.   South Med J. 1980;73(5):590-593, 595. doi:10.1097/00007611-198005000-00012 PubMedGoogle ScholarCrossref
60.
Hildebrandt  RJ, Sever  JL, Margileth  AM, Callagan  DA.  Cytomegalovirus in the normal pregnant woman.   Am J Obstet Gynecol. 1967;98(8):1125-1128. doi:10.1016/0002-9378(67)90038-5 PubMedGoogle ScholarCrossref
61.
Karimian  P, Yaghini  O, Nasr Azadani  H,  et al.  Prevalence, characteristics, and one-year follow-up of congenital cytomegalovirus infection in Isfahan City, Iran.   Interdiscip Perspect Infect Dis. 2016;2016:7812106. doi:10.1155/2016/7812106PubMedGoogle Scholar
62.
Fahimzad  A, Afgeh  SA, Eghbali  E, Abdinia  B, Shiva  F, Rahbar  M.  Screening of congenital CMV infection in saliva of neonates by PCR: report of a pilot screening study in Iran.   Clin Lab. 2013;59(9-10):1171-1174. doi:10.7754/Clin.Lab.2013.120910 PubMedGoogle Scholar
63.
Noorbakhsh  S, Farhadi  M, Haghighi  F, Minaeian  S, Hasanabad  MH.  Neonatal screening for congenital cytomegalovirus infection in Tehran, Iran, using Guthrie cards.   Iran J Microbiol. 2020;12(3):198-203. doi:10.18502/ijm.v12i3.3236 PubMedGoogle Scholar
64.
Schlesinger  Y, Halle  D, Eidelman  AI,  et al.  Urine polymerase chain reaction as a screening tool for the detection of congenital cytomegalovirus infection.   Arch Dis Child Fetal Neonatal Ed. 2003;88(5):F371-F374. doi:10.1136/fn.88.5.F371 PubMedGoogle ScholarCrossref
65.
Barlinn  R, Dudman  SG, Trogstad  L,  et al.  Maternal and congenital cytomegalovirus infections in a population-based pregnancy cohort study.   APMIS. 2018;126(12):899-906. doi:10.1111/apm.12899 PubMedGoogle ScholarCrossref
66.
Sahiner  F, Cekmez  F, Cetinkaya  M,  et al.  Congenital cytomegalovirus infections and glycoprotein B genotypes in live-born infants: a prevalence study in Turkey.   Infect Dis (Lond). 2015;47(7):465-471. doi:10.3109/23744235.2015.1018316 PubMedGoogle ScholarCrossref
67.
Barbi  M, Binda  S, Caroppo  S,  et al.  Multicity Italian study of congenital cytomegalovirus infection.   Pediatr Infect Dis J. 2006;25(2):156-159. doi:10.1097/01.inf.0000199261.98769.29 PubMedGoogle ScholarCrossref
68.
Barbi  M, Binda  S, Primache  V, Clerici  D; NEOCMV Group.  Congenital cytomegalovirus infection in a northern Italian region.   Eur J Epidemiol. 1998;14(8):791-796. doi:10.1023/A:1007554726449 PubMedGoogle ScholarCrossref
69.
Barkai  G, Ari-Even Roth  D, Barzilai  A,  et al.  Universal neonatal cytomegalovirus screening using saliva—report of clinical experience.   J Clin Virol. 2014;60(4):361-366. doi:10.1016/j.jcv.2014.04.024 PubMedGoogle ScholarCrossref
70.
de Vries  JJ, Korver  AM, Verkerk  PH,  et al.  Congenital cytomegalovirus infection in the Netherlands: birth prevalence and risk factors.   J Med Virol. 2011;83(10):1777-1782. doi:10.1002/jmv.22181 PubMedGoogle ScholarCrossref
71.
Foulon  I, Naessens  A, Foulon  W, Casteels  A, Gordts  F.  A 10-year prospective study of sensorineural hearing loss in children with congenital cytomegalovirus infection.   J Pediatr. 2008;153(1):84-88. doi:10.1016/j.jpeds.2007.12.049 PubMedGoogle ScholarCrossref
72.
Barkai  G, Barzilai  A, Mendelson  E, Tepperberg-Oikawa  M, Roth  DA, Kuint  J.  Newborn screening for congenital cytomegalovirus using real-time polymerase chain reaction in umbilical cord blood.   Isr Med Assoc J. 2013;15(6):279-283.PubMedGoogle Scholar
73.
Waters  A, Jennings  K, Fitzpatrick  E,  et al.  Incidence of congenital cytomegalovirus infection in Ireland: implications for screening and diagnosis.   J Clin Virol. 2014;59(3):156-160. doi:10.1016/j.jcv.2013.12.007 PubMedGoogle ScholarCrossref
74.
Halwachs-Baumann  G, Genser  B, Danda  M,  et al.  Screening and diagnosis of congenital cytomegalovirus infection: a 5-y study.   Scand J Infect Dis. 2000;32(2):137-142. doi:10.1080/003655400750045222 PubMedGoogle Scholar
75.
Paradiž  KR, Seme  K, Puklavec  E, Paro-Panjan  D, Poljak  M.  Prevalence of congenital cytomegalovirus infection in Slovenia: a study on 2,841 newborns.   J Med Virol. 2012;84(1):109-115. doi:10.1002/jmv.22230 PubMedGoogle ScholarCrossref
76.
Arapović  J, Rajič  B, Pati  S,  et al.  Cytomegalovirus seroprevalence and birth prevalence of congenital CMV infection in Bosnia and Herzegovina: a single-center experience.   Pediatr Infect Dis J. 2020;39(2):140-144. doi:10.1097/INF.0000000000002510 PubMedGoogle ScholarCrossref
77.
Paixão  P, Almeida  S, Gouveia  P, Vilarinho  L, Vaz Osório  R.  Prevalence of human cytomegalovirus congenital infection in Portuguese newborns.   Euro Surveill. 2009;14(9):13-15. PubMedGoogle Scholar
78.
Leruez-Ville  M, Magny  J-F, Couderc  S,  et al.  Risk factors for congenital cytomegalovirus infection following primary and nonprimary maternal infection: a prospective neonatal screening study using polymerase chain reaction in saliva.   Clin Infect Dis. 2017;65(3):398-404. doi:10.1093/cid/cix337 PubMedGoogle ScholarCrossref
79.
Gaytant  MA, Galama  JM, Semmekrot  BA,  et al.  The incidence of congenital cytomegalovirus infections in the Netherlands.   J Med Virol. 2005;76(1):71-75. doi:10.1002/jmv.20325 PubMedGoogle ScholarCrossref
80.
Engman  M-L, Malm  G, Engström  L,  et al.  Congenital CMV infection: prevalence in newborns and the impact on hearing deficit.   Scand J Infect Dis. 2008;40(11-12):935-942. doi:10.1080/00365540802308431 PubMedGoogle ScholarCrossref
81.
Griffiths  PD, Baboonian  C, Rutter  D, Peckham  C.  Congenital and maternal cytomegalovirus infections in a London population.   Br J Obstet Gynaecol. 1991;98(2):135-140. doi:10.1111/j.1471-0528.1991.tb13358.x PubMedGoogle ScholarCrossref
82.
Ahlfors  K, Ivarsson  S-A, Harris  S,  et al.  Congenital cytomegalovirus infection and disease in Sweden and the relative importance of primary and secondary maternal infections: preliminary findings from a prospective study.   Scand J Infect Dis. 1984;16(2):129-137. doi:10.3109/00365548409087131 PubMedGoogle ScholarCrossref
83.
Andersen  HK, Brostrøm  K, Hansen  KB,  et al.  A prospective study on the incidence and significance of congenital cytomegalovirus infection.   Acta Paediatr Scand. 1979;68(3):329-336. doi:10.1111/j.1651-2227.1979.tb05015.x PubMedGoogle Scholar
84.
Stern  H, Tucker  SM.  Prospective study of cytomegalovirus infection in pregnancy.   BMJ. 1973;2(5861):268-270. doi:10.1136/bmj.2.5861.268 PubMedGoogle ScholarCrossref
85.
Peckham  CS, Chin  KS, Coleman  JC, Henderson  K, Hurley  R, Preece  PM.  Cytomegalovirus infection in pregnancy: preliminary findings from a prospective study.   Lancet. 1983;1(8338):1352-1355. doi:10.1016/S0140-6736(83)92138-4 PubMedGoogle ScholarCrossref
86.
Leinikki  P, Granström  M-L, Santavuori  P, Pettay  O.  Epidemiology of cytomegalovirus infections during pregnancy and infancy: a prospective study.   Scand J Infect Dis. 1978;10(3):165-171. doi:10.3109/inf.1978.10.issue-3.02 PubMedGoogle ScholarCrossref
87.
Dar  L, Pati  SK, Patro  ARK,  et al.  Congenital cytomegalovirus infection in a highly seropositive semi-urban population in India.   Pediatr Infect Dis J. 2008;27(9):841-843. doi:10.1097/INF.0b013e3181723d55 PubMedGoogle ScholarCrossref
88.
Viswanathan  R, Bafna  S, Mergu  R,  et al.  Direct saliva real-time polymerase chain reaction assay shows low birth prevalence of congenital cytomegalovirus infection in urban western India.   Pediatr Infect Dis J. 2019;38(4):e65-e68. doi:10.1097/INF.0000000000002094 PubMedGoogle ScholarCrossref
89.
Putri  ND, Wiyatno  A, Dhenni  R,  et al.  Birth prevalence and characteristics of congenital cytomegalovirus infection in an urban birth cohort, Jakarta, Indonesia.   Int J Infect Dis. 2019;86:31-39. doi:10.1016/j.ijid.2019.06.009 PubMedGoogle ScholarCrossref
90.
Moteki  H, Isaka  Y, Inaba  Y,  et al.  A rational approach to identifying newborns with hearing loss caused by congenital cytomegalovirus infection by dried blood spot screening.   Acta Otolaryngol. 2018;138(8):708-712. doi:10.1080/00016489.2018.1441545 PubMedGoogle ScholarCrossref
91.
Zhang  X-W, Li  F, Yu  X-W, Shi  X-W, Shi  J, Zhang  J-P.  Physical and intellectual development in children with asymptomatic congenital cytomegalovirus infection: a longitudinal cohort study in Qinba mountain area, China.   J Clin Virol. 2007;40(3):180-185. doi:10.1016/j.jcv.2007.08.018 PubMedGoogle ScholarCrossref
92.
Tsai  CH, Tsai  FJ, Shih  YT, Wu  SF, Liu  SC, Tseng  YH.  Detection of congenital cytomegalovirus infection in Chinese newborn infants using polymerase chain reaction.   Acta Paediatr. 1996;85(10):1241-1243. doi:10.1111/j.1651-2227.1996.tb18237.x PubMedGoogle ScholarCrossref
93.
Sohn  YM, Park  KI, Lee  C, Han  DG, Lee  WY.  Congenital cytomegalovirus infection in Korean population with very high prevalence of maternal immunity.   J Korean Med Sci. 1992;7(1):47-51. doi:10.3346/jkms.1992.7.1.47 PubMedGoogle ScholarCrossref
94.
Wang  S, Wang  T, Zhang  W,  et al.  Cohort study on maternal cytomegalovirus seroprevalence and prevalence and clinical manifestations of congenital infection in China.   Medicine (Baltimore). 2017;96(5):e6007. doi:10.1097/MD.0000000000006007 PubMedGoogle Scholar
95.
Yamada  H, Tanimura  K, Fukushima  S,  et al.  A cohort study of the universal neonatal urine screening for congenital cytomegalovirus infection.   J Infect Chemother. 2020;26(8):790-794. doi:10.1016/j.jiac.2020.03.009 PubMedGoogle ScholarCrossref
96.
Koyano  S, Inoue  N, Oka  A,  et al; Japanese Congenital Cytomegalovirus Study Group.  Screening for congenital cytomegalovirus infection using newborn urine samples collected on filter paper: feasibility and outcomes from a multicentre study.   BMJ Open. 2011;1(1):e000118. doi:10.1136/bmjopen-2011-000118 PubMedGoogle Scholar
97.
Numazaki  K, Fujikawa  T.  Chronological changes of incidence and prognosis of children with asymptomatic congenital cytomegalovirus infection in Sapporo, Japan.   BMC Infect Dis. 2004;4(1):22. doi:10.1186/1471-2334-4-22 PubMedGoogle ScholarCrossref
98.
Endo  T, Goto  K, Ito  K,  et al.  Detection of congenital cytomegalovirus infection using umbilical cord blood samples in a screening survey.   J Med Virol. 2009;81(10):1773-1776. doi:10.1002/jmv.21594 PubMedGoogle ScholarCrossref
99.
Uchida  A, Tanimura  K, Morizane  M,  et al.  Clinical factors associated with congenital cytomegalovirus infection: a cohort study of pregnant women and newborns.   Clinical Infectious Diseases. 2020;71(11):2833-2839. doi:10.1093/cid/ciz1156 PubMedGoogle ScholarCrossref
100.
Yamaguchi  A, Oh-Ishi  T, Arai  T,  et al.  Screening for seemingly healthy newborns with congenital cytomegalovirus infection by quantitative real-time polymerase chain reaction using newborn urine: an observational study.   BMJ Open. 2017;7(1):e013810. doi:10.1136/bmjopen-2016-013810 PubMedGoogle Scholar
101.
Torii  Y, Yoshida  S, Yanase  Y,  et al.  Serological screening of immunoglobulin M and immunoglobulin G during pregnancy for predicting congenital cytomegalovirus infection.   BMC Pregnancy Childbirth. 2019;19(1):205. doi:10.1186/s12884-019-2360-1 PubMedGoogle ScholarCrossref
102.
Yamagishi  Y, Miyagawa  H, Wada  K,  et al.  CMV DNA detection in dried blood spots for diagnosing congenital CMV infection in Japan.   J Med Virol. 2006;78(7):923-925. doi:10.1002/jmv.20642 PubMedGoogle ScholarCrossref
103.
Kamada  M, Komori  A, Chiba  S, Nakao  T.  A prospective study of congenital cytomegalovirus infection in Japan.   Scand J Infect Dis. 1983;15(3):227-232. doi:10.3109/inf.1983.15.issue-3.01 PubMedGoogle ScholarCrossref
104.
Pellegrinelli  L, Alberti  L, Pariani  E, Barbi  M, Binda  S.  Diagnosing congenital cytomegalovirus infection: don’t get rid of dried blood spots.   BMC Infect Dis. 2020;20(1):217. doi:10.1186/s12879-020-4941-z PubMedGoogle ScholarCrossref
105.
Viechtbauer  W, Cheung  MWL.  Outlier and influence diagnostics for meta-analysis.   Res Synth Methods. 2010;1(2):112-125. doi:10.1002/jrsm.11 PubMedGoogle ScholarCrossref
106.
Lanzieri  TM, Dollard  SC, Bialek  SR, Grosse  SD.  Systematic review of the birth prevalence of congenital cytomegalovirus infection in developing countries.   Int J Infect Dis. 2014;22:44-48. doi:10.1016/j.ijid.2013.12.010 PubMedGoogle ScholarCrossref
107.
Paulson  JN, Williams  BL, Hehnly  C,  et al.  Paenibacillus infection with frequent viral coinfection contributes to postinfectious hydrocephalus in Ugandan infants.   Sci Transl Med. 2020;12(563):eaba0565. doi:10.1126/scitranslmed.aba0565 PubMedGoogle Scholar
108.
Olusanya  BO, Luxon  LM, Wirz  SL.  Benefits and challenges of newborn hearing screening for developing countries.   Int J Pediatr Otorhinolaryngol. 2004;68(3):287-305. doi:10.1016/j.ijporl.2003.10.015 PubMedGoogle ScholarCrossref
109.
Falconer  O, Newell  M-L, Jones  CE.  The effect of human immunodeficiency virus and cytomegalovirus infection on infant responses to vaccines: a review.   Front Immunol. 2018;9:328. doi:10.3389/fimmu.2018.00328 PubMedGoogle ScholarCrossref
110.
Afran  L, Garcia Knight  M, Nduati  E, Urban  BC, Heyderman  RS, Rowland-Jones  SL.  HIV-exposed uninfected children: a growing population with a vulnerable immune system?   Clin Exp Immunol. 2014;176(1):11-22. doi:10.1111/cei.12251 PubMedGoogle ScholarCrossref
111.
Barber  V, Calvert  A, Vandrevala  T,  et al.  Prevention of acquisition of cytomegalovirus infection in pregnancy through hygiene-based behavioral interventions: a systematic review and gap analysis.   Pediatr Infect Dis J. 2020;39(10):949-954. doi:10.1097/INF.0000000000002763 PubMedGoogle ScholarCrossref
112.
Mack  I, Burckhardt  MA, Heininger  U, Prüfer  F, Schulzke  S, Wellmann  S.  Symptomatic congenital cytomegalovirus infection in children of seropositive women.   Front Pediatr. 2017;5:134. doi:10.3389/fped.2017.00134 PubMedGoogle ScholarCrossref
113.
Coppola  T, Mangold  JF, Cantrell  S, Permar  SR.  Impact of maternal immunity on congenital cytomegalovirus birth prevalence and infant outcomes: a systematic review.   Vaccines (Basel). 2019;7(4):E129. doi:10.3390/vaccines7040129 PubMedGoogle Scholar
114.
Rozhnova  G, E Kretzschmar  M, van der Klis  F,  et al.  Short- and long-term impact of vaccination against cytomegalovirus: a modeling study.   BMC Med. 2020;18(1):174. doi:10.1186/s12916-020-01629-3 PubMedGoogle ScholarCrossref
115.
Adler  SP, Finney  JW, Manganello  AM, Best  AM.  Prevention of child-to-mother transmission of cytomegalovirus by changing behaviors: a randomized controlled trial.   Pediatr Infect Dis J. 1996;15(3):240-246. doi:10.1097/00006454-199603000-00013 PubMedGoogle ScholarCrossref
116.
Revello  MG, Tibaldi  C, Masuelli  G,  et al; CCPE Study Group.  Prevention of primary cytomegalovirus infection in pregnancy.   EBioMedicine. 2015;2(9):1205-1210. doi:10.1016/j.ebiom.2015.08.003 PubMedGoogle ScholarCrossref
117.
Vauloup-Fellous  C, Picone  O, Cordier  A-G,  et al.  Does hygiene counseling have an impact on the rate of CMV primary infection during pregnancy? results of a 3-year prospective study in a French hospital.   J Clin Virol. 2009;46(suppl 4):S49-S53. doi:10.1016/j.jcv.2009.09.003 PubMedGoogle ScholarCrossref
118.
Adler  SP, Finney  JW, Manganello  AM, Best  AM.  Prevention of child-to-mother transmission of cytomegalovirus among pregnant women.   J Pediatr. 2004;145(4):485-491. doi:10.1016/j.jpeds.2004.05.041 PubMedGoogle ScholarCrossref
119.
Cannon  MJ, Stowell  JD, Clark  R,  et al.  Repeated measures study of weekly and daily cytomegalovirus shedding patterns in saliva and urine of healthy cytomegalovirus-seropositive children.   BMC Infect Dis. 2014;14(1):569. doi:10.1186/s12879-014-0569-1 PubMedGoogle ScholarCrossref
120.
Dobbins  GC, Patki  A, Chen  D,  et al.  Association of CMV genomic mutations with symptomatic infection and hearing loss in congenital CMV infection.   BMC Infect Dis. 2019;19(1):1046. doi:10.1186/s12879-019-4681-0 PubMedGoogle ScholarCrossref
Limit 200 characters
Limit 25 characters
Conflicts of Interest Disclosure

Identify all potential conflicts of interest that might be relevant to your comment.

Conflicts of interest comprise financial interests, activities, and relationships within the past 3 years including but not limited to employment, affiliation, grants or funding, consultancies, honoraria or payment, speaker's bureaus, stock ownership or options, expert testimony, royalties, donation of medical equipment, or patents planned, pending, or issued.

Err on the side of full disclosure.

If you have no conflicts of interest, check "No potential conflicts of interest" in the box below. The information will be posted with your response.

Not all submitted comments are published. Please see our commenting policy for details.

Limit 140 characters
Limit 3600 characters or approximately 600 words
    Views 2,009
    Citations 0
    Original Investigation
    Infectious Diseases
    August 23, 2021

    Congenital Cytomegalovirus Infection Burden and Epidemiologic Risk Factors in Countries With Universal Screening: A Systematic Review and Meta-analysis

    Author Affiliations
    • 1Center for Neural Engineering, The Pennsylvania State University, University Park
    • 2Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park
    • 3Department of Public Health Sciences, The Pennsylvania State University College of Medicine, Hershey
    • 4Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey
    • 5College of Human and Health Development, The Pennsylvania State University, University Park
    • 6College of Engineering, The Pennsylvania State University, University Park
    • 7College of Agricultural Sciences, The Pennsylvania State University, University Park
    • 8Centre for Health Informatics, Computing, and Statistics, Lancaster University, Lancaster, United Kingdom
    • 9Department of Nutritional Sciences, The Pennsylvania State University, University Park
    • 10Division of Pediatric Infectious Disease, The Pennsylvania State University College of Medicine, Hershey
    • 11The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park
    • 12Department of Neurosurgery, The Pennsylvania State University College of Medicine, Hershey
    • 13Department of Physics, The Pennsylvania State University, University Park
    JAMA Netw Open. 2021;4(8):e2120736. doi:10.1001/jamanetworkopen.2021.20736
    Key Points

    Question  What are the pooled prevalence of congenital cytomegalovirus infection and factors associated with the rates in high-income and low- and middle-income countries?

    Findings  In this systematic review and meta-analysis including 77 studies from 36 countries comprising 515 646 infants younger than 3 weeks, the pooled overall prevalence of congenital cytomegalovirus was 0.67%. The infection burden was 3-fold greater in low- and middle-income countries than in high-income countries. Lower rates were reported in screening methods using blood compared with urine or saliva.

    Meaning  The findings of this study suggest that low- and middle-income countries incur the greatest infection burden of congenital cytomegalovirus; a global effort to address congenital cytomegalovirus in regions with the greatest prevalence is needed to reduce disease incidence and morbidity.

    Abstract

    Importance  Congenital cytomegalovirus (cCMV) infection is the most common congenital infection and the leading acquired cause of developmental disabilities and sensorineural deafness, yet a reliable assessment of the infection burden is lacking.

    Objectives  To estimate the birth prevalence of cCMV in low- and middle-income countries (LMICs) and high-income countries (HICs), characterize the rate by screening methods, and delineate associated risk factors of the infection.

    Data Sources  MEDLINE/PubMed, Scopus, and Cochrane Database of Systematic Reviews databases were searched from January 1, 1960, to March 1, 2021, and a total of 1322 studies were identified.

    Study Selection  Studies that provided data on the prevalence of cCMV derived from universal screening of infants younger than 3 weeks were included. Targeted screening studies were excluded.

    Data Extraction and Synthesis  Preferred Reporting Items for Systematic Reviews and Meta-analyses guideline was followed. Extraction was performed independently by 3 reviewers. Quality was assessed using the Newcastle-Ottawa Scale for cohort studies. Random-effects meta-analysis was undertaken. Metaregression was conducted to evaluate the association of sociodemographic characteristics, maternal seroprevalence, population-level HIV prevalence, and screening methods with the prevalence of cCMV.

    Main Outcomes and Measures  Birth prevalence of cCMV ascertained through universal screening of infants younger than 3 weeks for CMV from urine, saliva, or blood samples.

    Results  Seventy-seven studies comprising 515 646 infants met the inclusion criteria from countries representative of each World Bank income level. The estimated pooled overall prevalence of cCMV was 0.67% (95% CI, 0.54%-0.83%). The pooled birth prevalence of cCMV was 3-fold greater in LMICs (1.42%; 95% CI, 0.97%-2.08%; n = 23 studies) than in HICs (0.48%; 95% CI, 0.40%-0.59%, n = 54 studies). Screening methods with blood samples demonstrated lower rates of cCMV than urine or saliva samples (odds ratio [OR], 0.38; 95% CI, 0.23-0.66). Higher maternal CMV seroprevalence (OR, 1.19; 95% CI, 1.11-1.28), higher population-level HIV prevalence (OR, 1.22; 95% CI, 1.05-1.40), lower socioeconomic status (OR, 3.03; 95% CI, 2.05-4.47), and younger mean maternal age (OR, 0.85; 95% CI, 0.78-0.92, older age was associated with lower rates) were associated with higher rates of cCMV.

    Conclusions and Relevance  In this meta-analysis, LMICs appeared to incur the most significant infection burden. Lower rates of cCMV were reported by studies using only blood or serum as a screening method.

    Introduction

    Human herpesvirus 5, cytomegalovirus (CMV), is a common cause of asymptomatic or mild illness in immunocompetent children and adults. However, congenital CMV (cCMV) infection can lead to permanent sequelae in 15% to 18% of births, including death in 1%, neurocognitive sequelae in 5% to 15%, and hearing loss in 12% of individuals with cCMV.1-4

    Studies have suggested that cCMV infection is a disease of disparity, with increased incidence, prevalence, and severity in low-income populations.5-8 However, most studies that have been used to generate estimates of the burden of cCMV infection are from high-income countries (HICs).5,9 Thus, the burden of cCMV infection is likely higher than currently available studies suggest. Congenital CMV is likely underreported worldwide owing to the lack of available testing in low- and middle-income countries (LMICs) and lack of systematic testing in countries of all income levels.

    Differentiation of congenital vs early postnatal CMV infections requires testing near the time of birth and also after 3 weeks.10,11 Symptomatic infants are more likely to undergo testing shortly after birth than asymptomatic infants. However, most infants with cCMV will be asymptomatic at birth, and the sequelae of congenital infection will not be evident until weeks, months, or even years later.12 By the time sequelae are noted, it is too late to accurately assess the association of cCMV with the child’s outcome.11

    These difficulties in accurately diagnosing cCMV in low-resource settings have led to estimating the burden of cCMV from prevalence estimates derived primarily in HICs.5 This factor, in addition to not accounting for differences in risk factors, such as maternal educational level, HIV exposure, and income distribution, contribute to underestimating the burden of infection.5,13 We sought to estimate the prevalence of cCMV with a meta-analysis of LMIC and HIC prevalence studies and estimate the influence that diagnostic methods as well as demographic and clinical factors have on cCMV prevalence.

    Methods
    Data Sources and Extraction

    We searched the MEDLINE/PubMed, Scopus, and Cochrane Database of Systematic Reviews databases for studies published between January 1, 1960, and March 1, 2021, using a combination of medical subject headings and key words in the title and abstract denoting birth prevalence of cCMV. We used terms CMV or cytomegalovirus combined with congenital, or newborn combined with epidemiology (eg, incidence, prevalence, burden, mortality) to search peer-reviewed publications. A full list of search terms is provided in the eMethods in the Supplement. The search was performed for all countries by their categorization in the July 2019 World Bank list.14 This study followed the Meta-analysis of Observational Studies in Epidemiology (MOOSE) reporting guideline15 and the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) reporting guideline.16

    We also searched the references cited by the retrieved articles for additional material. We applied the following inclusion criteria: (1) original peer-reviewed studies, (2) identification of cCMV through universal screening, and (3) detection of CMV based on culture or polymerase chain reaction of urine, saliva, blood, serum, or dried blood spot samples collected within 3 weeks of birth. Studies not conducted in humans, case reports, letters to editor, case series, case-control studies, comparison studies, practice guidelines, meta-analyses, literature reviews, and commentaries were excluded. Studies that did not document CMV screening methods were also excluded. We did not impose any restrictions based on language of the articles or country. To further minimize selection bias and inflation of the prevalence estimates, we excluded studies that carried out targeted screening of CMV. These included studies conducted only in the HIV population, in neonates with abnormal results on hearing screening, and those admitted to the intensive care units. Some studies used the same population in several articles. For example, articles by the CMV and Hearing Multicenter Screening study group17,18 had multiple overlapping populations. Therefore, we excluded articles with overlapping study populations.

    Birth prevalence was defined as the number of infants with CMV infection divided by the total number of live-born infants tested for CMV in a defined population. Symptomatic cCMV infection was defined by each study, and definitions varied substantially across studies. The typical definition of the term symptomatic to describe clinical indications of CMV infection in newborns, known as cytomegalovirus inclusion disease, includes the presence of 1 or more of the following symptoms: petechiae, jaundice with associated hyperbilirubinemia, hepatosplenomegaly, thrombocytopenia, chorioretinitis, seizures, sensorineural hearing loss, microcephaly, intracranial calcifications, or fetal hydrops.19,20 The less-severe symptoms are usually transient in newborns. Many of the signs and symptoms listed are not specific to CMV or readily apparent, and hence symptomatic CMV often goes unrecognized in the absence of systematic attempts to identify it.

    We extracted information on the studies’ characteristics and their participants, methods used to diagnose CMV, country-specific potential predictors of cCMV (HIV status, income level), and methodologic quality. Three of us (P.B., M.A.R., and J.S.) initially independently screened the titles and abstracts of articles and obtained the full-text articles and performed data extraction on those meeting the inclusion criteria. Three of us (P.B., M.A.R., and J.S.) jointly reviewed a random subset of articles to ensure selection accuracy. Disagreements about the included articles were resolved by 2 of us (P.S. and C.H.). A detailed account of the inclusion/exclusion process is shown in eFigure 1 in the Supplement.

    Two of us (P.S. and C.H.) independently assessed the quality of the articles included in our analysis. Assessment of methodologic quality was conducted using the Newcastle-Ottawa Quality Assessment Scale, a validated tool for assessing cross-sectional, case-control, and cohort studies.21 Scores of 8 to the maximum score of 9 were defined as high quality; scores of 5 to 7 were defined as intermediate quality, and scores of 1 to 4 were considered low quality. Studies were included regardless of the risk of bias and quality scores, but metaregression analysis was conducted to ascertain the outcome of their inclusion.

    Race or ethnicity was classified by the investigators of each study included in the meta-analysis. Options were defined by participants. Race or ethnicity was assessed because it is associated with the incidence of cCMV.

    Statistical Analysis

    We adopted a narrative approach describing the number of studies, study settings, and diagnostic criteria for cCMV. Descriptive statistics are reported as proportions of a population and as medians (interquartile range).

    We applied random-effects models to estimate the prevalence of cCMV and their respective 95% CIs, and we reported the pooled prevalence as a percentage of the screened newborn infants. To pool the study estimates, we used a generalized linear mixed-effects model with the logit link. We estimated all parameters via maximizing the pseudolikelihood. The generalized linear mixed-effects model method is not affected by the potential problems of back-transformation of Freeman-Tukey double arcsine transformation of single proportions.22,23 Individual and pooled estimates are displayed using forest plots. Between-study variation was assessed using I2, which describes the percentage of total variation across studies that is due to heterogeneity rather than chance, expressed as percentage (low [25%], moderate [50%], and high [75%]).24 We report the pooled estimates as percentages.

    We conducted random-effects metaregression analysis to investigate the sources of heterogeneity. We examined the associations of each of the explanatory variables included in the metaregression in association with the prevalence of cCMV. These variables included study-level maternal median or mean age, the proportion with HIV/AIDS exposure, maternal CMV seroprevalence (IgG or IgM antibodies), the proportion born premature, the proportion of males, and the proportion of Black individuals for studies conducted in the US or Canada. We also explored the association of socioeconomic status (defined by country-specific income level as described by the World Bank14; low and middle income [≤$12 535] vs high income [≥$12 536], eFigure 2 in the Supplement), and population-level HIV prevalence. Differences in prevalence were also estimated by the biological specimen used for screening of CMV (blood, saliva, or urine). We regressed the estimates as a function of the study year to explore the prevalence trend.

    To evaluate possible publication bias, we visually inspected the funnel plot for asymmetry by plotting the study effect size against SEs of the effect size and performed the Egger linear regression test25 and Begg rank correlation test.26 The Duval and Tweedie trim and fill procedure was used to adjust for the publication bias.27 An influence and outlier study sensitivity analysis was undertaken to estimate the association of each study with the overall pooled estimate.28 The metaprop, escalc, and rma functions from the R packages meta and metafor were used for the analysis.29 All statistical analyses were performed with R software, version 3.6.2 (R Foundation). The significance level was set at P < .05, and all P values were 2-tailed.

    Results

    The initial literature search yielded 1322 articles (eFigure 1 in the Supplement); of these, we excluded 223 duplicates. After a review of titles and abstracts, we excluded 942 articles if they (1) were conducted in animals; (2) were case series, case-controls, or reviews; (3) were long-term outcomes or sequelae studies; or (4) solely compared the sensitivity of cCMV testing methods. We fully examined a total of 157 full-text articles and excluded 80 articles because (1) the study focused on a specific subpopulation (targeted screening), such as neonates with clinical signs of cCMV or a nonrepresentative demographic cohort; (2) there were overlapping study populations; and (3) the article was a systematic review. A total of 77 articles were included in this meta-analysis. The final studies were from 36 countries (eFigure 3 in the Supplement) on 5 continents and are categorized by World Health Organization regions as follows: Africa, 6 countries (6 studies)30-35; Americas–Latin, 5 countries (9 studies)36-44; Americas–US and Canada, 2 countries (18 studies)17,18,45-60; Eastern Mediterranean, 1 country (3 studies)61-63; Europe, 16 countries (24 studies)8,64-86; Southeast Asia, 2 countries (3 studies)87-89; and Western Pacific, 4 countries (14 studies).90-103 The present analysis included a total sample of 515 646 infants. The number of neonates included in individual studies ranged widely (minimum 117 to maximum 73 239), with a median of 2032 infants (interquartile range, 741-10 328). Details of each study included in the meta-analysis are provided in eTable 1 in the Supplement.

    Consistent with the expected publication bias, source articles from HICs (54 [70%]) were encountered more frequently than those from LMICs (23 [30%]). The median methodologic quality of studies in HICs was similar to that of LMICs. The estimated pooled overall prevalence of cCMV was 0.67% (95% CI, 0.54%-0.83%). Using the random-effects model, the prevalence of cCMV was significantly higher in LMICs (1.42%; 95% CI, 0.97%-2.08%) compared with HICs (0.48%; 95% CI, 0.40%-0.59%; P < .001 for subgroup differences) (Figure 1). Each subgroup's heterogeneity was high, as evidenced by the I2 value (>90% in each group). The definition of symptomatic cCMV varied by study. The most common cCMV clinical signs, laboratory test results, and imaging findings reported were sensorineural hearing loss, jaundice, hepatosplenomegaly, thrombocytopenia, and central nervous system involvement (microcephaly, intracranial calcifications, enlarged ventricles) (eTable 2 in the Supplement). Sixty studies reported the proportion of symptomatic cCMV. The pooled estimate was 10.85% (95% CI, 7.40%-15.65%). No significant differences were noted in the rates of symptomatic cCMV between LMICs (10.42%; 95% CI, 4.71%-21.49%) and HICs (11.0%; 95% CI, 7.10%-16.67%). Heterogeneity by income level was 60% (P < .001 for heterogeneity; 18 studies) for LMICs and 74% (P < .001 for heterogeneity; 42 studies) for HICs (P = .90 for subgroup differences) (Figure 2).

    Detection of CMV DNA in blood and the sensitivity of CMV polymerase chain reaction in dried blood spot samples is highly variable, ranging from 30% to 90% depending on the technique used.17 Therefore, screening studies based on CMV polymerase chain reaction of dried blood spots will probably underestimate cCMV prevalence, but with improved methods, this form of testing may become more useful.49,104 To assess possible differences in the estimates due to the biological specimens used for screening for cCMV, we conducted subgroup analysis comparing studies that carried out screening using urine and/or saliva samples with those that used only blood or serum. There was a significant difference in the cCMV prevalence rates between the biological specimens used for screening: 0.79% (95% CI, 0.63%-1.00%) for urine or saliva vs 0.31% (95% CI, 0.22%- 0.46%) for blood or serum only (P < .001 for subgroup differences) (eFigure 3 in the Supplement).

    A univariable random-effects metaregression model revealed LMICs (odds ratio [OR], 3.03; 95% CI, 2.05-4.47), higher maternal seroprevalence (OR, 1.19; 95% CI, 1.11-1.28) (Figure 3A), higher population-level HIV prevalence (OR, 1.22; 95% CI, 1.05-1.40), and younger maternal age (OR, 0.85; 95% CI, 0.78-0.92, older age was associated with lower cCMV rates) were significant factors associated with higher cCMV prevalence (Table). Screening methods with blood samples demonstrated lower rates of cCMV than urine or saliva samples (odds ratio [OR], 0.38; 95% CI, 0.23-0.66). When the analysis was restricted to studies conducted in the US and Canada, there was an association of Black individuals with a higher risk of cCMV prevalence compared with other races (OR, 1.13; 95% CI, 1.10-1.17; P < .01). Temporal trend analysis indicated that cCMV prevalence rate has remained constant for the past 60 years (R2 = 0.007; P = .48 for temporal trend) (Figure 3B).

    Influence and outlier sensitivity analyses were performed for the birth prevalence of cCMV.105 In this analysis, 1 study was omitted and replaced 1 study at a time (leave-1-out method) from the meta-analysis, and we calculated the pooled data for the remaining studies. The pooled estimate remained close to the observed overall pooled estimate, indicating that no individual study had a large influence on the pooled estimate. The pooled point estimate ranged from 0.65 to 0.69 (eFigure 4 in the Supplement).

    A symmetrical inverted funnel plot suggested the absence of publication bias (eFigure 5 in the Supplement). Similarly, neither the Begg rank correlation test (z = 0.83; P = .41) nor the Egger linear regression test (t = 0.05; df=75; P = .96) indicated publication bias. Nevertheless, the Duval and Tweedie trim and fill analysis was conducted to adjust for the potential small-study publication bias.27 Analyses suggested that the adjusted effect estimates would fall in the range of 0.57% to 0.87%, and no additional studies were added to the funnel plots (eFigure 6 in the Supplement). The median study quality score was 7 of 9 (range, 4-9).

    Discussion

    We report a comprehensive systematic review and meta-analysis of cCMV epidemiologic factors. More than 1300 titles were examined to identify 77 relevant peer-reviewed publications representing more than 500 000 neonates across 36 countries. The estimated birth prevalence of cCMV was 3-fold higher in LMICs than HICs. The higher maternal CMV seroprevalence, higher population-level HIV prevalence, and young maternal age were associated with cCMV rates. Screening methods for cCMV with urine and saliva samples provided higher prevalence rates than screening methods with blood or serum samples.17

    Others have attempted to estimate the prevalence of cCMV via systematic literature review, but these studies had limitations.9,106 The first systematic review of the global prevalence of cCMV was published in 2007.9 In this review, only 2 African countries and 1 country in the Southeast Asian region were included (Gambia and Ivory Coast from Africa and Thailand from Southeast Asia) and the risk factors were not systematically evaluated. In 2014, a systematic review of cCMV focusing on developing countries was published.106 Only 2 countries from Africa (Gambia and Ivory Coast) and 1 from Southeast Asia (India) were represented. This review did not evaluate the association of sociodemographic characteristics, maternal seroprevalence, fetal HIV exposure, maternal age, and race/ethnicity with the prevalence of cCMV. Since then, Africa and other LMICs have frequently published on congenital CMV (Figure 3B). Thus, an updated systematic review and meta-analysis is needed to accurately quantify the burden of cCMV to inform prevention, control, and mitigation strategies.

    The large numbers of cCMV are a significant public health concern. Congenital CMV is the leading cause of nongenetic hearing loss, adding substantially to disability-adjusted life years.1 In addition, CMV is associated with neonatal sepsis,7,88 a common cause of neonatal death in the developing world, and a disorder associated with significant sequelae, such as postinfectious hydrocephalus and other complications.107 The current guidelines for the treatment of moderate to severe symptomatic cCMV recommends 6 months of valganciclovir.20 However, the safety and cost of valganciclovir limit its use in LMICs. Therefore, children most likely to have cCMV also have the least access to treatment. In addition, children in LMICs are less likely to undergo routine developmental and hearing screening and to have access to interventions should they be found deficient in either of these domains.108 Therefore, cCMV in the LMICs remains an important unmet public health need.

    Metaregression analysis revealed that a higher prevalence of HIV infection explained a significant variation in the heterogeneity of the prevalence estimates. HIV and CMV coinfection has been shown to have a synergistic interaction contributing to the higher morbidity and mortality rates in the first year of life of those infected, compared with infants without HIV exposure.109 It is postulated that interaction of HIV-1 and CMV at the maternal-fetal placental interface and exposure to in utero antiretroviral therapy may cause phenotypical and functional immunologic changes in fetuses exposed to HIV, enabling increased cCMV susceptibility and burden in this population.110 The increased rate of cCMV in neonates exposed to HIV may be due to more-frequent CMV reinfection or reactivation in their mothers, the waning of protective immunity, or a reduced transplacental transfer of protective antibodies.32

    Current mitigation strategies in LMICs are limited to hygienic precautions and behavioral modification among pregnant women to prevent primary infection or reinfection with a new CMV strain during pregnancy.111 These measures would not be expected to have substantial influences on congenital infections associated with reactivation of maternal CMV during pregnancy. We found that higher maternal seroprevalence is associated with an increased prevalence of cCMV, suggesting that nonprimary infection plays an important role in contributing to the burden of cCMV.112,113 Our results underscore the need for an effective vaccine and treatment strategies that can be administered in LMICs without undue risks of adverse events.114 Measures to facilitate universal neonatal screening to allow for early detection of sensorineural hearing loss and developmental delay are needed.115-119 A long-term neurodevelopmental delay study to assess the true impact of untreated cCMV in LMICs is needed.

    Limitations

    Several limitations of the study require consideration. Africa and Southeast Asia regions were represented by relatively fewer countries (n = 8). Therefore, interpolating these few countries' estimates to the entire region introduces the potential for substantial selection and detection biases. Within- and between-country disparities in cCMV in sub-Saharan Africa have been observed. However, we used a random-effects model to represent unmodeled errors that could not be accounted for with the regression models used in this report. The very small sample sizes in some countries are another limitation that introduce selection bias and uncertainty. Furthermore, inclusions of limited populations within individual countries introduce a potential bias reflected in substantial differences in cCMV-reported prevalence. Also, symptomatic prevalence ranged widely across studies that could be linked to selection bias, and symptomatic cCMV can vary based on genetic variation of the virus that was not factored into this analysis.120 In addition, CMV detection methods provide varying sensitivity and specificity that could bias the pooled estimates. These limitations should serve as a road map for future studies to better estimate the global health and economic burden of cCMV and maximize capacity building for resource allocation in regions of greatest need.

    Conclusions

    Congenital CMV is a major public health concern with the burden of infection estimated to be 3-fold greater in LMICs than HICs. It is necessary to better understand the economic burden of cCMV and provide more robust evaluations of health care interventions designed to reduce its incidence and impact. Nationally representative population-based studies, particularly in LMICs, are needed to assess the burden of cCMV in those regions. Region-specific prevention, diagnosis, and treatment options, and community-based education programs are needed to mitigate the incidence of cCMV and its sequelae, particularly in resource-poor settings.

    Back to top
    Article Information

    Accepted for Publication: June 8, 2021.

    Published: August 23, 2021. doi:10.1001/jamanetworkopen.2021.20736

    Open Access: This is an open access article distributed under the terms of the CC-BY License. © 2021 Ssentongo P et al. JAMA Network Open.

    Corresponding Author: Paddy Ssentongo, MD, PhD, MPH, Penn State College of Medicine, 90 Hope Dr, Ste 2430, Hershey, PA 17033 (pssentongo@pennstatehealth.psu.edu).

    Author Contributions: Drs Ssentongo and Schiff had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. Dr Ssentongo and Ms Hehnly contributed equally as first authors, and Drs Ericson and Schiff contributed equally as senior authors.

    Concept and design: Ssentongo, Hehnly, Wang, Chinchilli, Broach, Ericson, Schiff.

    Acquisition, analysis, or interpretation of data: All authors.

    Drafting of the manuscript: Ssentongo, Hehnly, Roach, Al-Shaar, Chinchilli, Ericson, Schiff.

    Critical revision of the manuscript for important intellectual content: All authors.

    Statistical analysis: Ssentongo, Fronterre, Wang, Al-Shaar, Chinchilli.

    Obtained funding: Schiff.

    Administrative, technical, or material support: Hehnly.

    Supervision: Ssentongo, Hehnly, Chinchilli, Broach, Ericson, Schiff.

    Conflict of Interest Disclosures: None reported.

    Funding/Support: This work was supported by a US National Institutes of Health Director’s Transformative Award 1R01AI145057 (Dr Schiff).

    Role of the Funder/Sponsor: The funding organization had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

    Additional Information: This study is part of Dr Ssentongo’s doctoral dissertation with the College of Medicine, Pennsylvania State University. To facilitate replication of these findings, the supplementary material includes the full data set. R code and data to reproduce the results in this article are archived at GitHub. The link to GitHub is: https://github.com/ssentongojeddy/congenital-CMV.

    References
    1.
    Buca  D, Di Mascio  D, Rizzo  G,  et al.  Outcome of fetuses with congenital cytomegalovirus infection and normal ultrasound at diagnosis: systematic review and meta-analysis.   Ultrasound Obstet Gynecol. 2021;57(4):551-559. doi:10.1002/uog.23143PubMedGoogle ScholarCrossref
    2.
    Korndewal  MJ, Oudesluys-Murphy  AM, Kroes  ACM, van der Sande  MAB, de Melker  HE, Vossen  ACTM.  Long-term impairment attributable to congenital cytomegalovirus infection: a retrospective cohort study.   Dev Med Child Neurol. 2017;59(12):1261-1268. doi:10.1111/dmcn.13556 PubMedGoogle ScholarCrossref
    3.
    Dollard  SC, Grosse  SD, Ross  DS.  New estimates of the prevalence of neurological and sensory sequelae and mortality associated with congenital cytomegalovirus infection.   Rev Med Virol. 2007;17(5):355-363. doi:10.1002/rmv.544 PubMedGoogle ScholarCrossref
    4.
    Goderis  J, De Leenheer  E, Smets  K, Van Hoecke  H, Keymeulen  A, Dhooge  I.  Hearing loss and congenital CMV infection: a systematic review.   Pediatrics. 2014;134(5):972-982. doi:10.1542/peds.2014-1173 PubMedGoogle ScholarCrossref
    5.
    Manicklal  S, Emery  VC, Lazzarotto  T, Boppana  SB, Gupta  RK.  The “silent” global burden of congenital cytomegalovirus.   Clin Microbiol Rev. 2013;26(1):86-102. doi:10.1128/CMR.00062-12 PubMedGoogle ScholarCrossref
    6.
    Lantos  PM, Maradiaga-Panayotti  G, Barber  X,  et al.  Geographic and racial disparities in infant hearing loss.   Otolaryngol Head Neck Surg. 2018;194599818803305. doi:10.1177/0194599818803305 PubMedGoogle Scholar
    7.
    Mwaanza  N, Chilukutu  L, Tembo  J,  et al.  High rates of congenital cytomegalovirus infection linked with maternal HIV infection among neonatal admissions at a large referral center in sub-Saharan Africa.   Clin Infect Dis. 2014;58(5):728-735. doi:10.1093/cid/cit766 PubMedGoogle ScholarCrossref
    8.
    Puhakka  L, Lappalainen  M, Lönnqvist  T,  et al.  The burden of congenital cytomegalovirus infection: a prospective cohort study of 20 000 infants in Finland.   J Pediatric Infect Dis Soc. 2019;8(3):205-212. doi:10.1093/jpids/piy027 PubMedGoogle ScholarCrossref
    9.
    Kenneson  A, Cannon  MJ.  Review and meta-analysis of the epidemiology of congenital cytomegalovirus (CMV) infection.   Rev Med Virol. 2007;17(4):253-276. doi:10.1002/rmv.535 PubMedGoogle ScholarCrossref
    10.
    Griffiths  PD.  Natural history studies bring universal screening for congenital CMV infection closer.   Rev Med Virol. 2019;29(4):e2072. doi:10.1002/rmv.2072 PubMedGoogle Scholar
    11.
    Lüsebrink  N, Kieslich  M, Rabenau  HF, Schlößer  RL, Buxmann  H.  Retrospectively diagnosing congenital cytomegalovirus infections in symptomatic infants is challenging.   Acta Paediatr. 2021;110(1):197-202. doi:10.1111/apa.15305 PubMedGoogle ScholarCrossref
    12.
    Nagel  A, Dimitrakopoulou  E, Teig  N,  et al.  Characterization of a universal screening approach for congenital CMV infection based on a highly-sensitive, quantitative, multiplex real-time PCR assay.   PLoS One. 2020;15(1):e0227143. doi:10.1371/journal.pone.0227143 PubMedGoogle Scholar
    13.
    Hotez  PJ.  Neglected infections of poverty in the United States of America.   PLoS Negl Trop Dis. 2008;2(6):e256. doi:10.1371/journal.pntd.0000256 PubMedGoogle Scholar
    14.
    The World Bank.  World Bank Country and Lending Groups. World Bank; 2019.
    15.
    Stroup  DF, Berlin  JA, Morton  SC,  et al.  Meta-analysis of observational studies in epidemiology: a proposal for reporting: Meta-analysis of Observational Studies in Epidemiology (MOOSE) group.   JAMA. 2000;283(15):2008-2012. doi:10.1001/jama.283.15.2008 PubMedGoogle ScholarCrossref
    16.
    Moher  D, Liberati  A, Tetzlaff  J, Altman  DG; PRISMA Group.  Preferred Reporting Items for Systematic Reviews and Meta-Analyses: the PRISMA statement.   PLoS Med. 2009;6(7):e1000097. doi:10.1371/journal.pmed.1000097 PubMedGoogle Scholar
    17.
    Boppana  SB, Ross  SA, Novak  Z,  et al; National Institute on Deafness and Other Communication Disorders CMV and Hearing Multicenter Screening (CHIMES) Study.  Dried blood spot real-time polymerase chain reaction assays to screen newborns for congenital cytomegalovirus infection.   JAMA. 2010;303(14):1375-1382. doi:10.1001/jama.2010.423 PubMedGoogle ScholarCrossref
    18.
    Pinninti  SG, Ross  SA, Shimamura  M,  et al; National Institute on Deafness and Other Communication Disorders CMV and Hearing Multicenter Screening (CHIMES) Study.  Comparison of saliva PCR assay versus rapid culture for detection of congenital cytomegalovirus infection.   Pediatr Infect Dis J. 2015;34(5):536-537. doi:10.1097/INF.0000000000000609 PubMedGoogle ScholarCrossref
    19.
    Kimberlin  DW, Jester  PM, Sánchez  PJ,  et al; National Institute of Allergy and Infectious Diseases Collaborative Antiviral Study Group.  Valganciclovir for symptomatic congenital cytomegalovirus disease.   N Engl J Med. 2015;372(10):933-943. doi:10.1056/NEJMoa1404599 PubMedGoogle ScholarCrossref
    20.
    Rawlinson  WD, Boppana  SB, Fowler  KB,  et al.  Congenital cytomegalovirus infection in pregnancy and the neonate: consensus recommendations for prevention, diagnosis, and therapy.   Lancet Infect Dis. 2017;17(6):e177-e188. doi:10.1016/S1473-3099(17)30143-3 PubMedGoogle ScholarCrossref
    21.
    Peterson  J, Welch  V, Losos  M, Tugwell  P.  The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-analyses. Ottawa Hospital Research Institute; 2011.
    22.
    Schwarzer  G, Chemaitelly  H, Abu-Raddad  LJ, Rücker  G.  Seriously misleading results using inverse of Freeman-Tukey double arcsine transformation in meta-analysis of single proportions.   Res Synth Methods. 2019;10(3):476-483. doi:10.1002/jrsm.1348 PubMedGoogle ScholarCrossref
    23.
    Lin  L, Chu  H.  Meta-analysis of proportions using generalized linear mixed models.   Epidemiology. 2020;31(5):713-717. doi:10.1097/EDE.0000000000001232 PubMedGoogle ScholarCrossref
    24.
    Higgins  JP, Thompson  SG, Deeks  JJ, Altman  DG.  Measuring inconsistency in meta-analyses.   BMJ. 2003;327(7414):557-560. doi:10.1136/bmj.327.7414.557 PubMedGoogle ScholarCrossref
    25.
    Egger  M, Davey Smith  G, Schneider  M, Minder  C.  Bias in meta-analysis detected by a simple, graphical test.   BMJ. 1997;315(7109):629-634. doi:10.1136/bmj.315.7109.629 PubMedGoogle ScholarCrossref
    26.
    Begg  CB, Mazumdar  M.  Operating characteristics of a rank correlation test for publication bias.   Biometrics. 1994;50(4):1088-1101. doi:10.2307/2533446 PubMedGoogle ScholarCrossref
    27.
    Duval  S, Tweedie  R.  Trim and fill: a simple funnel-plot–based method of testing and adjusting for publication bias in meta-analysis.   Biometrics. 2000;56(2):455-463. doi:10.1111/j.0006-341X.2000.00455.x PubMedGoogle ScholarCrossref
    28.
    Patsopoulos  NA, Evangelou  E, Ioannidis  JP.  Sensitivity of between-study heterogeneity in meta-analysis: proposed metrics and empirical evaluation.   Int J Epidemiol. 2008;37(5):1148-1157. doi:10.1093/ije/dyn065 PubMedGoogle ScholarCrossref
    29.
    Schwarzer  G, Carpenter  JR, Rücker  G.  Meta-analysis With R. Springer; 2015. doi:10.1007/978-3-319-21416-0
    30.
    van der Sande  MA, Kaye  S, Miles  DJ,  et al.  Risk factors for and clinical outcome of congenital cytomegalovirus infection in a peri-urban West-African birth cohort.   PLoS One. 2007;2(6):e492. doi:10.1371/journal.pone.0000492 PubMedGoogle Scholar
    31.
    Olusanya  BO, Slusher  TM, Boppana  SB.  Prevalence of congenital cytomegalovirus infection in Nigeria: a pilot study.   Pediatr Infect Dis J. 2015;34(3):322-324. doi:10.1097/INF.0000000000000555 PubMedGoogle ScholarCrossref
    32.
    Pathirana  J, Groome  M, Dorfman  J,  et al.  Prevalence of congenital cytomegalovirus infection and associated risk of in utero human immunodeficiency virus (HIV) acquisition in a high-HIV prevalence setting, South Africa.   Clin Infect Dis. 2019;69(10):1789-1796. doi:10.1093/cid/ciz019 PubMedGoogle ScholarCrossref
    33.
    Madrid  L, Varo  R, Maculuve  S,  et al.  Congenital cytomegalovirus, parvovirus and enterovirus infection in Mozambican newborns at birth: a cross-sectional survey.   PLoS One. 2018;13(3):e0194186. doi:10.1371/journal.pone.0194186 PubMedGoogle Scholar
    34.
    Otieno  NA, Nyawanda  BO, Otiato  F,  et al.  The impact of maternal HIV and malaria infection on the prevalence of congenital cytomegalovirus infection in Western Kenya.   J Clin Virol. 2019;120:33-37. doi:10.1016/j.jcv.2019.09.007 PubMedGoogle ScholarCrossref
    35.
    Schopfer  K, Lauber  E, Krech  U.  Congenital cytomegalovirus infection in newborn infants of mothers infected before pregnancy.   Arch Dis Child. 1978;53(7):536-539. doi:10.1136/adc.53.7.536 PubMedGoogle ScholarCrossref
    36.
    Luchsinger  V, Suárez  M, Schultz  R,  et al.  Incidence of congenital cytomegalovirus infection in newborn infants of different socioeconomic strata [Spanish].   Rev Med Chil. 1996;124(4):403-408.PubMedGoogle Scholar
    37.
    Cardoso  ES, Jesus  BL, Gomes  LG, Sousa  SM, Gadelha  SR, Marin  LJ.  The use of saliva as a practical and feasible alternative to urine in large-scale screening for congenital cytomegalovirus infection increases inclusion and detection rates.   Rev Soc Bras Med Trop. 2015;48(2):206-207. doi:10.1590/0037-8682-0200-2014 PubMedGoogle ScholarCrossref
    38.
    Yamamoto  AY, Mussi-Pinhata  MM, Isaac  MdeL,  et al.  Congenital cytomegalovirus infection as a cause of sensorineural hearing loss in a highly immune population.   Pediatr Infect Dis J. 2011;30(12):1043-1046. doi:10.1097/INF.0b013e31822d9640 PubMedGoogle ScholarCrossref
    39.
    Noyola  DE, Mejía-Elizondo  AR, Canseco-Lima  JM, Allende-Carrera  R, Hernánsez-Salinas  AE, Ramírez-Zacarías  JL.  Congenital cytomegalovirus infection in San Luis Potosi, Mexico.   Pediatr Infect Dis J. 2003;22(1):89-90. doi:10.1097/00006454-200301000-00022 PubMedGoogle ScholarCrossref
    40.
    Estripeaut  D, Moreno  Y, Ahumada  SR, Martínez  A, Racine  J, Sáez-Llorens  X. Seroprevalence of cytomegalovirus infection in puerperal women and its impact on their newborns. Presented at: Anales de pediatria; Barcelona, Spain; 2007.
    41.
    Yamamoto  AY, Anastasio  ART, Massuda  ET,  et al.  Contribution of congenital cytomegalovirus infection to permanent hearing loss in a highly seropositive population: the Brazilian Cytomegalovirus Hearing and Maternal Secondary Infection Study.   Clin Infect Dis. 2020;70(7):1379-1384. doi:10.1093/cid/ciz413 PubMedGoogle ScholarCrossref
    42.
    Yamamoto  AY, Mussi-Pinhata  MM, Pinto  PC, Figueiredo  LT, Jorge  SM.  Usefulness of blood and urine samples collected on filter paper in detecting cytomegalovirus by the polymerase chain reaction technique.   J Virol Methods. 2001;97(1-2):159-164. doi:10.1016/S0166-0934(01)00347-0 PubMedGoogle ScholarCrossref
    43.
    Rico  A, Dollard  SC, Valencia  D,  et al.  Epidemiology of cytomegalovirus Infection among mothers and infants in Colombia.   J Med Virol. Published online January 21, 2021. doi:10.1002/jmv.26815 PubMedGoogle Scholar
    44.
    Stagno  S, Dworsky  ME, Torres  J, Mesa  T, Hirsh  T.  Prevalence and importance of congenital cytomegalovirus infection in three different populations.   J Pediatr. 1982;101(6):897-900. doi:10.1016/S0022-3476(82)80006-1 PubMedGoogle ScholarCrossref
    45.
    Fowler  KB, Stagno  S, Pass  RF.  Maternal age and congenital cytomegalovirus infection: screening of two diverse newborn populations, 1980-1990.   J Infect Dis. 1993;168(3):552-556. doi:10.1093/infdis/168.3.552 PubMedGoogle ScholarCrossref
    46.
    Boppana  SB, Fowler  KB, Britt  WJ, Stagno  S, Pass  RF.  Symptomatic congenital cytomegalovirus infection in infants born to mothers with preexisting immunity to cytomegalovirus.   Pediatrics. 1999;104(1, pt 1):55-60. doi:10.1542/peds.104.1.55 PubMedGoogle ScholarCrossref
    47.
    Kharrazi  M, Hyde  T, Young  S, Amin  MM, Cannon  MJ, Dollard  SC.  Use of screening dried blood spots for estimation of prevalence, risk factors, and birth outcomes of congenital cytomegalovirus infection.   J Pediatr. 2010;157(2):191-197. doi:10.1016/j.jpeds.2010.03.002 PubMedGoogle ScholarCrossref
    48.
    Boppana  SB, Ross  SA, Shimamura  M,  et al; National Institute on Deafness and Other Communication Disorders CHIMES Study.  Saliva polymerase-chain-reaction assay for cytomegalovirus screening in newborns.   N Engl J Med. 2011;364(22):2111-2118. doi:10.1056/NEJMoa1006561 PubMedGoogle ScholarCrossref
    49.
    Dollard  SC, Dreon  M, Hernandez-Alvarado  N,  et al.  Sensitivity of dried blood spot testing for detection of congenital cytomegalovirus infection.   JAMA Pediatr. 2021;175(3):e205441-e205441. doi:10.1001/jamapediatrics.2020.5441 PubMedGoogle ScholarCrossref
    50.
    Stagno  S, Pass  RF, Cloud  G,  et al.  Primary cytomegalovirus infection in pregnancy: incidence, transmission to fetus, and clinical outcome.   JAMA. 1986;256(14):1904-1908. doi:10.1001/jama.1986.03380140074025 PubMedGoogle ScholarCrossref
    51.
    Starr  JG, Bart  RD  Jr, Gold  E.  Inapparent congenital cytomegalovirus infection: clinical and epidemiologic characteristics in early infancy.   N Engl J Med. 1970;282(19):1075-1078. doi:10.1056/NEJM197005072821905 PubMedGoogle ScholarCrossref
    52.
    Birnbaum  G, Lynch  JI, Maribeth  AM, Lonergan  WM, Sever  JL.  Cytomegalovirus infections in newborn infants.   J Pediatr. 1969;75(5):789-795. doi:10.1016/S0022-3476(69)80301-X PubMedGoogle ScholarCrossref
    53.
    Stagno  S, Reynolds  DW, Huang  E-S, Thames  SD, Smith  RJ, Alford  CA  Jr.  Congenital cytomegalovirus infection.   N Engl J Med. 1977;296(22):1254-1258. doi:10.1056/NEJM197706022962203 PubMedGoogle ScholarCrossref
    54.
    Melish  ME, Hanshaw  JB.  Congenital cytomegalovirus infection: progress of infants detected by routine screening.   AJDC. 1973;126(2):190-194. doi:10.1001/archpedi.1973.02110190168011 PubMedGoogle Scholar
    55.
    Larke  RP, Wheatley  E, Saigal  S, Chernesky  MA.  Congenital cytomegalovirus infection in an urban Canadian community.   J Infect Dis. 1980;142(5):647-653. doi:10.1093/infdis/142.5.647 PubMedGoogle ScholarCrossref
    56.
    Yow  MD, Williamson  DW, Leeds  LJ,  et al.  Epidemiologic characteristics of cytomegalovirus infection in mothers and their infants.   Am J Obstet Gynecol. 1988;158(5):1189-1195. doi:10.1016/0002-9378(88)90252-9 PubMedGoogle ScholarCrossref
    57.
    Embil  JA, Macdonald  JM, Scott  KE.  Survey of a neonatal population for the prevalence of cytomegalovirus.   Scand J Infect Dis. 1975;7(3):165-167. doi:10.3109/inf.1975.7.issue-3.02 PubMedGoogle ScholarCrossref
    58.
    Hanshaw  JB, Steinfeld  HJ, White  CJ.  Fluorescent-antibody test for cytomegalovirus macroglobulin.   N Engl J Med. 1968;279(11):566-570. doi:10.1056/NEJM196809122791102 PubMedGoogle ScholarCrossref
    59.
    Montgomery  JR, Mason  EO  Jr, Williamson  AP, Desmond  MM, South  MA.  Prospective study of congenital cytomegalovirus infection.   South Med J. 1980;73(5):590-593, 595. doi:10.1097/00007611-198005000-00012 PubMedGoogle ScholarCrossref
    60.
    Hildebrandt  RJ, Sever  JL, Margileth  AM, Callagan  DA.  Cytomegalovirus in the normal pregnant woman.   Am J Obstet Gynecol. 1967;98(8):1125-1128. doi:10.1016/0002-9378(67)90038-5 PubMedGoogle ScholarCrossref
    61.
    Karimian  P, Yaghini  O, Nasr Azadani  H,  et al.  Prevalence, characteristics, and one-year follow-up of congenital cytomegalovirus infection in Isfahan City, Iran.   Interdiscip Perspect Infect Dis. 2016;2016:7812106. doi:10.1155/2016/7812106PubMedGoogle Scholar
    62.
    Fahimzad  A, Afgeh  SA, Eghbali  E, Abdinia  B, Shiva  F, Rahbar  M.  Screening of congenital CMV infection in saliva of neonates by PCR: report of a pilot screening study in Iran.   Clin Lab. 2013;59(9-10):1171-1174. doi:10.7754/Clin.Lab.2013.120910 PubMedGoogle Scholar
    63.
    Noorbakhsh  S, Farhadi  M, Haghighi  F, Minaeian  S, Hasanabad  MH.  Neonatal screening for congenital cytomegalovirus infection in Tehran, Iran, using Guthrie cards.   Iran J Microbiol. 2020;12(3):198-203. doi:10.18502/ijm.v12i3.3236 PubMedGoogle Scholar
    64.
    Schlesinger  Y, Halle  D, Eidelman  AI,  et al.  Urine polymerase chain reaction as a screening tool for the detection of congenital cytomegalovirus infection.   Arch Dis Child Fetal Neonatal Ed. 2003;88(5):F371-F374. doi:10.1136/fn.88.5.F371 PubMedGoogle ScholarCrossref
    65.
    Barlinn  R, Dudman  SG, Trogstad  L,  et al.  Maternal and congenital cytomegalovirus infections in a population-based pregnancy cohort study.   APMIS. 2018;126(12):899-906. doi:10.1111/apm.12899 PubMedGoogle ScholarCrossref
    66.
    Sahiner  F, Cekmez  F, Cetinkaya  M,  et al.  Congenital cytomegalovirus infections and glycoprotein B genotypes in live-born infants: a prevalence study in Turkey.   Infect Dis (Lond). 2015;47(7):465-471. doi:10.3109/23744235.2015.1018316 PubMedGoogle ScholarCrossref
    67.
    Barbi  M, Binda  S, Caroppo  S,  et al.  Multicity Italian study of congenital cytomegalovirus infection.   Pediatr Infect Dis J. 2006;25(2):156-159. doi:10.1097/01.inf.0000199261.98769.29 PubMedGoogle ScholarCrossref
    68.
    Barbi  M, Binda  S, Primache  V, Clerici  D; NEOCMV Group.  Congenital cytomegalovirus infection in a northern Italian region.   Eur J Epidemiol. 1998;14(8):791-796. doi:10.1023/A:1007554726449 PubMedGoogle ScholarCrossref
    69.
    Barkai  G, Ari-Even Roth  D, Barzilai  A,  et al.  Universal neonatal cytomegalovirus screening using saliva—report of clinical experience.   J Clin Virol. 2014;60(4):361-366. doi:10.1016/j.jcv.2014.04.024 PubMedGoogle ScholarCrossref
    70.
    de Vries  JJ, Korver  AM, Verkerk  PH,  et al.  Congenital cytomegalovirus infection in the Netherlands: birth prevalence and risk factors.   J Med Virol. 2011;83(10):1777-1782. doi:10.1002/jmv.22181 PubMedGoogle ScholarCrossref
    71.
    Foulon  I, Naessens  A, Foulon  W, Casteels  A, Gordts  F.  A 10-year prospective study of sensorineural hearing loss in children with congenital cytomegalovirus infection.   J Pediatr. 2008;153(1):84-88. doi:10.1016/j.jpeds.2007.12.049 PubMedGoogle ScholarCrossref
    72.
    Barkai  G, Barzilai  A, Mendelson  E, Tepperberg-Oikawa  M, Roth  DA, Kuint  J.  Newborn screening for congenital cytomegalovirus using real-time polymerase chain reaction in umbilical cord blood.   Isr Med Assoc J. 2013;15(6):279-283.PubMedGoogle Scholar
    73.
    Waters  A, Jennings  K, Fitzpatrick  E,  et al.  Incidence of congenital cytomegalovirus infection in Ireland: implications for screening and diagnosis.   J Clin Virol. 2014;59(3):156-160. doi:10.1016/j.jcv.2013.12.007 PubMedGoogle ScholarCrossref
    74.
    Halwachs-Baumann  G, Genser  B, Danda  M,  et al.  Screening and diagnosis of congenital cytomegalovirus infection: a 5-y study.   Scand J Infect Dis. 2000;32(2):137-142. doi:10.1080/003655400750045222 PubMedGoogle Scholar
    75.
    Paradiž  KR, Seme  K, Puklavec  E, Paro-Panjan  D, Poljak  M.  Prevalence of congenital cytomegalovirus infection in Slovenia: a study on 2,841 newborns.   J Med Virol. 2012;84(1):109-115. doi:10.1002/jmv.22230 PubMedGoogle ScholarCrossref
    76.
    Arapović  J, Rajič  B, Pati  S,  et al.  Cytomegalovirus seroprevalence and birth prevalence of congenital CMV infection in Bosnia and Herzegovina: a single-center experience.   Pediatr Infect Dis J. 2020;39(2):140-144. doi:10.1097/INF.0000000000002510 PubMedGoogle ScholarCrossref
    77.
    Paixão  P, Almeida  S, Gouveia  P, Vilarinho  L, Vaz Osório  R.  Prevalence of human cytomegalovirus congenital infection in Portuguese newborns.   Euro Surveill. 2009;14(9):13-15. PubMedGoogle Scholar
    78.
    Leruez-Ville  M, Magny  J-F, Couderc  S,  et al.  Risk factors for congenital cytomegalovirus infection following primary and nonprimary maternal infection: a prospective neonatal screening study using polymerase chain reaction in saliva.   Clin Infect Dis. 2017;65(3):398-404. doi:10.1093/cid/cix337 PubMedGoogle ScholarCrossref
    79.
    Gaytant  MA, Galama  JM, Semmekrot  BA,  et al.  The incidence of congenital cytomegalovirus infections in the Netherlands.   J Med Virol. 2005;76(1):71-75. doi:10.1002/jmv.20325 PubMedGoogle ScholarCrossref
    80.
    Engman  M-L, Malm  G, Engström  L,  et al.  Congenital CMV infection: prevalence in newborns and the impact on hearing deficit.   Scand J Infect Dis. 2008;40(11-12):935-942. doi:10.1080/00365540802308431 PubMedGoogle ScholarCrossref
    81.
    Griffiths  PD, Baboonian  C, Rutter  D, Peckham  C.  Congenital and maternal cytomegalovirus infections in a London population.   Br J Obstet Gynaecol. 1991;98(2):135-140. doi:10.1111/j.1471-0528.1991.tb13358.x PubMedGoogle ScholarCrossref
    82.
    Ahlfors  K, Ivarsson  S-A, Harris  S,  et al.  Congenital cytomegalovirus infection and disease in Sweden and the relative importance of primary and secondary maternal infections: preliminary findings from a prospective study.   Scand J Infect Dis. 1984;16(2):129-137. doi:10.3109/00365548409087131 PubMedGoogle ScholarCrossref
    83.
    Andersen  HK, Brostrøm  K, Hansen  KB,  et al.  A prospective study on the incidence and significance of congenital cytomegalovirus infection.   Acta Paediatr Scand. 1979;68(3):329-336. doi:10.1111/j.1651-2227.1979.tb05015.x PubMedGoogle Scholar
    84.
    Stern  H, Tucker  SM.  Prospective study of cytomegalovirus infection in pregnancy.   BMJ. 1973;2(5861):268-270. doi:10.1136/bmj.2.5861.268 PubMedGoogle ScholarCrossref
    85.
    Peckham  CS, Chin  KS, Coleman  JC, Henderson  K, Hurley  R, Preece  PM.  Cytomegalovirus infection in pregnancy: preliminary findings from a prospective study.   Lancet. 1983;1(8338):1352-1355. doi:10.1016/S0140-6736(83)92138-4 PubMedGoogle ScholarCrossref
    86.
    Leinikki  P, Granström  M-L, Santavuori  P, Pettay  O.  Epidemiology of cytomegalovirus infections during pregnancy and infancy: a prospective study.   Scand J Infect Dis. 1978;10(3):165-171. doi:10.3109/inf.1978.10.issue-3.02 PubMedGoogle ScholarCrossref
    87.
    Dar  L, Pati  SK, Patro  ARK,  et al.  Congenital cytomegalovirus infection in a highly seropositive semi-urban population in India.   Pediatr Infect Dis J. 2008;27(9):841-843. doi:10.1097/INF.0b013e3181723d55 PubMedGoogle ScholarCrossref
    88.
    Viswanathan  R, Bafna  S, Mergu  R,  et al.  Direct saliva real-time polymerase chain reaction assay shows low birth prevalence of congenital cytomegalovirus infection in urban western India.   Pediatr Infect Dis J. 2019;38(4):e65-e68. doi:10.1097/INF.0000000000002094 PubMedGoogle ScholarCrossref
    89.
    Putri  ND, Wiyatno  A, Dhenni  R,  et al.  Birth prevalence and characteristics of congenital cytomegalovirus infection in an urban birth cohort, Jakarta, Indonesia.   Int J Infect Dis. 2019;86:31-39. doi:10.1016/j.ijid.2019.06.009 PubMedGoogle ScholarCrossref
    90.
    Moteki  H, Isaka  Y, Inaba  Y,  et al.  A rational approach to identifying newborns with hearing loss caused by congenital cytomegalovirus infection by dried blood spot screening.   Acta Otolaryngol. 2018;138(8):708-712. doi:10.1080/00016489.2018.1441545 PubMedGoogle ScholarCrossref
    91.
    Zhang  X-W, Li  F, Yu  X-W, Shi  X-W, Shi  J, Zhang  J-P.  Physical and intellectual development in children with asymptomatic congenital cytomegalovirus infection: a longitudinal cohort study in Qinba mountain area, China.   J Clin Virol. 2007;40(3):180-185. doi:10.1016/j.jcv.2007.08.018 PubMedGoogle ScholarCrossref
    92.
    Tsai  CH, Tsai  FJ, Shih  YT, Wu  SF, Liu  SC, Tseng  YH.  Detection of congenital cytomegalovirus infection in Chinese newborn infants using polymerase chain reaction.   Acta Paediatr. 1996;85(10):1241-1243. doi:10.1111/j.1651-2227.1996.tb18237.x PubMedGoogle ScholarCrossref
    93.
    Sohn  YM, Park  KI, Lee  C, Han  DG, Lee  WY.  Congenital cytomegalovirus infection in Korean population with very high prevalence of maternal immunity.   J Korean Med Sci. 1992;7(1):47-51. doi:10.3346/jkms.1992.7.1.47 PubMedGoogle ScholarCrossref
    94.
    Wang  S, Wang  T, Zhang  W,  et al.  Cohort study on maternal cytomegalovirus seroprevalence and prevalence and clinical manifestations of congenital infection in China.   Medicine (Baltimore). 2017;96(5):e6007. doi:10.1097/MD.0000000000006007 PubMedGoogle Scholar
    95.
    Yamada  H, Tanimura  K, Fukushima  S,  et al.  A cohort study of the universal neonatal urine screening for congenital cytomegalovirus infection.   J Infect Chemother. 2020;26(8):790-794. doi:10.1016/j.jiac.2020.03.009 PubMedGoogle ScholarCrossref
    96.
    Koyano  S, Inoue  N, Oka  A,  et al; Japanese Congenital Cytomegalovirus Study Group.  Screening for congenital cytomegalovirus infection using newborn urine samples collected on filter paper: feasibility and outcomes from a multicentre study.   BMJ Open. 2011;1(1):e000118. doi:10.1136/bmjopen-2011-000118 PubMedGoogle Scholar
    97.
    Numazaki  K, Fujikawa  T.  Chronological changes of incidence and prognosis of children with asymptomatic congenital cytomegalovirus infection in Sapporo, Japan.   BMC Infect Dis. 2004;4(1):22. doi:10.1186/1471-2334-4-22 PubMedGoogle ScholarCrossref
    98.
    Endo  T, Goto  K, Ito  K,  et al.  Detection of congenital cytomegalovirus infection using umbilical cord blood samples in a screening survey.   J Med Virol. 2009;81(10):1773-1776. doi:10.1002/jmv.21594 PubMedGoogle ScholarCrossref
    99.
    Uchida  A, Tanimura  K, Morizane  M,  et al.  Clinical factors associated with congenital cytomegalovirus infection: a cohort study of pregnant women and newborns.   Clinical Infectious Diseases. 2020;71(11):2833-2839. doi:10.1093/cid/ciz1156 PubMedGoogle ScholarCrossref
    100.
    Yamaguchi  A, Oh-Ishi  T, Arai  T,  et al.  Screening for seemingly healthy newborns with congenital cytomegalovirus infection by quantitative real-time polymerase chain reaction using newborn urine: an observational study.   BMJ Open. 2017;7(1):e013810. doi:10.1136/bmjopen-2016-013810 PubMedGoogle Scholar
    101.
    Torii  Y, Yoshida  S, Yanase  Y,  et al.  Serological screening of immunoglobulin M and immunoglobulin G during pregnancy for predicting congenital cytomegalovirus infection.   BMC Pregnancy Childbirth. 2019;19(1):205. doi:10.1186/s12884-019-2360-1 PubMedGoogle ScholarCrossref
    102.
    Yamagishi  Y, Miyagawa  H, Wada  K,  et al.  CMV DNA detection in dried blood spots for diagnosing congenital CMV infection in Japan.   J Med Virol. 2006;78(7):923-925. doi:10.1002/jmv.20642 PubMedGoogle ScholarCrossref
    103.
    Kamada  M, Komori  A, Chiba  S, Nakao  T.  A prospective study of congenital cytomegalovirus infection in Japan.   Scand J Infect Dis. 1983;15(3):227-232. doi:10.3109/inf.1983.15.issue-3.01 PubMedGoogle ScholarCrossref
    104.
    Pellegrinelli  L, Alberti  L, Pariani  E, Barbi  M, Binda  S.  Diagnosing congenital cytomegalovirus infection: don’t get rid of dried blood spots.   BMC Infect Dis. 2020;20(1):217. doi:10.1186/s12879-020-4941-z PubMedGoogle ScholarCrossref
    105.
    Viechtbauer  W, Cheung  MWL.  Outlier and influence diagnostics for meta-analysis.   Res Synth Methods. 2010;1(2):112-125. doi:10.1002/jrsm.11 PubMedGoogle ScholarCrossref
    106.
    Lanzieri  TM, Dollard  SC, Bialek  SR, Grosse  SD.  Systematic review of the birth prevalence of congenital cytomegalovirus infection in developing countries.   Int J Infect Dis. 2014;22:44-48. doi:10.1016/j.ijid.2013.12.010 PubMedGoogle ScholarCrossref
    107.
    Paulson  JN, Williams  BL, Hehnly  C,  et al.  Paenibacillus infection with frequent viral coinfection contributes to postinfectious hydrocephalus in Ugandan infants.   Sci Transl Med. 2020;12(563):eaba0565. doi:10.1126/scitranslmed.aba0565 PubMedGoogle Scholar
    108.
    Olusanya  BO, Luxon  LM, Wirz  SL.  Benefits and challenges of newborn hearing screening for developing countries.   Int J Pediatr Otorhinolaryngol. 2004;68(3):287-305. doi:10.1016/j.ijporl.2003.10.015 PubMedGoogle ScholarCrossref
    109.
    Falconer  O, Newell  M-L, Jones  CE.  The effect of human immunodeficiency virus and cytomegalovirus infection on infant responses to vaccines: a review.   Front Immunol. 2018;9:328. doi:10.3389/fimmu.2018.00328 PubMedGoogle ScholarCrossref
    110.
    Afran  L, Garcia Knight  M, Nduati  E, Urban  BC, Heyderman  RS, Rowland-Jones  SL.  HIV-exposed uninfected children: a growing population with a vulnerable immune system?   Clin Exp Immunol. 2014;176(1):11-22. doi:10.1111/cei.12251 PubMedGoogle ScholarCrossref
    111.
    Barber  V, Calvert  A, Vandrevala  T,  et al.  Prevention of acquisition of cytomegalovirus infection in pregnancy through hygiene-based behavioral interventions: a systematic review and gap analysis.   Pediatr Infect Dis J. 2020;39(10):949-954. doi:10.1097/INF.0000000000002763 PubMedGoogle ScholarCrossref
    112.
    Mack  I, Burckhardt  MA, Heininger  U, Prüfer  F, Schulzke  S, Wellmann  S.  Symptomatic congenital cytomegalovirus infection in children of seropositive women.   Front Pediatr. 2017;5:134. doi:10.3389/fped.2017.00134 PubMedGoogle ScholarCrossref
    113.
    Coppola  T, Mangold  JF, Cantrell  S, Permar  SR.  Impact of maternal immunity on congenital cytomegalovirus birth prevalence and infant outcomes: a systematic review.   Vaccines (Basel). 2019;7(4):E129. doi:10.3390/vaccines7040129 PubMedGoogle Scholar
    114.
    Rozhnova  G, E Kretzschmar  M, van der Klis  F,  et al.  Short- and long-term impact of vaccination against cytomegalovirus: a modeling study.   BMC Med. 2020;18(1):174. doi:10.1186/s12916-020-01629-3 PubMedGoogle ScholarCrossref
    115.
    Adler  SP, Finney  JW, Manganello  AM, Best  AM.  Prevention of child-to-mother transmission of cytomegalovirus by changing behaviors: a randomized controlled trial.   Pediatr Infect Dis J. 1996;15(3):240-246. doi:10.1097/00006454-199603000-00013 PubMedGoogle ScholarCrossref
    116.
    Revello  MG, Tibaldi  C, Masuelli  G,  et al; CCPE Study Group.  Prevention of primary cytomegalovirus infection in pregnancy.   EBioMedicine. 2015;2(9):1205-1210. doi:10.1016/j.ebiom.2015.08.003 PubMedGoogle ScholarCrossref
    117.
    Vauloup-Fellous  C, Picone  O, Cordier  A-G,  et al.  Does hygiene counseling have an impact on the rate of CMV primary infection during pregnancy? results of a 3-year prospective study in a French hospital.   J Clin Virol. 2009;46(suppl 4):S49-S53. doi:10.1016/j.jcv.2009.09.003 PubMedGoogle ScholarCrossref
    118.
    Adler  SP, Finney  JW, Manganello  AM, Best  AM.  Prevention of child-to-mother transmission of cytomegalovirus among pregnant women.   J Pediatr. 2004;145(4):485-491. doi:10.1016/j.jpeds.2004.05.041 PubMedGoogle ScholarCrossref
    119.
    Cannon  MJ, Stowell  JD, Clark  R,  et al.  Repeated measures study of weekly and daily cytomegalovirus shedding patterns in saliva and urine of healthy cytomegalovirus-seropositive children.   BMC Infect Dis. 2014;14(1):569. doi:10.1186/s12879-014-0569-1 PubMedGoogle ScholarCrossref
    120.
    Dobbins  GC, Patki  A, Chen  D,  et al.  Association of CMV genomic mutations with symptomatic infection and hearing loss in congenital CMV infection.   BMC Infect Dis. 2019;19(1):1046. doi:10.1186/s12879-019-4681-0 PubMedGoogle ScholarCrossref
    ×