Characterization of Prescription Patterns and Estimated Costs for Use of Oxygen Concentrators for Home Oxygen Therapy in the US | Geriatrics | JAMA Network Open | JAMA Network
[Skip to Navigation]
Sign In
Figure.  Estimated Electricity Cost of Continuous Use of a 350-Watt Oxygen Concentrator
Estimated Electricity Cost of Continuous Use of a 350-Watt Oxygen Concentrator

This map of the US shows the estimated cost of running a regular-flow (3-5 liters of oxygen per minute) 350-watt oxygen concentrator continuously (24 hours a day, 365 days a year) in each state, based on 2018 average electricity prices. Values range from $252 in Louisiana, where electricity prices are lowest, to $853 in Hawaii, where prices are highest.

Table.  State-Level Estimated Annual Electricity Costs of Oxygen Concentrators
State-Level Estimated Annual Electricity Costs of Oxygen Concentrators
1.
Jindal  SK, Agarwal  R.  Long-term oxygen therapy.   Expert Rev Respir Med. 2012;6(6):639-649. doi:10.1586/ers.12.69PubMedGoogle ScholarCrossref
2.
Reisfield  GM, Wilson  GR.  The cost of breathing: an economic analysis of the patient cost of home oxygen therapy.   Am J Hosp Palliat Care. 2004;21(5):348-352. doi:10.1177/104990910402100508PubMedGoogle ScholarCrossref
3.
US Centers for Medicare & Medicaid Services. Medicare Provider Utilization and Payment Data: Part D Prescriber. 2021. Accessed March 4, 2021. https://www.cms.gov/research-statistics-data-and-systems/statistics-trends-and-reports/medicare-provider-charge-data/part-d-prescriber.html
5.
U.S. Energy Information Administration. Electricity Data Browser. 2021. Accessed March 4, 2021. https://www.eia.gov/electricity/data/browser/
6.
VitalityMedical.com. Oxygen Therapy Guides. 2021. Accessed March 10, 2021. https://www.vitalitymedical.com/guides/respiratory-therapy
Limit 200 characters
Limit 25 characters
Conflicts of Interest Disclosure

Identify all potential conflicts of interest that might be relevant to your comment.

Conflicts of interest comprise financial interests, activities, and relationships within the past 3 years including but not limited to employment, affiliation, grants or funding, consultancies, honoraria or payment, speaker's bureaus, stock ownership or options, expert testimony, royalties, donation of medical equipment, or patents planned, pending, or issued.

Err on the side of full disclosure.

If you have no conflicts of interest, check "No potential conflicts of interest" in the box below. The information will be posted with your response.

Not all submitted comments are published. Please see our commenting policy for details.

Limit 140 characters
Limit 3600 characters or approximately 600 words
    Views 890
    Citations 0
    Research Letter
    Public Health
    October 19, 2021

    Characterization of Prescription Patterns and Estimated Costs for Use of Oxygen Concentrators for Home Oxygen Therapy in the US

    Author Affiliations
    • 1Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut
    • 2Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
    • 3Section of General Internal Medicine, Yale School of Medicine, New Haven, Connecticut
    JAMA Netw Open. 2021;4(10):e2129967. doi:10.1001/jamanetworkopen.2021.29967
    Introduction

    Home oxygen is a critical component of therapy for patients with acute and chronic lung disease. Although there are several technologies available to deliver home oxygen, including compressed gas cylinders, liquid oxygen technologies, and oxygen concentrators, oxygen concentrators remain highly used due to their ease of use and no need for refills. Although the cost of oxygen concentrators and other durable medical goods is covered by Medicare, the cost of operating these devices is not. Despite the high prevalence of oxygen concentrators and expected increase in use due to the COVID-19 pandemic, minimal information is available about the financial burden of these devices and potential impact on device adherence.1,2 In this study, we sought to characterize prescription patterns for oxygen concentrators in the Medicare population as well as local energy costs for these devices.

    Methods

    For this quality improvement study, we obtained the most recent Durable Medical Equipment data from 2018 for fee-for-service Medicare beneficiaries from the Centers for Medicare & Medicaid Services data warehouse. Data were filtered to retain only those Healthcare Common Procedure Coding System descriptions that included “oxygen concentrator,” which were combined for analysis.3 The number of total Medicare beneficiaries per state was obtained from the Kaiser Family Foundation.4 Annual electricity cost data were obtained from the US Energy Information Administration Electricity Data Browser for each state at residential delivery prices.5 Data regarding average watts used per hour were obtained by reviewing common user manuals from various oxygen concentrator models.6 For the purposes of generating estimates, concentrators were assumed to run 24 (continuous), 12, or 8 hours per day, 365 days per year. Annual electricity cost estimates were generated by multiplying the kilowatt-hour price of electricity by the wattage of the concentrator and the annual number of hours used. Analyses were conducted between March 4 and August 4, 2021, using R software. The Standards for Quality Improvement Reporting Excellence (SQUIRE) reporting guideline was followed in the preparation of this manuscript. As an analysis of aggregate and deidentified public use data, this study was not human subject research as defined by 45 CFR 46.102.

    Results

    The cost of electricity varied substantially by state, resulting in wide variation across simulated oxygen concentrator costs in 2018 (Table). Hawaii, with the highest national cost of electricity, led the nation in this analysis with an annual projected maximal cost of $1991 for a high-oxygen-flow (>5 liters of oxygen flow per minute) 700-watt concentrator used continuously. A map of the US showing the estimated cost of running a regular-oxygen-flow 350-watt concentrator continuously for 1 year in each state is displayed in the Figure. States also varied significantly in the number of oxygen concentrators prescribed, ranging from 0.51% to 8.20% of the local Medicare population. Across states, median annual electricity costs ranged from $36 (low-flow 100-watt concentrators) to $751 (high-flow 700-watt concentrators).

    Discussion

    This study’s findings suggest that, depending on the needs of the patient, local electricity prices, and the flow rate of oxygen prescribed, the cost of running electric oxygen concentrators can vary substantially and potentially result in financial hardship or suboptimal use of therapy because of cost concerns. Concentrator prescription patterns were highly variable by state. Factors such as altitude, prevalence of pulmonary disease, air quality, occupational exposures, and average age of beneficiaries likely contribute to prescribed oxygen flow rates and oxygen concentrator use patterns. Limitations of this study include lack of patient-level data, including concentrator use, health outcomes, utility service information, and nonelectricity costs to patients. Further study is needed to better characterize the relationship between durable medical equipment with persistently highly variable costs, such as oxygen concentrators; patient use patterns; and health outcomes.

    State and federal policy makers should consider the implications of high-cost durable medical equipment and consider policy solutions to offset the cost of these devices. Particular consideration should be given to individuals with fixed or low income who receive these medical devices through Medicare and Medicaid programs. These patients are less likely to possess the resources to use the devices as intended without serious financial or health consequences, particularly if electricity is shut off due to nonpayment.

    Back to top
    Article Information

    Accepted for Publication: August 15, 2021.

    Published: October 19, 2021. doi:10.1001/jamanetworkopen.2021.29967

    Open Access: This is an open access article distributed under the terms of the CC-BY License. © 2021 Kahn PA et al. JAMA Network Open.

    Corresponding Author: Peter A. Kahn, MD, MPH, ThM, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, 367 Cedar St, Edward S Memorial Harkness Hall A, Room 411, New Haven, CT 06510 (peter.kahn@yale.edu).

    Author Contributions: Dr Kahn had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

    Concept and design: All authors.

    Acquisition, analysis, or interpretation of data: Kahn, Worsham.

    Drafting of the manuscript: Kahn, Berland.

    Critical revision of the manuscript for important intellectual content: All authors.

    Statistical analysis: Kahn, Worsham.

    Administrative, technical, or material support: Kahn.

    Supervision: Berland.

    Conflict of Interest Disclosures: Dr Kahn reported receiving equity from TEO Science Equity, FVC Health, and Quantum Labs Equity as well as consulting fees from Chronius and Biohaven within the past 36 months, all outside the scope of the submitted work. Dr Worsham reported receiving within the past 36 months consulting fees unrelated to this work from Analysis Group and Chronius and income from book rights unrelated to this work from Doubleday. No other disclosures were reported.

    References
    1.
    Jindal  SK, Agarwal  R.  Long-term oxygen therapy.   Expert Rev Respir Med. 2012;6(6):639-649. doi:10.1586/ers.12.69PubMedGoogle ScholarCrossref
    2.
    Reisfield  GM, Wilson  GR.  The cost of breathing: an economic analysis of the patient cost of home oxygen therapy.   Am J Hosp Palliat Care. 2004;21(5):348-352. doi:10.1177/104990910402100508PubMedGoogle ScholarCrossref
    3.
    US Centers for Medicare & Medicaid Services. Medicare Provider Utilization and Payment Data: Part D Prescriber. 2021. Accessed March 4, 2021. https://www.cms.gov/research-statistics-data-and-systems/statistics-trends-and-reports/medicare-provider-charge-data/part-d-prescriber.html
    5.
    U.S. Energy Information Administration. Electricity Data Browser. 2021. Accessed March 4, 2021. https://www.eia.gov/electricity/data/browser/
    6.
    VitalityMedical.com. Oxygen Therapy Guides. 2021. Accessed March 10, 2021. https://www.vitalitymedical.com/guides/respiratory-therapy
    ×