[Skip to Navigation]
Sign In
Figure.  Rate and Days to Testing From Diagnosis of Germline BRCA Testing Annually Between 2008 and 2018
Rate and Days to Testing From Diagnosis of Germline BRCA Testing Annually Between 2008 and 2018

Vertical lines indicate landmark events related to germline BRCA testing. A, In 2010, National Comprehensive Cancer Network guidelines recommend universal genetic testing for all patients with ovarian cancer. B, In December 2014, the first poly(ADP-ribose) polymerase inhibitor receives US Food and Drug Administration approval with indication for treatment of recurrent disease in patients with germline BRCA who had received 3 or more prior lines of chemotherapy. C, On March 27, 2017, first poly(ADP-ribose) polymerase inhibitor receives US Food and Drug Administration approval for maintenance therapy in patients with platinum-sensitive recurrent ovarian cancer (independent of BRCA).

Table.  Patient, Clinician, and Practice Characteristics Associated With Germline BRCA Testing Between 2008 and 2018
Patient, Clinician, and Practice Characteristics Associated With Germline BRCA Testing Between 2008 and 2018
1.
Norquist  BM, Harrell  MI, Brady  MF,  et al.  Inherited mutations in women with ovarian carcinoma.   JAMA Oncol. 2016;2(4):482-490. doi:10.1001/jamaoncol.2015.5495PubMedGoogle ScholarCrossref
2.
Yang  D, Khan  S, Sun  Y,  et al.  Association of BRCA1 and BRCA2 mutations with survival, chemotherapy sensitivity, and gene mutator phenotype in patients with ovarian cancer.   JAMA. 2011;306(14):1557-1565. doi:10.1001/jama.2011.1456PubMedGoogle ScholarCrossref
3.
Rebbeck  TR, Kauff  ND, Domchek  SM.  Meta-analysis of risk reduction estimates associated with risk-reducing salpingo-oophorectomy in BRCA1 or BRCA2 mutation carriers.   J Natl Cancer Inst. 2009;101(2):80-87. doi:10.1093/jnci/djn442PubMedGoogle ScholarCrossref
4.
Kurian  AW, Ward  KC, Howlader  N,  et al.  Genetic testing and results in a population-based cohort of breast cancer patients and ovarian cancer patients.   J Clin Oncol. 2019;37(15):1305-1315. doi:10.1200/JCO.18.01854PubMedGoogle ScholarCrossref
5.
Gondi  S, Wright  AA, Landrum  MB, Zubizarreta  J, Chernew  ME, Keating  NL.  Multimodality cancer care and implications for episode-based payments in cancer.   Am J Manag Care. 2019;25(11):537-538.PubMedGoogle Scholar
6.
Armstrong  J, Toscano  M, Kotchko  N,  et al.  Utilization and outcomes of BRCA genetic testing and counseling in a national commercially insured population: the ABOUT Study.   JAMA Oncol. 2015;1(9):1251-1260. doi:10.1001/jamaoncol.2015.3048PubMedGoogle ScholarCrossref
Research Letter
Oncology
January 11, 2022

Use of Germline BRCA Testing in Patients With Ovarian Cancer and Commercial Insurance

Author Affiliations
  • 1Division of Gynecologic Oncology, Department of Obstetrics & Gynecology, Brigham and Women’s Hospital, Boston, Massachusetts
  • 2Department of Health Care Policy, Harvard Medical School, Boston, Massachusetts
  • 3Division of General Internal Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
  • 4Women’s Health and Genomics, CVS Health, Hartford, Connecticut
  • 5Division of Population Sciences, Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
JAMA Netw Open. 2022;5(1):e2142703. doi:10.1001/jamanetworkopen.2021.42703
Introduction

Approximately 15% of patients with ovarian cancer have a germline BRCA (gBRCA) variation,1 which has important implications, including increased sensitivity to platinum-based chemotherapy and poly(ADP-ribose) polymerase inhibitors and improved survival.2 Testing first-degree relatives is also cost-effective cancer prevention.3 Since 2010, guidelines have recommended universal testing in ovarian cancer. However, testing rates are reportedly between 10% and 30%,4 and few studies have examined commercially insured populations or identified patient-, physician-, and practice-level characteristics associated with testing rates.

Methods

Using data from a large national commercial insurer, this cross-sectional study included 12 989 patients with claims for ovarian, fallopian, or primary peritoneal cancers and a biopsy or surgery between 2008 and 2018. We restricted the cohort to patients with a biopsy or surgery and carboplatin or cisplatin within 6 months. We excluded those without surgery or outpatient visits, with less than 12 months of continuous insurance, with missing zip codes, or who were younger than 18 years (eFigure in the Supplement). We attributed patients to practices and physicians using outpatient evaluation and management claims with a diagnosis 6 months or less from the first outpatient claim for chemotherapy (eAppendix in the Supplement).5 The Harvard Medical School Committee on Human Studies deemed the study exempt from review and the requirement for informed consent because the study was a secondary analysis of previously collected data. We followed the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) reporting guideline for cohort studies.

The primary outcome was gBRCA testing using gene-specific and methodology-based procedure codes (eTable in the Supplement). Secondary outcomes included timeliness (ie, ≤6 months from biopsy/surgery) and median time from first chemotherapy claim to testing. We used χ2 tests and linear regression to assess patient, physician, and practice characteristics associated with outcomes. A 2-sided P ≤.05 was considered statistically significant. Analyses were performed using SAS statistical software version 14.1 (SAS Institute).

Results

Among 3603 women with ovarian cancer (mean [SD] age, 57.0 [11.3] years), 1220 (33.9%) received gBRCA testing (Table). Testing rates increased from 14.7% (55 of 375 patients) in 2008 to 46.4% (96 of 207 patients) in 2018; the median time to testing decreased from 280.0 to 72.5 days (Figure). In adjusted analyses, testing was lower for older women (women ≥65 years vs <50 years: adjusted difference, −20.8 percentage points; 95% CI, −25.8 to −16.4 percentage points) and women with more comorbidities (Charlson Comorbidity Index score ≥2 vs 0: adjusted difference, −4.6 percentage points; 95% CI, −8.9 to −0.2 percentage points). Testing rates were similar among oncologists (medical vs gynecologic oncologist: adjusted difference, 1.5 percentage points; 95% CI, −1.8 to 4.7 percentage points) and lower in other physicians (other vs gynecologic oncologist: adjusted difference, −5.9 percentage points; 95% CI, −10.3 to −1.5 percentage points). Testing was higher at academic and NCI cancer centers compared with community practices (academic vs NCI: adjusted difference, 0.5 percentage points; 95% CI, −7.2 to 8.4 percentage points; community vs NCI: adjusted difference, −4.5 percentage points; 95% CI, −8.8 to −0.2 percentage points]). There was a statistically significant increase in testing over time (2018 vs 2008: adjusted difference, 32.0 percentage points; 95% CI, 24.4-39.7 percentage points), although rates remained below 50% for most years (Table). Results were similar for analyses of timeliness of gBRCA testing, which significantly improved from 2010 to 2018 (Table).

Discussion

Despite unequivocal recommendations for universal genetic testing in ovarian cancer, only 33.9% of patients with commercial insurance were tested between 2008 and 2018—clear evidence it remains underused—and a minority received timely testing. In this study, medical and gynecologic oncologists had similar rates of testing, while other physicians tested less often, perhaps reflecting a lack of knowledge of guidelines. Nearly 80% of patients received care in community practices, where rates were statistically lower. Although independent practices often lack access to genetic counselors, women in this study had insurance coverage for in-person and telephonic counseling. Future studies should examine barriers to timely testing to identify scalable strategies for increasing testing, particularly for older women in community practices. Interventions targeting clinicians are essential because the absence of physician recommendations remains the largest barrier to testing.6 Study limitations include the use of biopsy/surgery for diagnosis date, limited sociodemographic characteristics, and the possibility that women received testing later.

Back to top
Article Information

Accepted for Publication: November 13, 2021.

Published: January 11, 2022. doi:10.1001/jamanetworkopen.2021.42703

Open Access: This is an open access article distributed under the terms of the CC-BY License. © 2022 Cham S et al. JAMA Network Open.

Corresponding Author: Alexi A. Wright, MD, MPH, Division of Population Sciences, Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA 02215 (alexi_wright@dfci.harvard.edu).

Author Contributions: Drs Wright and Landrum had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: Cham, Landrum, Keating, Wright.

Acquisition, analysis, or interpretation of data: All authors.

Drafting of the manuscript: Cham, Wright.

Critical revision of the manuscript for important intellectual content: All authors.

Statistical analysis: Landrum, Keating.

Administrative, technical, or material support: Cham, Armstrong.

Supervision: Cham, Keating, Wright.

Conflict of Interest Disclosures: Dr Armstrong reported being an employee of Aetna/CVS Health, which was the source for the data. Dr Wright reported receiving personal fees from GlaxoSmithKline and grants from the National Comprehensive Cancer Network/AstraZeneca outside the submitted work. No other disclosures were reported.

Funding/Support: This study was funded by grant U19HS024072 from the Agency for Healthcare Research and Quality.

Role of the Funder/Sponsor: The funder had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Additional Contributions: The authors would like to acknowledge Christina Fu, PhD, biostatistician at the Harvard Medical School Blavatnik Institute for Health Care Policy, for her analytic expertise.

References
1.
Norquist  BM, Harrell  MI, Brady  MF,  et al.  Inherited mutations in women with ovarian carcinoma.   JAMA Oncol. 2016;2(4):482-490. doi:10.1001/jamaoncol.2015.5495PubMedGoogle ScholarCrossref
2.
Yang  D, Khan  S, Sun  Y,  et al.  Association of BRCA1 and BRCA2 mutations with survival, chemotherapy sensitivity, and gene mutator phenotype in patients with ovarian cancer.   JAMA. 2011;306(14):1557-1565. doi:10.1001/jama.2011.1456PubMedGoogle ScholarCrossref
3.
Rebbeck  TR, Kauff  ND, Domchek  SM.  Meta-analysis of risk reduction estimates associated with risk-reducing salpingo-oophorectomy in BRCA1 or BRCA2 mutation carriers.   J Natl Cancer Inst. 2009;101(2):80-87. doi:10.1093/jnci/djn442PubMedGoogle ScholarCrossref
4.
Kurian  AW, Ward  KC, Howlader  N,  et al.  Genetic testing and results in a population-based cohort of breast cancer patients and ovarian cancer patients.   J Clin Oncol. 2019;37(15):1305-1315. doi:10.1200/JCO.18.01854PubMedGoogle ScholarCrossref
5.
Gondi  S, Wright  AA, Landrum  MB, Zubizarreta  J, Chernew  ME, Keating  NL.  Multimodality cancer care and implications for episode-based payments in cancer.   Am J Manag Care. 2019;25(11):537-538.PubMedGoogle Scholar
6.
Armstrong  J, Toscano  M, Kotchko  N,  et al.  Utilization and outcomes of BRCA genetic testing and counseling in a national commercially insured population: the ABOUT Study.   JAMA Oncol. 2015;1(9):1251-1260. doi:10.1001/jamaoncol.2015.3048PubMedGoogle ScholarCrossref
×