Association of Klotho-VS Heterozygosity With Risk of Alzheimer Disease in Individuals Who Carry APOE4 | Dementia and Cognitive Impairment | JAMA Neurology | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 18.206.238.77. Please contact the publisher to request reinstatement.
1.
Kurosu  H, Yamamoto  M, Clark  JD,  et al.  Suppression of aging in mice by the hormone Klotho.   Science. 2005;309(5742):1829-1833. doi:10.1126/science.1112766 PubMedGoogle Scholar
2.
Arking  DE, Krebsova  A, Macek  M  Sr,  et al.  Association of human aging with a functional variant of klotho.   Proc Natl Acad Sci U S A. 2002;99(2):856-861. doi:10.1073/pnas.022484299 PubMedGoogle Scholar
3.
Dubal  DB, Yokoyama  JS, Zhu  L,  et al.  Life extension factor klotho enhances cognition.   Cell Rep. 2014;7(4):1065-1076. doi:10.1016/j.celrep.2014.03.076 PubMedGoogle Scholar
4.
Yokoyama  JS, Sturm  VE, Bonham  LW,  et al.  Variation in longevity gene KLOTHO is associated with greater cortical volumes.   Ann Clin Transl Neurol. 2015;2(3):215-230. doi:10.1002/acn3.161 PubMedGoogle Scholar
5.
de Vries  CF, Staff  RT, Harris  SE,  et al.  Klotho, APOEε4, cognitive ability, brain size, atrophy, and survival: a study in the Aberdeen Birth Cohort of 1936.   Neurobiol Aging. 2017;55:91-98. doi:10.1016/j.neurobiolaging.2017.02.019 PubMedGoogle Scholar
6.
Belloy  ME, Napolioni  V, Greicius  MD.  A quarter century of APOE and Alzheimer’s disease: progress to date and the path forward.   Neuron. 2019;101(5):820-838. doi:10.1016/j.neuron.2019.01.056 PubMedGoogle Scholar
7.
Fagan  AM, Mintun  MA, Mach  RH,  et al.  Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Abeta42 in humans.   Ann Neurol. 2006;59(3):512-519. doi:10.1002/ana.20730 PubMedGoogle Scholar
8.
Morris  JC, Roe  CM, Xiong  C,  et al.  APOE predicts amyloid-β but not tau Alzheimer’s pathology in cognitively normal aging.   Ann Neurol. 2010;67(1):122-131. doi:10.1002/ana.21843 PubMedGoogle Scholar
9.
Hardy  JA, Higgins  GA.  Alzheimer’s disease: the amyloid cascade hypothesis.   Science. 1992;256(5054):184-185. doi:10.1126/science.1566067 PubMedGoogle Scholar
10.
Jack  CR  Jr, Knopman  DS, Jagust  WJ,  et al.  Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers.   Lancet Neurol. 2013;12(2):207-216. doi:10.1016/S1474-4422(12)70291-0 PubMedGoogle Scholar
11.
Burnham  SC, Bourgeat  P, Doré  V,  et al; AIBL Research Group.  Clinical and cognitive trajectories in cognitively healthy elderly individuals with suspected non-Alzheimer’s disease pathophysiology (SNAP) or Alzheimer’s disease pathology: a longitudinal study.   Lancet Neurol. 2016;15(10):1044-1053. doi:10.1016/S1474-4422(16)30125-9 PubMedGoogle Scholar
12.
Vos  SJB, Xiong  C, Visser  PJ,  et al.  Preclinical Alzheimer’s disease and its outcome: a longitudinal cohort study.   Lancet Neurol. 2013;12(10):957-965. doi:10.1016/S1474-4422(13)70194-7 PubMedGoogle Scholar
13.
Toledo  JB, Zetterberg  H, van Harten  AC,  et al; Alzheimer’s Disease Neuroimaging Initiative.  Alzheimer’s disease cerebrospinal fluid biomarker in cognitively normal subjects.   Brain. 2015;138(pt 9):2701-2715. doi:10.1093/brain/awv199 PubMedGoogle Scholar
14.
Sutphen  CL, Jasielec  MS, Shah  AR,  et al.  Longitudinal cerebrospinal fluid biomarker changes in preclinical Alzheimer disease during middle age.   JAMA Neurol. 2015;72(9):1029-1042. doi:10.1001/jamaneurol.2015.1285 PubMedGoogle Scholar
15.
Ossenkoppele  R, Jansen  WJ, Rabinovici  GD,  et al; Amyloid PET Study Group.  Prevalence of amyloid PET positivity in dementia syndromes: a meta-analysis.   JAMA. 2015;313(19):1939-1949. doi:10.1001/jama.2015.4669 PubMedGoogle Scholar
16.
Lim  YY, Kalinowski  P, Pietrzak  RH,  et al.  Association of β-amyloid and apolipoprotein E ε4 with memory decline in preclinical Alzheimer disease.   JAMA Neurol. 2018;75(4):488-494. doi:10.1001/jamaneurol.2017.4325 PubMedGoogle Scholar
17.
Neu  SC, Pa  J, Kukull  W,  et al.  Apolipoprotein E genotype and sex risk factors for alzheimer disease: a meta-analysis.   JAMA Neurol. 2017;74(10):1178-1189. doi:10.1001/jamaneurol.2017.2188 PubMedGoogle Scholar
18.
Farrer  LA, Cupples  LA, Haines  JL,  et al; APOE and Alzheimer Disease Meta Analysis Consortium.  Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease: a meta-analysis.   JAMA. 1997;278(16):1349-1356. doi:10.1001/jama.1997.03550160069041 PubMedGoogle Scholar
19.
Bickeböller  H, Campion  D, Brice  A,  et al.  Apolipoprotein E and Alzheimer disease: genotype-specific risks by age and sex.   Am J Hum Genet. 1997;60(2):439-446.PubMedGoogle Scholar
20.
Karran  E, Mercken  M, De Strooper  B.  The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics.   Nat Rev Drug Discov. 2011;10(9):698-712. doi:10.1038/nrd3505 PubMedGoogle Scholar
21.
Erickson  CM, Schultz  SA, Oh  JM,  et al.  KLOTHO heterozygosity attenuates APOE4-related amyloid burden in preclinical AD.   Neurology. 2019;92(16):e1878-e1889. doi:10.1212/WNL.0000000000007323 PubMedGoogle Scholar
22.
Porter  T, Burnham  SC, Milicic  L,  et al.  Klotho allele status is not associated with Aβ and APOE ε4-related cognitive decline in preclinical Alzheimer’s disease.   Neurobiol Aging. 2019;76:162-165. doi:10.1016/j.neurobiolaging.2018.12.014 PubMedGoogle Scholar
23.
Lo  MT, Kauppi  K, Fan  CC,  et al; Alzheimer’s Disease Genetics Consortium.  Identification of genetic heterogeneity of Alzheimer’s disease across age.   Neurobiol Aging. 2019;84:243.e1-243.e9. doi:10.1016/j.neurobiolaging.2019.02.022 PubMedGoogle Scholar
24.
Weiner  MW, Aisen  PS, Jack  CR  Jr,  et al; Alzheimer’s Disease Neuroimaging Initiative.  The Alzheimer’s disease neuroimaging initiative: progress report and future plans.   Alzheimers Dement. 2010;6(3):202-11.e7. doi:10.1016/j.jalz.2010.03.007 PubMedGoogle Scholar
25.
Bennett  DA, Schneider  JA, Buchman  AS, Barnes  LL, Boyle  PA, Wilson  RS.  Overview and findings from the Rush Memory and Aging Project.   Curr Alzheimer Res. 2012;9(6):646-663. doi:10.2174/156720512801322663 PubMedGoogle Scholar
26.
Lee  JH, Cheng  R, Graff-Radford  N, Foroud  T, Mayeux  R; National Institute on Aging Late-Onset Alzheimer’s Disease Family Study Group.  Analyses of the National Institute on Aging Late-Onset Alzheimer’s Disease Family Study: implication of additional loci.   Arch Neurol. 2008;65(11):1518-1526. doi:10.1001/archneur.65.11.1518 PubMedGoogle Scholar
27.
Kamboh  MI, Minster  RL, Demirci  FY,  et al.  Association of CLU and PICALM variants with Alzheimer’s disease.   Neurobiol Aging. 2012;33(3):518-521. doi:10.1016/j.neurobiolaging.2010.04.015 PubMedGoogle Scholar
28.
Weiner  MW, Veitch  DP, Hayes  J,  et al; Department of Defense Alzheimer’s Disease Neuroimaging Initiative.  Effects of traumatic brain injury and posttraumatic stress disorder on Alzheimer’s disease in veterans, using the Alzheimer’s Disease Neuroimaging Initiative.   Alzheimers Dement. 2014;10(3)(suppl):S226-S235. doi:10.1016/j.jalz.2014.04.005 PubMedGoogle Scholar
29.
Li  H, Wetten  S, Li  L,  et al.  Candidate single-nucleotide polymorphisms from a genomewide association study of Alzheimer disease.   Arch Neurol. 2008;65(1):45-53. doi:10.1001/archneurol.2007.3 PubMedGoogle Scholar
30.
Lovestone  S, Francis  P, Kloszewska  I,  et al.  AddNeuroMed Consortium. AddNeuroMed—the European collaboration for the discovery of novel biomarkers for Alzheimer’s disease.   Ann N Y Acad Sci. 2009;1180:36-46. doi:10.1111/j.1749-6632.2009.05064.x PubMedGoogle Scholar
31.
Allen  M, Carrasquillo  MM, Funk  C,  et al.  Human whole genome genotype and transcriptome data for Alzheimer’s and other neurodegenerative diseases.   Sci Data. 2016;3:160089. doi:10.1038/sdata.2016.89 PubMedGoogle Scholar
32.
Carrasquillo  MM, Zou  F, Pankratz  VS,  et al.  Genetic variation in PCDH11X is associated with susceptibility to late-onset Alzheimer’s disease.   Nat Genet. 2009;41(2):192-198. doi:10.1038/ng.305 PubMedGoogle Scholar
33.
Besser  L, Kukull  W, Knopman  DS,  et al; Neuropsychology Work Group.  Directors, and Clinical Core leaders of the National Institute on Aging-funded US Alzheimer’s Disease Centers. Version 3 of the national Alzheimer’s coordinating center’s uniform data set.   Alzheimer Dis Assoc Disord. 2018;32(4):351-358. PubMedGoogle Scholar
34.
Naj  AC, Jun  G, Beecham  GW,  et al.  Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease.   Nat Genet. 2011;43(5):436-441. doi:10.1038/ng.801 PubMedGoogle Scholar
35.
Beecham  GW, Martin  ER, Li  YJ,  et al.  Genome-wide association study implicates a chromosome 12 risk locus for late-onset Alzheimer disease.   Am J Hum Genet. 2009;84(1):35-43. doi:10.1016/j.ajhg.2008.12.008 PubMedGoogle Scholar
36.
Kukull  WA, Higdon  R, Bowen  JD,  et al.  Dementia and Alzheimer disease incidence: a prospective cohort study.   Arch Neurol. 2002;59(11):1737-1746. doi:10.1001/archneur.59.11.1737 PubMedGoogle Scholar
37.
Green  RC, Cupples  LA, Go  R,  et al; MIRAGE Study Group.  Risk of dementia among white and African American relatives of patients with Alzheimer disease.   JAMA. 2002;287(3):329-336. doi:10.1001/jama.287.3.329 PubMedGoogle Scholar
38.
Kunkle  BW, Grenier-Boley  B, Sims  R,  et al; Alzheimer Disease Genetics Consortium (ADGC).  European Alzheimer’s Disease Initiative (EADI); Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium (CHARGE); Genetic and Environmental Risk in AD/Defining Genetic, Polygenic and Environmental Risk for Alzheimer’s Disease Consortium (GERAD/PERADES). Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing.   Nat Genet. 2019;51(3):414-430. doi:10.1038/s41588-019-0358-2 PubMedGoogle Scholar
39.
Shaw  LM, Vanderstichele  H, Knapik-Czajka  M,  et al; Alzheimer’s Disease Neuroimaging Initiative.  Cerebrospinal fluid biomarker signature in Alzheimer’s disease neuroimaging initiative subjects.   Ann Neurol. 2009;65(4):403-413. doi:10.1002/ana.21610 PubMedGoogle Scholar
40.
Jagust  WJ, Bandy  D, Chen  K,  et al; Alzheimer’s Disease Neuroimaging Initiative.  The Alzheimer’s Disease Neuroimaging Initiative positron emission tomography core.   Alzheimers Dement. 2010;6(3):221-229. doi:10.1016/j.jalz.2010.03.003 PubMedGoogle Scholar
41.
Landau  SM, Harvey  D, Madison  CM,  et al; Alzheimer’s Disease Neuroimaging Initiative.  Associations between cognitive, functional, and FDG-PET measures of decline in AD and MCI.   Neurobiol Aging. 2011;32(7):1207-1218. doi:10.1016/j.neurobiolaging.2009.07.002 PubMedGoogle Scholar
42.
Landau  SM, Mintun  MA, Joshi  AD,  et al; Alzheimer’s Disease Neuroimaging Initiative.  Amyloid deposition, hypometabolism, and longitudinal cognitive decline.   Ann Neurol. 2012;72(4):578-586. doi:10.1002/ana.23650 PubMedGoogle Scholar
43.
Cruchaga  C, Kauwe  JSK, Harari  O,  et al.  GERAD Consortium; Alzheimer’s Disease Neuroimaging Initiative (ADNI); Alzheimer Disease Genetic Consortium (ADGC). GWAS of cerebrospinal fluid tau levels identifies risk variants for Alzheimer’s disease.   Neuron. 2013;78(2):256-268. doi:10.1016/j.neuron.2013.02.026 PubMedGoogle Scholar
44.
Auton  A, Brooks  LD, Durbin  RM,  et al.  1000 Genomes Project Consortium. A global reference for human genetic variation.   Nature. 2015;526(7571):68-74. PubMedGoogle Scholar
45.
Chen  CY, Pollack  S, Hunter  DJ, Hirschhorn  JN, Kraft  P, Price  AL.  Improved ancestry inference using weights from external reference panels.   Bioinformatics. 2013;29(11):1399-1406. doi:10.1093/bioinformatics/btt144 PubMedGoogle Scholar
46.
Das  S, Forer  L, Schönherr  S,  et al.  Next-generation genotype imputation service and methods.   Nat Genet. 2016;48(10):1284-1287. doi:10.1038/ng.3656 PubMedGoogle Scholar
47.
Fine  JP, Gray  RJ.  A proportional hazards model for the subdistribution of a competing risk.   J Am Stat Assoc. 1999;94(446):496-509. doi:10.1080/01621459.1999.10474144 Google Scholar
48.
Scrucca  L, Santucci  A, Aversa  F.  Regression modeling of competing risk using R: an in depth guide for clinicians.   Bone Marrow Transplant. 2010;45(9):1388-1395. doi:10.1038/bmt.2009.359 PubMedGoogle Scholar
49.
Vos  SJB, Verhey  F, Frölich  L,  et al; Alzheimer’s Disease Neuroimaging Initiative.  Prevalence and prognosis of Alzheimer’s disease at the mild cognitive impairment stage.   Brain. 2015;138(Pt 5):1327-1338. doi:10.1093/brain/awv029 PubMedGoogle Scholar
50.
Belleville  S, Fouquet  C, Hudon  C, Zomahoun  HTV, Croteau  J.  Consortium for the Early Identification of Alzheimer’s disease-Quebec. Neuropsychological measures that predict progression from mild cognitive impairment to Alzheimer’s type dementia in older adults: a systematic review and meta-analysis.   Neuropsychol Rev. 2017;27(4):328-353. doi:10.1007/s11065-017-9361-5 PubMedGoogle Scholar
51.
Gauthier  S, Reisberg  B, Zaudig  M,  et al.  International Psychogeriatric Association Expert Conference on mild cognitive impairment. Mild cognitive impairment.   Lancet. 2006;367(9518):1262-1270. doi:10.1016/S0140-6736(06)68542-5 PubMedGoogle Scholar
52.
Yokoyama  JS, Marx  G, Brown  JA,  et al.  Systemic klotho is associated with KLOTHO variation and predicts intrinsic cortical connectivity in healthy human aging.   Brain Imaging Behav. 2017;11(2):391-400. doi:10.1007/s11682-016-9598-2 PubMedGoogle Scholar
53.
Jun  G, Ibrahim-Verbaas  CA, Vronskaya  M,  et al.  IGAP Consortium. A novel Alzheimer disease locus located near the gene encoding tau protein.   Mol Psychiatry. 2016;21(1):108-117. doi:10.1038/mp.2015.23 PubMedGoogle Scholar
54.
Stern  Y.  Cognitive reserve in ageing and Alzheimer’s disease.   Lancet Neurol. 2012;11(11):1006-1012. doi:10.1016/S1474-4422(12)70191-6 PubMedGoogle Scholar
55.
Deary  IJ, Harris  SE, Fox  HC,  et al.  KLOTHO genotype and cognitive ability in childhood and old age in the same individuals.   Neurosci Lett. 2005;378(1):22-27. doi:10.1016/j.neulet.2004.12.005 PubMedGoogle Scholar
56.
van Maurik  IS, Vos  SJ, Bos  I,  et al; Alzheimer’s Disease Neuroimaging Initiative.  Biomarker-based prognosis for people with mild cognitive impairment (ABIDE): a modelling study.   Lancet Neurol. 2019;18(11):1034-1044. doi:10.1016/S1474-4422(19)30283-2 PubMedGoogle Scholar
57.
Ballard  C, Atri  A, Boneva  N,  et al.  Enrichment factors for clinical trials in mild-to-moderate Alzheimer’s disease.   Alzheimers Dement (N Y). 2019;5:164-174. doi:10.1016/j.trci.2019.04.001 PubMedGoogle Scholar
58.
Semba  RD, Moghekar  AR, Hu  J,  et al.  Klotho in the cerebrospinal fluid of adults with and without Alzheimer’s disease.   Neurosci Lett. 2014;558:37-40. doi:10.1016/j.neulet.2013.10.058 PubMedGoogle Scholar
59.
Li  H, Wang  B, Wang  Z,  et al.  Soluble amyloid precursor protein (APP) regulates transthyretin and Klotho gene expression without rescuing the essential function of APP.   Proc Natl Acad Sci U S A. 2010;107(40):17362-17367. doi:10.1073/pnas.1012568107 PubMedGoogle Scholar
60.
O’Brien  RJ, Wong  PC.  Amyloid precursor protein processing and Alzheimer’s disease.   Annu Rev Neurosci. 2011;34:185-204. doi:10.1146/annurev-neuro-061010-113613 PubMedGoogle Scholar
61.
Chen  C-D, Podvin  S, Gillespie  E, Leeman  SE, Abraham  CR.  Insulin stimulates the cleavage and release of the extracellular domain of Klotho by ADAM10 and ADAM17.   Proc Natl Acad Sci U S A. 2007;104(50):19796-19801. doi:10.1073/pnas.0709805104 PubMedGoogle Scholar
62.
Bloch  L, Sineshchekova  O, Reichenbach  D,  et al.  Klotho is a substrate for α-, β- and γ-secretase.   FEBS Lett. 2009;583(19):3221-3224. doi:10.1016/j.febslet.2009.09.009 PubMedGoogle Scholar
63.
Zeng  CY, Yang  TT, Zhou  HJ,  et al.  Lentiviral vector-mediated overexpression of Klotho in the brain improves Alzheimer’s disease-like pathology and cognitive deficits in mice.   Neurobiol Aging. 2019;78:18-28. doi:10.1016/j.neurobiolaging.2019.02.003 PubMedGoogle Scholar
64.
Kuang  X, Zhou  HJ, Thorne  AH, Chen  XN, Li  LJ, Du  JR.  Neuroprotective effect of ligustilide through induction of α-secretase processing of both APP and Klotho in a mouse model of Alzheimer’s disease.   Front Aging Neurosci. 2017;9:353. doi:10.3389/fnagi.2017.00353 PubMedGoogle Scholar
65.
Dubal  DB, Zhu  L, Sanchez  PE,  et al.  Life extension factor klotho prevents mortality and enhances cognition in hAPP transgenic mice.   J Neurosci. 2015;35(6):2358-2371. doi:10.1523/JNEUROSCI.5791-12.2015 PubMedGoogle Scholar
66.
Abraham  CR, Mullen  PC, Tucker-Zhou  T, Chen  CD, Zeldich  E.  Klotho is a neuroprotective and cognition-enhancing protein.   Vitam Horm. 2016;101:215-238. doi:10.1016/bs.vh.2016.02.004 PubMedGoogle Scholar
67.
Wolf  EJ, Morrison  FG, Sullivan  DR,  et al.  The goddess who spins the thread of life: Klotho, psychiatric stress, and accelerated aging.   Brain Behav Immun. 2019;80:193-203. doi:10.1016/j.bbi.2019.03.007 PubMedGoogle Scholar
68.
Ullah  M, Sun  Z.  Klotho deficiency accelerates stem cells aging by impairing telomerase activity.   J Gerontol A Biol Sci Med Sci. 2019;74(9):1396-1407. doi:10.1093/gerona/gly261 PubMedGoogle Scholar
69.
Invidia  L, Salvioli  S, Altilia  S,  et al.  The frequency of Klotho KL-VS polymorphism in a large Italian population, from young subjects to centenarians, suggests the presence of specific time windows for its effect.   Biogerontology. 2010;11(1):67-73. doi:10.1007/s10522-009-9229-z PubMedGoogle Scholar
Limit 200 characters
Limit 25 characters
Conflicts of Interest Disclosure

Identify all potential conflicts of interest that might be relevant to your comment.

Conflicts of interest comprise financial interests, activities, and relationships within the past 3 years including but not limited to employment, affiliation, grants or funding, consultancies, honoraria or payment, speaker's bureaus, stock ownership or options, expert testimony, royalties, donation of medical equipment, or patents planned, pending, or issued.

Err on the side of full disclosure.

If you have no conflicts of interest, check "No potential conflicts of interest" in the box below. The information will be posted with your response.

Not all submitted comments are published. Please see our commenting policy for details.

Limit 140 characters
Limit 3600 characters or approximately 600 words
    Original Investigation
    April 13, 2020

    Association of Klotho-VS Heterozygosity With Risk of Alzheimer Disease in Individuals Who Carry APOE4

    Author Affiliations
    • 1Department of Neurology and Neurological Sciences, Functional Imaging in Neuropsychiatric Disorders (FIND) Lab, Stanford University, Stanford, California
    • 2Department of Neurosurgery, Stanford University, Stanford, California
    • 3Quantitative Sciences Unit, Stanford Medicine, Stanford, California
    JAMA Neurol. 2020;77(7):849-862. doi:10.1001/jamaneurol.2020.0414
    Key Points

    Question  Does Klotho-VS heterozygosity protect against Alzheimer disease (AD) in individuals who carry APOE4?

    Findings  In this study, associations were evaluated across 22 AD cohorts (n = 20 928), 3 longitudinal cohorts (n = 3008), and 4 cohorts collecting β-amyloid measurements (cerebrospinal fluid, n = 556; brain, n = 251). In individuals who carry APOE4, Klotho-VS heterozygosity was associated with reduced AD risk and more favorable β-amyloid profiles in the brain and cerebrospinal fluid of older control participants. Klotho-VS heterozygosity was also associated with reduced AD conversion risk in individuals who carry APOE4.

    Meaning  Pathways associated with KL merit exploration for novel AD drug targets, and the KL-VS genotype should be considered in conjunction with APOE genotype to refine prediction models used in clinical trial enrichment.

    Abstract

    Importance  Identification of genetic factors that interact with the apolipoprotein e4 (APOE4) allele to reduce risk for Alzheimer disease (AD) would accelerate the search for new AD drug targets. Klotho-VS heterozygosity (KL-VSHET+ status) protects against aging-associated phenotypes and cognitive decline, but whether it protects individuals who carry APOE4 from AD remains unclear.

    Objectives  To determine if KL-VSHET+ status is associated with reduced AD risk and β-amyloid (Aβ) pathology in individuals who carry APOE4.

    Design, Setting, and Participants  This study combined 25 independent case-control, family-based, and longitudinal AD cohorts that recruited referred and volunteer participants and made data available through public repositories. Analyses were stratified by APOE4 status. Three cohorts were used to evaluate conversion risk, 1 provided longitudinal measures of Aβ CSF and PET, and 3 provided cross-sectional measures of Aβ CSF. Genetic data were available from high-density single-nucleotide variant microarrays. All data were collected between September 2015 and September 2019 and analyzed between April 2019 and December 2019.

    Main Outcomes and Measures  The risk of AD was evaluated through logistic regression analyses under a case-control design. The risk of conversion to mild cognitive impairment (MCI) or AD was evaluated through competing risks regression. Associations with Aβ, measured from cerebrospinal fluid (CSF) or brain positron emission tomography (PET), were evaluated using linear regression and mixed-effects modeling.

    Results  Of 36 530 eligible participants, 13 782 were excluded for analysis exclusion criteria or refusal to participate. Participants were men and women aged 60 years and older who were non-Hispanic and of Northwestern European ancestry and had been diagnosed as being cognitively normal or having MCI or AD. The sample included 20 928 participants in case-control studies, 3008 in conversion studies, 556 in Aβ CSF regression analyses, and 251 in PET regression analyses. The genotype KL-VSHET+ was associated with reduced risk for AD in individuals carrying APOE4 who were 60 years or older (odds ratio, 0.75 [95% CI, 0.67-0.84]; P = 7.4 × 10−7), and this was more prominent at ages 60 to 80 years (odds ratio, 0.69 [95% CI, 0.61-0.79]; P = 3.6 × 10−8). Additionally, control participants carrying APOE4 with KL-VS heterozygosity were at reduced risk of converting to MCI or AD (hazard ratio, 0.64 [95% CI, 0.44-0.94]; P = .02). Finally, in control participants who carried APOE4 and were aged 60 to 80 years, KL-VS heterozygosity was associated with higher Aβ in CSF (β, 0.06 [95% CI, 0.01-0.10]; P = .03) and lower Aβ on PET scans (β, −0.04 [95% CI, −0.07 to −0.00]; P = .04).

    Conclusions and Relevance  The genotype KL-VSHET+ is associated with reduced AD risk and Aβ burden in individuals who are aged 60 to 80 years, cognitively normal, and carrying APOE4. Molecular pathways associated with KL merit exploration for novel AD drug targets. The KL-VS genotype should be considered in conjunction with the APOE genotype to refine AD prediction models used in clinical trial enrichment and personalized genetic counseling.

    ×