Hookworm Treatment for Relapsing Multiple Sclerosis: A Randomized Double-Blinded Placebo-Controlled Trial | Demyelinating Disorders | JAMA Neurology | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 35.173.234.169. Please contact the publisher to request reinstatement.
1.
Thompson  AJ, Baranzini  SE, Geurts  J, Hemmer  B, Ciccarelli  O.  Multiple sclerosis.   Lancet. 2018;391(10130):1622-1636. doi:10.1016/S0140-6736(18)30481-1 PubMedGoogle Scholar
2.
Bach  JF.  The effect of infections on susceptibility to autoimmune and allergic diseases.   N Engl J Med. 2002;347(12):911-920. doi:10.1056/NEJMra020100 PubMedGoogle Scholar
3.
Maizels  RM, Smith  KA.  Regulatory T cells in infection.   Adv Immunol. 2011;112:73-136. doi:10.1016/B978-0-12-387827-4.00003-6 PubMedGoogle Scholar
4.
Fleming  JO, Cook  TD.  Multiple sclerosis and the hygiene hypothesis.   Neurology. 2006;67(11):2085-2086. doi:10.1212/01.wnl.0000247663.40297.2d PubMedGoogle Scholar
5.
de Cássia Ribeiro Silva  R, Barreto  ML, Assis  AM,  et al.  The relative influence of polyparasitism, environment, and host factors on schistosome infection.   Am J Trop Med Hyg. 2007;77(4):672-675. doi:10.4269/ajtmh.2007.77.672 PubMedGoogle Scholar
6.
Correale  J, Farez  M.  Association between parasite infection and immune responses in multiple sclerosis.   Ann Neurol. 2007;61(2):97-108. doi:10.1002/ana.21067 PubMedGoogle Scholar
7.
Elliott  DE, Weinstock  JV.  Nematodes and human therapeutic trials for inflammatory disease.   Parasite Immunol. 2017;39(5). doi:10.1111/pim.12407 PubMedGoogle Scholar
8.
Fleming  JO, Isaak  A, Lee  JE,  et al.  Probiotic helminth administration in relapsing-remitting multiple sclerosis: a phase 1 study.   Mult Scler. 2011;17(6):743-754. doi:10.1177/1352458511398054 PubMedGoogle Scholar
9.
Benzel  F, Erdur  H, Kohler  S,  et al.  Immune monitoring of Trichuris suis egg therapy in multiple sclerosis patients.   J Helminthol. 2012;86(3):339-347. doi:10.1017/S0022149X11000460 PubMedGoogle Scholar
10.
Voldsgaard  A, Bager  P, Garde  E,  et al.  Trichuris suis ova therapy in relapsing multiple sclerosis is safe but without signals of beneficial effect.   Mult Scler. 2015;21(13):1723-1729. doi:10.1177/1352458514568173 PubMedGoogle Scholar
11.
Fleming  J, Hernandez  G, Hartman  L,  et al.  Safety and efficacy of helminth treatment in relapsing-remitting multiple sclerosis: Results of the HINT 2 clinical trial.   Mult Scler. 2017;25(1):81-91. doi:10.1177/1352458517736377PubMedGoogle Scholar
12.
Fumagalli  M, Pozzoli  U, Cagliani  R,  et al.  The landscape of human genes involved in the immune response to parasitic worms.   BMC Evol Biol. 2010;10:264. doi:10.1186/1471-2148-10-264 PubMedGoogle Scholar
13.
Pritchard  DI, Quinnell  RJ, Moustafa  M,  et al.  Hookworm (Necator americanus) infection and storage iron depletion.   Trans R Soc Trop Med Hyg. 1991;85(2):235-238. doi:10.1016/0035-9203(91)90038-Z PubMedGoogle Scholar
14.
de Silva  NR, Brooker  S, Hotez  PJ, Montresor  A, Engels  D, Savioli  L.  Soil-transmitted helminth infections: updating the global picture.   Trends Parasitol. 2003;19(12):547-551. doi:10.1016/j.pt.2003.10.002 PubMedGoogle Scholar
15.
Quinnell  RJ, Bethony  J, Pritchard  DI.  The immunoepidemiology of human hookworm infection.   Parasite Immunol. 2004;26(11-12):443-454. doi:10.1111/j.0141-9838.2004.00727.x PubMedGoogle Scholar
16.
Hotez  PJ, Pritchard  DI.  Hookworm infection.   Sci Am. 1995;272(6):68-74. doi:10.1038/scientificamerican0695-68 PubMedGoogle Scholar
17.
Mortimer  K, Brown  A, Feary  J,  et al.  Dose-ranging study for trials of therapeutic infection with Necator americanus in humans.   Am J Trop Med Hyg. 2006;75(5):914-920. doi:10.4269/ajtmh.2006.75.914 PubMedGoogle Scholar
18.
Blount  D, Hooi  D, Feary  J,  et al.  Immunologic profiles of persons recruited for a randomized, placebo-controlled clinical trial of hookworm infection.   Am J Trop Med Hyg. 2009;81(5):911-916. doi:10.4269/ajtmh.2009.09-0237 PubMedGoogle Scholar
19.
Croese  J, O’neil  J, Masson  J,  et al.  A proof of concept study establishing Necator americanus in Crohn’s patients and reservoir donors.   Gut. 2006;55(1):136-137. doi:10.1136/gut.2005.079129 PubMedGoogle Scholar
20.
McDonald  WI, Compston  A, Edan  G,  et al.  Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis.   Ann Neurol. 2001;50(1):121-127. doi:10.1002/ana.1032 PubMedGoogle Scholar
21.
Barkhof  F, Filippi  M, Miller  DH,  et al.  Comparison of MRI criteria at first presentation to predict conversion to clinically definite multiple sclerosis.   Brain. 1997;120(pt 11):2059-2069. doi:10.1093/brain/120.11.2059 PubMedGoogle Scholar
22.
Kurtzke  JF.  Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS).   Neurology. 1983;33(11):1444-1452. doi:10.1212/WNL.33.11.1444 PubMedGoogle Scholar
23.
Correale  J, Farez  MF.  The impact of parasite infections on the course of multiple sclerosis.   J Neuroimmunol. 2011;233(1-2):6-11. doi:10.1016/j.jneuroim.2011.01.002 PubMedGoogle Scholar
24.
Tubridy  N, Ader  HJ, Barkhof  F, Thompson  AJ, Miller  DH.  Exploratory treatment trials in multiple sclerosis using MRI: sample size calculations for relapsing-remitting and secondary progressive subgroups using placebo controlled parallel groups.   J Neurol Neurosurg Psychiatry. 1998;64(1):50-55. doi:10.1136/jnnp.64.1.50 PubMedGoogle Scholar
25.
Fay  BR.  Various methods of resolving ties for six distribution-free tests of location.   J Mod Appl Stat Methods. 2006;5(1):22-40. doi:10.22237/jmasm/1146456180 Google Scholar
26.
Traboulsee  A, Li  DKB, Cascione  M, Fang  J, Dangond  F, Miller  A.  Effect of interferon beta-1a subcutaneously three times weekly on clinical and radiological measures and no evidence of disease activity status in patients with relapsing-remitting multiple sclerosis at year 1.   BMC Neurol. 2018;18(1):143. doi:10.1186/s12883-018-1145-x PubMedGoogle Scholar
27.
Kappos  L, Radue  EW, O’Connor  P,  et al; FREEDOMS Study Group.  A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis.   N Engl J Med. 2010;362(5):387-401. doi:10.1056/NEJMoa0909494 PubMedGoogle Scholar
28.
Dasgupta  A, Mahapatra  M, Saxena  R.  Flow cytometric immunophenotyping of regulatory T cells in chronic lymphocytic leukemia: comparative assessment of various markers and use of novel antibody panel with CD127 as alternative to transcription factor FoxP3.   Leuk Lymphoma. 2013;54(4):778-789. doi:10.3109/10428194.2012.730614 PubMedGoogle Scholar
29.
Ruitenberg  JJ, Boyce  C, Hingorani  R, Putnam  A, Ghanekar  SA.  Rapid assessment of in vitro expanded human regulatory T cell function.   J Immunol Methods. 2011;372(1-2):95-106. doi:10.1016/j.jim.2011.07.001 PubMedGoogle Scholar
30.
Weinstock  JV, Elliott  DE.  Helminth infections decrease host susceptibility to immune-mediated diseases.   J Immunol. 2014;193(7):3239-3247. doi:10.4049/jimmunol.1400927 PubMedGoogle Scholar
31.
Wang  J, Ioan-Facsinay  A, van der Voort  EI, Huizinga  TW, Toes  RE.  Transient expression of FOXP3 in human activated nonregulatory CD4+ T cells.   Eur J Immunol. 2007;37(1):129-138. doi:10.1002/eji.200636435 PubMedGoogle Scholar
32.
Kleinewietfeld  M, Hafler  DA.  Regulatory T cells in autoimmune neuroinflammation.   Immunol Rev. 2014;259(1):231-244. doi:10.1111/imr.12169 PubMedGoogle Scholar
33.
Constantinescu  CS, Gran  B.  The essential role of T cells in multiple sclerosis: a reappraisal.   Biomed J. 2014;37(2):34-40. doi:10.4103/2319-4170.128746PubMedGoogle Scholar
34.
Cantacessi  C, Giacomin  P, Croese  J,  et al.  Impact of experimental hookworm infection on the human gut microbiota.   J Infect Dis. 2014;210(9):1431-1434. doi:10.1093/infdis/jiu256 PubMedGoogle Scholar
35.
Correale  J, Equiza  TR.  Regulatory B cells, helminths, and multiple sclerosis.   Methods Mol Biol. 2014;1190:257-269. doi:10.1007/978-1-4939-1161-5_18 PubMedGoogle Scholar
36.
Smith  DR, Balashov  KE, Hafler  DA, Khoury  SJ, Weiner  HL.  Immune deviation following pulse cyclophosphamide/methylprednisolone treatment of multiple sclerosis: increased interleukin-4 production and associated eosinophilia.   Ann Neurol. 1997;42(3):313-318. doi:10.1002/ana.410420307 PubMedGoogle Scholar
37.
Finlay  CM, Stefanska  AM, Walsh  KP,  et al.  Helminth products protect against autoimmunity via innate type 2 cytokines IL-5 and IL-33, which promote eosinophilia.   J Immunol. 2016;196(2):703-714. doi:10.4049/jimmunol.1501820 PubMedGoogle Scholar
Limit 200 characters
Limit 25 characters
Conflicts of Interest Disclosure

Identify all potential conflicts of interest that might be relevant to your comment.

Conflicts of interest comprise financial interests, activities, and relationships within the past 3 years including but not limited to employment, affiliation, grants or funding, consultancies, honoraria or payment, speaker's bureaus, stock ownership or options, expert testimony, royalties, donation of medical equipment, or patents planned, pending, or issued.

Err on the side of full disclosure.

If you have no conflicts of interest, check "No potential conflicts of interest" in the box below. The information will be posted with your response.

Not all submitted comments are published. Please see our commenting policy for details.

Limit 140 characters
Limit 3600 characters or approximately 600 words
    Original Investigation
    June 15, 2020

    Hookworm Treatment for Relapsing Multiple Sclerosis: A Randomized Double-Blinded Placebo-Controlled Trial

    Author Affiliations
    • 1Division of Clinical Neuroscience, University of Nottingham, Nottingham, England
    • 2Department of Neurology, Nottingham University Hospitals National Health Service Trust, Nottingham, England
    • 3Division of Clinical Neurosciences, University of Medicine and Pharmacy Carol Davila Bucharest, Bucharest, Romania
    • 4Department of Neurology, Colentina Hospital, Bucharest, Romania
    • 5National Institute of Health Research Nottingham BRC, Nottingham, England
    • 6Immune Regulation Research Group, University of Nottingham, Nottingham, England
    • 7Flow Cytometry Facilities, School of Life Sciences, University of Nottingham, Nottingham, England
    • 8Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, England
    • 9Department of Veterinary Medicine, University of Cambridge, Cambridge, England
    JAMA Neurol. 2020;77(9):1089-1098. doi:10.1001/jamaneurol.2020.1118
    Key Points

    Question  What are the effects of hookworm treatment compared with placebo on relapsing multiple sclerosis?

    Findings  In this randomized clinical trial that included 71 patients, the median cumulative numbers of new magnetic resonance imaging lesions were not significantly different between the groups, but approximately half of participants treated with hookworm vs approximately a quarter of those receiving placebo had no detectable magnetic resonance activity. Hookworm significantly increased T regulatory cell counts in peripheral blood.

    Meaning  The data from this study suggest a possible, albeit mild, therapeutic effect of hookworm infection in relapsing multiple sclerosis that warrants further study.

    Abstract

    Importance  Studies suggest gut worms induce immune responses that can protect against multiple sclerosis (MS). To our knowledge, there are no controlled treatment trials with helminth in MS.

    Objective  To determine whether hookworm treatment has effects on magnetic resonance imaging (MRI) activity and T regulatory cells in relapsing MS.

    Design, Setting, and Participants  This 9-month double-blind, randomized, placebo-controlled trial was conducted between September 2012 and March 2016 in a modified intention-to-treat population (the data were analyzed June 2018) at the University of Nottingham, Queen’s Medical Centre, a single tertiary referral center. Patients aged 18 to 61 years with relapsing MS without disease-modifying treatment were recruited from the MS clinic. Seventy-three patients were screened; of these, 71 were recruited (2 ineligible/declined).

    Interventions  Patients were randomized (1:1) to receive either 25 Necator americanus larvae transcutaneously or placebo. The MRI scans were performed monthly during months 3 to 9 and 3 months posttreatment.

    Main Outcomes and Measures  The primary end point was the cumulative number of new/enlarging T2/new enhancing T1 lesions at month 9. The secondary end point was the percentage of cluster of differentiation (CD) 4+CD25highCD127negT regulatory cells in peripheral blood.

    Results  Patients (mean [SD] age, 45 [9.5] years; 50 women [71%]) were randomized to receive hookworm (35 [49.3%]) or placebo (36 [50.7%]). Sixty-six patients (93.0%) completed the trial. The median cumulative numbers of new/enlarging/enhancing lesions were not significantly different between the groups by preplanned Mann-Whitney U tests, which lose power with tied data (high number of zeroactivity MRIs in the hookworm group, 18/35 [51.4%] vs 10/36 [27.8%] in the placebo group). The percentage of CD4+CD25highCD127negT cells increased at month 9 in the hookworm group (hookworm, 32 [4.4%]; placebo, 34 [3.9%]; P = .01). No patients withdrew because of adverse effects. There were no differences in adverse events between groups except more application-site skin discomfort in the hookworm group (82% vs 28%). There were 5 relapses (14.3%) in the hookworm group vs 11 (30.6%) receiving placebo.

    Conclusions and Relevance  Treatment with hookworm was safe and well tolerated. The primary outcome did not reach significance, likely because of a low level of disease activity. Hookworm infection increased T regulatory cells, suggesting an immunobiological effect of hookworm. It appears that a living organism can precipitate immunoregulatory changes that may affect MS disease activity.

    Trial Registration  ClinicalTrials.gov Identifier: NCT01470521

    ×