Research

Effect of Breastfeeding on Postpartum Multiple Sclerosis Relapse 1132

Hellwig and coauthors determine the effect of exclusive breastfeeding on postpartum risk of multiple sclerosis relapse and investigate the effect of introducing supplemental feedings on that risk. Thirty-one of 81 women (38.3%) who did not breastfeed exclusively had a relapse within the first 6 months post partum compared with 29 of 120 women (24.2%) who intended to breastfeed exclusively for at least 2 months (unadjusted hazard ratio, 1.80; 95% CI, 1.09-2.99; \(P = .02 \); adjusted hazard ratio, 1.70; 95% CI, 1.02-2.85; \(P = .04 \)). The findings of this study suggest that exclusive breastfeeding is a modestly effective multiple sclerosis treatment with a natural end date.

Nerve Growth Factor Gene Therapy 1139

Tuszynski and coauthors determine whether degenerating neurons in Alzheimer disease retain an ability to respond to a nervous system growth factor delivered after disease onset. Among 10 patients, degenerating neurons in the Alzheimer disease brain responded to nerve growth factor. These findings indicate that neurons of the degenerating brain retain the ability to respond to growth factors with axonal sprouting, cell hypertrophy, and activation of functional markers.

Encephalitis Associated With AMPAR-Abs 1163

Joubert and colleagues describe 7 patients with encephalitis and antibodies against the \(\alpha \)-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR-Abs) and provide a review of the literature on this disease entity. Four main modes of encephalitis onset were observed, including confusion (3 patients), epileptic (1 patient), amnestic (1 patient), and a severe form of fulminant encephalitis (2 patients). Patients suspected of having autoimmune encephalitis should undergo screening for serum and cerebrospinal fluid AMPAR-Abs.

Clinical Review & Education

Blood-Borne Revitalization of the Aged Brain 1191

Castellano et al review brain rejuvenation studies in the broader context of systemic rejuvenation research. Revisiting classical methods of experimental physiology in animal models has uncovered surprising regenerative activity in young blood with translational implications for the aging liver, muscle, brain, and other organs. They discuss putative mechanisms for blood-borne brain rejuvenation and suggest promising avenues for future research and development of therapies.