recovery after ischemic stroke. Sze et al5 showed that worsening frailty indices are strongly associated with worse outcomes in patients hospitalized with heart failure (a considerable long-term disabling consequence of MI).

Studies in the future could compare the difference in postevent frailty between patients with ischemic stroke and MI. Assessing a patient’s premorbid frailty status using simple validated frailty assessment tools could contribute to predicting how patients with ischemic stroke might perform in their subsequent rehabilitation. It may even contribute to predicting clinical outcomes earlier in the pathway when assessing patients for thrombectomy or thrombolysis.

Daniel Pan, MBBS, BSc, PGCert
Liqun Zhang, MD, PhD
Anthony C. Pereira, MA, MD

Author Affiliations: Department of Neurology, St George’s Hospital, London, England.

Corresponding Author: Daniel Pan, MBBS, BSc, PGCert, Department of Neurology, St George’s Hospital, Blackshaw Road, Tooting, London SW17 0QT, England (daniel.pan@nhs.net).

Published Online: March 12, 2018. doi:10.1001/jamaneurol.2018.0199

Conflict of Interest Disclosures: None reported.

In Reply We agree with Pan et al that endovascular thrombectomy for large vessel occlusions may improve long-term disability trajectories for those who receive this treatment. However, few patients with ischemic stroke currently receive this treatment, and it is not certain how much of an association endovascular thrombectomy will have with long-term disability trajectories for patients with ischemic stroke as a whole. It is certainly hoped that more trained specialists are available to provide the treatment, more capable stroke centers will be developed, and more patients will present within an amenable time window. However, even with perfect availability of the intervention, it will only benefit those patients who have large vessel occlusion and not other subtypes or mechanisms of ischemic stroke. We also agree that frailty is an important concept with demonstrated associations with outcomes. However, we chose to focus on a more narrowly-defined construct—disability—as an outcome.

We agree with the important limitations of self-reported measures that were mentioned by Sharma and Sivakumaran. However, the covariates we examined in this analysis3 were derived not only from self-reporting, but also from interviews, clinical examinations, medical record abstraction, and publicly released Medicare claims data, as described in the article.1 Also, in the main models, we did not adjust for physical activity or energy intake. The disability scales that were used in this study and others that are considered standard to assess activities of daily living are assessed by self-reporting and have been shown to have excellent measurement accuracy.

It is possible that the co-occurrence of both stroke and myocardial infarction may have accelerated long-term functional decline, but we did not test for this specifically in the article. Also, we did not have detailed information about stroke and myocardial infarction treatments used by patients. Hopefully, further research will be able to clarify the important questions raised by these readers.

Mandip S. Dhanoos, MD, DrPH

Author Affiliation: Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York.

Corresponding Author: Mandip S. Dhanoos, MD, DrPH, Department of Neurology, Icahn School of Medicine at Mount Sinai, 1468 Madison Ave, Annenberg 301B, New York, NY 10029 (mandip.dhanoos@mssm.edu).

Published Online: March 12, 2018. doi:10.1001/jamaneurol.2018.0202

Conflict of Interest Disclosures: None reported.

CORRECTION

Errors in Figure 1: In the Original Investigation titled “Association of Folic Acid Supplementation During Pregnancy With the Risk of Autistic Traits in Children Exposed to Antiepileptic Drugs In Utero,” published online December 26, 2017, and in the February 2018 print issue, there were errors in Figure 1; “299 Women with AED exposure” should have been “287 Women with AED exposure,” “288 Women with AED exposure” should have been “287 Women with AED exposure,” and “66 (7.0%) Siblings” should have been “66 (7.0%) Siblings.” This article has been corrected online.

Missing Author Affiliation: In the Original Investigation titled “Disease Course and Treatment Responses in Children With Relapsing Myelin Oligodendrocyte Glycoprotein Antibody–Associated Disease,” published online January 5, 2018, and in this issue of JAMA Neurology,1 Dr Ganelin-Cohen’s second affiliation was missing. In the Author Affiliations portion of the Article Information section, her affiliations should have been listed as “Pediatric Neurology Unit, Schneider Children’s Medical Center, Tel-Aviv, Israel,” and also as “Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.” This article was corrected online.