Discussion | Similar to previous work both in pregnant and non-pregnant women,1,2,3 we found an elevated risk of stroke among women with migraines. Approximately one-fourth of the excess cases of maternal stroke associated with migraine were attributable to hypertensive disorders. This suggests that other pathways exist between migraine and stroke during the perinatal period, potentially through pathophysiologic changes, such as increased blood volume and cerebral circulation.2

The limitations of this study include the uncertain temporality of migraine, hypertension, and stroke in prenatal models. As severe headache can accompany strokes or preeclampsia, migraine may be coded as a sequela of either condition, the timing of which would not be distinguishable on discharge summaries. Mediation assumes that the exposure (migraine) causes the mediator (hypertension), which in turn causes the outcome, and deviations to this temporal sequence or framework would affect findings and interpretation. Also, it is likely that only severe and active migraines are recorded in discharge summaries, which could lead to stronger risk ratios that are not generalizable to less severe migraines. Finally, we did not have any data on treatment of migraine and all models are vulnerable to unmeasured confounding.

In conclusion, approximately 25% of the excess risk of maternal stroke associated with migraine was mediated through hypertensive disorders. Although strokes are rare events, the associated morbidity and mortality warrants focus on identifying modifiable intervention targets.

Gretchen Bandoli, PhD
Rebecca J. Baer, MPH
Dawn Gano, MD, MAS
Laura Jelliffe Pawlowski, PhD
Christina Chambers, PhD

Author Affiliations: Department of Pediatrics, University of California, San Diego, La Jolla (Bandoli, Chambers); Preterm Birth Initiative, University of California, San Francisco, La Jolla (Baer, Pawlowski); Department of Neurology, University of California, San Francisco, La Jolla (Gano).

Corresponding Author: Gretchen Bandoli, PhD, Department of Pediatrics, University of California, San Diego, 5500 Gilman Dr, MC 0828, La Jolla, CA 92039 (gbandoli@ucsd.edu).

Published Online: June 1, 2020. doi:10.1001/jamaneurol.2020.1435

Author Contributions: Dr Bandoli had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: Baer, Jelliffe, Chambers.

Acquisition, analysis, or interpretation of data: All authors.

Drafting of the manuscript: Bandoli, Jelliffe, Chambers.

Critical revision of the manuscript for important intellectual content: Baer, Gano, Jelliffe, Chambers.

Statistical analysis: Bandoli, Jelliffe.

Obtained funding: Jelliffe.

Administrative, technical, or material support: Baer, Gano, Jelliffe, Chambers.

Supervision: Jelliffe.

Conflict of Interest Disclosures: Dr Bandoli reported grants from the Benioff Preterm Birth Initiative at University of California, San Francisco during the conduct of the study and from National Institutes of Health outside the submitted work. No other disclosures were reported.

Funding/Support: This work was funded as part of the California Preterm Birth Initiative at the University of California San Francisco. Dr Bandoli is funded by the National Institutes on Alcohol Abuse and Alcoholism (grant 1 K01 AA027811-01).

Role of the Funder/Sponsor: The funding organizations had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.


CORRECTION

Error in the Biomarker Subsection: In the Original Investigation titled “Efficacy and Safety of Lanabecestat for Treatment of Early and Mild Alzheimer Disease: The AMARANTH and DAYBREAK-ALZ Randomized Clinical Trials,” which published online November 11, 2019, and in print in February 2020 in JAMA Neurology,1 there was an error in the Biomarkers subsection of the Results section. The mean data for lanabecestat 20 mg vs placebo in DAYBREAK-ALZ was 2.2 Centiloids not -2.2 Centiloids. This article was corrected online.


Error in Author Names and Figure Labels: In the Original Investigation by Hawryluk et al, titled “Analysis of Normal High-Frequency Intracranial Pressure Values and Treatment Threshold in Neurocritical Care Patients: Insights Into Normal Values and a Potential Treatment Threshold,” published online June 15, 2020,1 there was an omission in 2 author names and an error in the labels of Figure 2. The middle initials should appear in the names of Drs Ferguson and Manley, so that their bylines are listed as “Adam R. Ferguson” and “Geoffrey T. Manley.” The labels of Figure 2 should, respectively, read “A. ICP over time in all patients,” “B. ICP over time in TBI patients,” “C. ICP in all patients, days 3 to 5,” “D. ICP in TBI patients, days 3 to 5,” “E. ICP in all patients, day 1 to 30,” and “F. ICP in TBI patients, day 1 to 30.” This article was corrected online.


Mislabeled Curves in a Figure: In the Original Investigation titled “Comparative Effectiveness of Carotid Endarterectomy vs Initial Medical Therapy in Patients With Asymptomatic Carotid Stenosis,” published online June 1, 2020, in JAMA Neurology, the curves in Figure 2 were mislabeled. The orange curve should have been labeled “Received carotid endarterectomy” and the dark blue curve should have been labeled “Received initial medical therapy,” similar to Figure 3. This article was corrected online.