A Novel Loss-of-Function LGI1 Mutation Linked to Autosomal Dominant Lateral Temporal Epilepsy

Pasquale Striano, MD; Arturo de Falco, MD; Erica Diani, BSc; Giorgia Bovo, BSc; Sandra Furlan; Libero Vitiello, PhD; Federica Pinardi, MD; Salvatore Striano, MD; Roberto Michelucci, MD; Fabrizio Antonio de Falco, MD; Carlo Nobile, PhD

Background: Mutations responsible for autosomal dominant lateral temporal epilepsy have been found in the leucine-rich, glioma-inactivated 1 (LGI1) gene.

Objectives: To describe the clinical and genetic findings in a family with autosomal dominant lateral temporal epilepsy and to determine the functional effects of a novel LGI1 mutation in culture cells.

Design: Clinical, genetic, and functional investigations.

Setting: University hospital and laboratory.

Patients: An Italian family with autosomal dominant lateral temporal epilepsy.

Main Outcome Measure: Mutation analysis.

Results: A novel LGI1 mutation, c.365T>A (Ile122Lys), segregating with the disease was identified. The mutant Lgi1 protein was not secreted by culture cells.

Conclusion: Our data provide further evidence that mutations in LGI1 hamper secretion of the Lgi1 protein, thereby precluding its normal function.

Arch Neurol. 2008;65(7):939-942

©2008 American Medical Association. All rights reserved.
The family pedigree is shown in Figure 1 and the clinical features of the affected members are summarized in the Table. The proband (patient III:8), a 28-year-old, right-handed woman, had a single TCS and a 2-year history of monthly simple partial seizures characterized by buzzing in her left ear and déjà vu; on some occasions these episodes were followed by loss of contact lasting about 30 seconds. She denied any specific and unusual modality of induction. Neurologic examination results, 1.5-T magnetic resonance imaging results, and auditory-evoked potentials were normal. Prolonged video-EEG monitoring after sleep deprivation disclosed rare, slow, sharp waves over the left temporal regions. She began receiving carbamazepine (400 mg/d) and did not report further seizures at 8 months’ follow-up. Patient II:1 was a 51-year-old, right-handed man with a history of simple partial seizures that started at age 24 years and are characterized by rhythmic echoes in both ears progressively getting louder; sometimes a secondarily generalized TCS could ensue. Sleep deprivation and stress could facilitate seizures. His neurologic examination, prolonged EEG monitoring, and brain magnetic resonance imaging results were normal. Therapy with phenytoin (200 mg/d) started at age 30 years allowed complete seizure control. At age 40 years, voluntary withdrawal of therapy resulted in a TCS. However, no further seizures occurred after resumption of the phenytoin treatment. Patients III:1 and III:2 were right-handed women aged 36 and 33 years, respectively, with seizures characterized by déjà vu sensation with a marked auditory component or simple ictal auditory symptoms (unformed sounds, voices) that started at ages 25 and 14 years, respectively. No TCSs or specific triggering stimuli were reported. Their neurologic examination results, 1.5-T magnetic resonance imaging results, and prolonged video-EEG recording results after sleep deprivation were unremarkable. Although simple partial seizures continued on a monthly basis, the patients refused to start any therapy. Patient II:5 died at age 42 years due to a pancreatic carcinoma and had TCSs preceded by “sounds in his ears” from adolescence. Patient III:3 had a single febrile seizure at age 6 months.

MOLECULAR GENETIC ANALYSIS

Sequencing of LGII exons in the proband III:8 revealed a heterozygous c.365T>G mutation (numbering from the start codon) (Figure 2A) in exon 4, giving rise to an isoleucine to lysine substitution at position 122 of the protein sequence (Ile122Lys). The mutation was present in the other available affected family members (II:1, III:1, and III:2) but not in subject III:3 (with a febrile seizure only) and in 130 unrelated healthy control subjects of Italian ancestry. The Ile122 residue is conserved in many species, including mouse, rat, chicken, and zebrafish (data not shown). Replacement of this hydrophobic amino acid with the charged lysine residue likely disrupts the structure and hampers the function of the mutated protein.

CELL TRANSFECTION ASSAY

To ascertain the functional consequences of the Ile122Lys mutation, we transfected LGII wild-type and LGII 365T>G complementary DNA into human embryonic kidney 293 cells, which do not express endogenous LGII, and analyzed the proteins produced by these cells using immunoblot. Both cell lysates and concentrated (about 40 times) serum-free media were analyzed using anti-Lgi1 and anti-Flag antibodies (see the “Methods” section). The Lgi1 wild-type protein was detected mostly in the medium of transfected cells, whereas the mutated protein was detected only in the cell lysate (Figure 2B). Thus, the mutated Lgi1 protein carrying the Ile122Lys point mutation is not secreted.
Identification of ADLTE is clinically important because this form of focal epilepsy generally has a favorable prognosis with good response to antiepileptic therapy. Because the clinical diagnosis of ADLTE is based mainly on the presence of an auditory aura, which may be elusive in some patients or families, testing for mutations in \(\text{LGI1} \) is important to confirm diagnosis of ADLTE, especially in families with only a few patients available. Also, detection of \(\text{LGI1} \) mutations in familial cases with lateral temporal epilepsy could contribute—together with the clinical data—to avoiding long presurgical studies and preventing unnecessary surgery.

The predominant feature of the family described here was the occurrence of simple partial seizures with exclusive or predominant auditory symptoms, suggesting an onset in the lateral temporal lobe cortex. Interestingly, 2 subjects (III:1 and III:2) with déjà vu reported a strong auditory component of their sensation. Complex partial seizures with loss of contact were reported by 1 patient only. Tonic-clonic seizures preceded or not preceded by aura occurred in 2 patients. In all of the affected members, epilepsy was very mild in severity, with low seizure frequency also in patients not receiving antiepileptic drugs. One family member had a febrile seizure during infancy and lacked the \(\text{LGI1} \) mutation, confirming that febrile seizures are not part of the ADLTE phenotype, at least in families with documented \(\text{LGI1} \) mutations.

The causative role of the \(\text{LGI1} \) Ile122Lys mutation is supported by its segregation with ADLTE in affected members, its absence in control chromosomal, its negative effect on secretion of the mutated protein, and the evolutionary conservation of the Ile122 residue. The Ile122 amino acid is part of the hydrophobic core of the second LRR repeat and therefore is important for proper folding of the LRR domain. Several other structural missense mutations affecting the LRR protein region (Cys42Arg, Cys46Arg, Cys200Arg, and Leu154Pro) have been found in families with aphasic as well as auditory auras. Because no affected members of our family experienced auras with aphasic symptoms, our findings do not support any correlation between mutations involving structural LRR residues and auras with an aphasic component. However, a larger number of ADLTE kindreds with \(\text{LGI1} \) mutations is needed to correlate genotypes and phenotypes reliably.

\(\text{LGI1} \) defines a new class of epilepsy genes because it differs structurally from ion channel genes implicated in other inherited forms of epilepsy. The mechanism by which \(\text{LGI1} \) mutations determine epilepsy remains unclear. Senechal and coworkers\(^6\) showed that the Lgi1 protein produced in transfected nonneuronal cells is secreted and that mutations either truncating the protein or replacing single amino acids hamper the secretion process. These findings suggest that Lgi1 may function as a ligand in the extracellular or synaptic environment.

Recent work suggests that the Lgi1 protein may serve as a ligand for the postsynaptic receptor ADAM22, a model implying secretion of Lgi1 into the synaptic cleft.\(^10\) The identification of ADLTE-causing mutations that hamper secretion of the Lgi1 protein, like the mutation described in this article, lends further

Table. Clinical Details of the Investigated Family Members

<table>
<thead>
<tr>
<th>Patient No./Sex/ Age, y</th>
<th>Febrous Seizures</th>
<th>Seizure Semiology</th>
<th>Age at Seizures Onset, y</th>
<th>Tonic-Clonic Seizures (Age, y)</th>
<th>Interictal EEG Results</th>
<th>MRI Results</th>
<th>Outcome</th>
<th>AED Therapy</th>
<th>LGI1 Mutation</th>
</tr>
</thead>
<tbody>
<tr>
<td>II:1/M/52</td>
<td>No</td>
<td>Rhythmic echoes in ears getting louder (SPS)</td>
<td>24</td>
<td>Yes (24)</td>
<td>Normal</td>
<td>ND</td>
<td>SF</td>
<td>Phenytoin</td>
<td>Yes</td>
</tr>
<tr>
<td>II:1/F/36</td>
<td>No</td>
<td>Unformed sounds or voices, déjà vu (SPS)</td>
<td>25</td>
<td>No</td>
<td>Normal</td>
<td>Normal</td>
<td>Monthly SPS</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>II:2/F/33</td>
<td>No</td>
<td>Unformed sounds, déjà vu (SPS)</td>
<td>14</td>
<td>No</td>
<td>Normal</td>
<td>Normal</td>
<td>Monthly SPS</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>III:3/F/28</td>
<td>Yes</td>
<td>NA</td>
<td>26</td>
<td>Yes (28)</td>
<td>Left temporal sharp waves</td>
<td>Normal</td>
<td>SF</td>
<td>Carbamazepine</td>
<td>Yes</td>
</tr>
<tr>
<td>III:8/F/28</td>
<td>No</td>
<td>Buzzing in left ear, loss of contact (SPS, CPS)</td>
<td>25</td>
<td>No</td>
<td>Normal</td>
<td>NA</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Abbreviations: AED, antiepileptic drug; CPS, complex partial seizures; EEG, electroencephalography; MRI, magnetic resonance imaging; NA, not applicable; ND, not done; SF, seizure-free; SPS, simple partial seizures.
support to this functional model. Additional character-
ization of the LGI1 mutational spectrum and of the
fuctional effect of mutations will help to elucidate the
normal Lg11 function and its role in epileptogenesis.

Accepted for Publication: January 25, 2008.
Correspondence: Carlo Nobile, PhD, Istituto di Neuro-
sienze del CNR, Sezione di Padova, Dipartimento di Sci-
enze Biomediche Sperimentali, Università di Padova, viale
G. Colombo 3, 35121 Padova, Italy (nobile@bio.unipd
.it).

Author Contributions: Dr Nobile had full access to all
of the data in the study and takes responsibility for the
integrity of the data and the accuracy of the data analy-
sis. Drs P. Striano and A. de Falco contributed equally
to the study. Study concept and design: P. Striano, A. de
Falco, Vitiello, S. Striano, Michelucci, and Nobile.
Acquisition of data: P. Striano, A. de Falco, Furlan,
Vitiello, Pinardi, F. A. de Falco, and Nobile.
Analysis and interpretation of data: P. Striano, A. de
Falco, Bovo, and Nobile.
Drafting of the manuscript: P. Striano, Bovo, Furlan,
Vitiello, Pinardi, and Nobile.
Critical revision of the manuscript for important intel-
lectual content: A. de Falco, Vitiello, S. Striano,
Michelucci, F. A. de Falco, and Nobile.
Study supervi-
sion: P. Striano, A. de Falco, S. Striano, Michelucci, F.
A. de Falco, and Nobile.
Financial Disclosure: None reported.
Funding/Support: This work was supported by the Ge-
etic Commission of the Italian League Against Epi-
lepsy.
Additional Contributions: We thank the family for their
participation.

REFERENCES

2. Winawer MR, Ottman R, Hauser WA, Pedley TA. Autosomal dominant partial epi-

2173-2176.
lepsy: clinical spectrum, new epitempin mutations, and genetic heterogeneity in

5. Ottman R, Winawer MR, Kalachikov S, et al. LGI1 mutations in autosomal domi-

7. Staub E, Pérez-Tur J, Siebert R, et al. The novel EPTP repeat defines a super-

27(9):441-444.
8. Senechal KR, Thaller C, Noebels JL. ADPEAF mutations reduce levels of se-
creted LGI1, a putative tumor suppressor protein linked to epilepsy. Hum Mol

98(3):985-991.
10. Choi H, Winawer MR, Kalachikov S, Pedley TA, Hauser WA, Ottman R. Classifi-

gene LGI1 encodes a secreted glycoprotein that binds to the cell surface. Hum

12. Chabrol E, Popescu C, Gourfinkel-An I, et al. Two novel epilepsy-linked muta-
tions leading to a loss of function of LGI1. Arch Neurol. 2007;64(2):217-222.
13. Gu W, Brodtkorb E, Steinlein OK. LGI1 is mutated in familial temporal lobe epi-
gene mutation suggests a loss-of-function mechanism [published correction ap-
15. Pisano T, Marini C, Brovedani P, et al. Abnormal phenologic processing in fa-
miliar lateral temporal lobe epilepsy due to a new LGI1 mutation. Epilepsia. 2005;

46(1):118-123.
16. Fukata Y, Adesnik H, Iwanga T, Breit DS, Nicoll RA, Fukata M. Epilepsy-related
ligand/receptor complex LGI1 and ADAM22 regulate synaptic transmission. Science.
2006;313(5794):1792-1795.