[Skip to Navigation]
Sign In
Figure 1. 
Densities (number per square millimeter) of temporal neurofibrillary tangles (NFT) for subjects grouped by Clinical Dementia Rating (CDR) and neuropathologic diagnoses. See "Clinical Assessment" subsection of the "Subjects and Methods" section for explanation of CDR scores. The 13 controls are clustered in the first column, labeled CDR 0. The other "X" symbols indicate pure Alzheimer disease (AD), as in 3A for CDR 3 subjects; 3B and open circles, AD plus Parkinson disease changes (PD); 3C and open squares, AD plus other nigral degeneration (SND); 3D and triangles, AD plus vascular lesions; 3E and diamonds, AD plus vascular plus PD or SND. The mean values of the groups are connected.

Densities (number per square millimeter) of temporal neurofibrillary tangles (NFT) for subjects grouped by Clinical Dementia Rating (CDR) and neuropathologic diagnoses. See "Clinical Assessment" subsection of the "Subjects and Methods" section for explanation of CDR scores. The 13 controls are clustered in the first column, labeled CDR 0. The other "X" symbols indicate pure Alzheimer disease (AD), as in 3A for CDR 3 subjects; 3B and open circles, AD plus Parkinson disease changes (PD); 3C and open squares, AD plus other nigral degeneration (SND); 3D and triangles, AD plus vascular lesions; 3E and diamonds, AD plus vascular plus PD or SND. The mean values of the groups are connected.

Figure 2. 
Densities (number per square millimeter) of frontal total senile plaques for subjects grouped by Clinical Dementia Rating (CDR) and neuropathologic diagnoses. The mean values of the groups are connected. See the legend to Figure 1 for an explanation of abbreviations and symbols.

Densities (number per square millimeter) of frontal total senile plaques for subjects grouped by Clinical Dementia Rating (CDR) and neuropathologic diagnoses. The mean values of the groups are connected. See the legend to Figure 1 for an explanation of abbreviations and symbols.

Figure 3. 
Densities (number per square millimeter) of frontal cored senile plaques for subjects grouped by Clinical Dementia Rating (CDR) and neuropathologic diagnoses. See the legend to Figure 1 for an explanation of abbreviations and symbols.

Densities (number per square millimeter) of frontal cored senile plaques for subjects grouped by Clinical Dementia Rating (CDR) and neuropathologic diagnoses. See the legend to Figure 1 for an explanation of abbreviations and symbols.

Table 1. 
Fourteen Subjects With DAT With Non-AD Autopsy Diagnoses
Fourteen Subjects With DAT With Non-AD Autopsy Diagnoses
Table 2. 
Demographic Characteristics, Clinical Data, and apoE Genotype of the Controls and Subjects With DAT With Confirmed AD*
Demographic Characteristics, Clinical Data, and apoE Genotype of the Controls and Subjects With DAT With Confirmed AD*
Table 3. 
Mean Density of Markers in AD: Relation to CDR, Sum of Boxes, and Age at Death*
Mean Density of Markers in AD: Relation to CDR, Sum of Boxes, and Age at Death*
1.
Berg  LMcKeel  DW  JrMiller  JPBaty  JMorris  JC Neuropathologic indexes of Alzheimer's disease in demented and nondemented people aged 80 years and older.  Arch Neurol. 1993;50349- 358Google ScholarCrossref
2.
Mann  DMAYates  POMarcyniuk  B Some morphometric observations on the cerebral cortex and hippocampus in presenile Alzheimer's disease, senile dementia of the Alzheimer type and Down's syndrome in middle age.  J Neurol Sci. 1985;69139- 159Google ScholarCrossref
3.
Bondareff  WMountjoy  CQRoth  MRossor  MNIverson  LLReynolds  GP Age and histopathological heterogeneity in Alzheimer's disease: evidence for subtypes.  Arch Gen Psychiatry. 1987;44412- 417Google ScholarCrossref
4.
Coleman  PDFlood  DG Neuron numbers and dendritic extent in normal aging and Alzheimer's disease.  Neurobiol Aging. 1987;8521- 545Google ScholarCrossref
5.
Hansen  LADeTeresa  RTerry  RD Neocortical morphometry, lesion counts, and choline acetyltransferase levels in the age spectrum of Alzheimer's disease.  Neurology. 1988;3848- 54Google ScholarCrossref
6.
Katzman  RTerry  RDDeTeresa  R  et al.  Clinical, pathological, and neurochemical changes in dementia: a subgroup with preserved mental status and numerous neocortical plaques.  Ann Neurol. 1988;23138- 144Google ScholarCrossref
7.
Crystal  HDickson  DWFuld  P  et al.  Clinicopathologic studies in dementia: nondemented subjects with pathologically confirmed Alzheimer's disease.  Neurology. 1988;381682- 1687Google ScholarCrossref
8.
Dickson  DWCrystal  HAMattiace  LA  et al.  Identification of normal and pathological aging in prospectively studied nondemented elderly humans.  Neurobiol Aging. 1992;13179- 189Google ScholarCrossref
9.
Morris  JCMcKeel  DW  JrStorandt  M  et al.  Very mild Alzheimer's disease: informant-based clinical, psychometric, and pathological distinction from normal aging.  Neurology. 1991;41469- 478Google ScholarCrossref
10.
Morris  JCStorandt  MMcKeel  DW  Jr  et al.  Cerebral amyloid deposition and diffuse plaques in "normal" aging: evidence for presymptomatic and very mild Alzheimer's disease.  Neurology. 1996;46707- 719Google ScholarCrossref
11.
Saunders  AMStrittmatter  WJSchmechel  D  et al.  Association of apolipoprotein E allele ϵ4 with late-onset familial and sporadic Alzheimer's disease.  Neurology. 1993;431467- 1472Google ScholarCrossref
12.
Strittmatter  WJSaunders  AMSchmechel  D  et al.  Apolipoprotein E: high avidity binding to b-amyloid and increased frequency of type 4 allele in late onset familial Alzheimer disease.  Proc Natl Acad Sci U S A. 1993;901977- 1981Google ScholarCrossref
13.
Schmechel  DESaunders  AMStrittmatter  WJ  et al.  Increased amyloid β-peptide deposition in cerebral cortex as a consequence of apolipoprotein E genotype in late-onset Alzheimer disease.  Proc Natl Acad Sci U S A. 1993;909649- 9653Google ScholarCrossref
14.
Rebeck  GWReiter  JSStrickland  DKHyman  BT Apolipoprotein E in sporadic Alzheimer's disease: allelic variation and receptor interactions.  Neuron. 1993;11575- 580Google ScholarCrossref
15.
Roses  AD Apolipoprotein E alleles as risk factors in Alzheimer's disease.  Annu Rev Med. 1996;47387- 400Google ScholarCrossref
16.
Olichney  JMHansen  LAGalasko  D  et al.  The apolipoprotein E ϵ4 allele is associated with increased neuritic plaques and cerebral amyloid angiopathy in Alzheimer's disease and Lewy body variant.  Neurology. 1996;47190- 196Google ScholarCrossref
17.
Hansen  LAMasliah  EGalasko  DTerry  RD Plaque-only Alzheimer's disease is usually the Lewy body variant, and vice versa.  J Neuropathol Exp Neurol. 1993;52648- 654Google ScholarCrossref
18.
Berg  LHughes  CPCoben  LA  et al.  Mild senile dementia of Alzheimer type: Research Diagnostic Criteria, recruitment, and description of a study population.  J Neurol Neurosurg Psychiatry. 1982;45962- 968Google ScholarCrossref
19.
McKhann  GDrachman  DFolstein  MKatzman  RPrice  DStadlan  AM Clinical diagnosis of Alzheimer's disease: report of the NINCDS/ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease.  Neurology. 1984;34939- 944Google ScholarCrossref
20.
Roberts  GWGentleman  SMLynch  AMurray  LLandon  MGraham  DI β-Amyloid protein deposition in the brain after severe head injury: implications for the pathogenesis of Alzheimer's disease.  J Neurol Neurosurg Psychiatry. 1994;57419- 425Google ScholarCrossref
21.
Adle-Biassette  HDuyckaerts  CWasowicz  M  et al.  βAP deposition and head trauma.  Neurobiol Aging. 1996;17415- 419Google ScholarCrossref
22.
Morris  JCMcKeel  DW  JrFulling  KTorack  RMBerg  L Validation of clinical diagnostic criteria for Alzheimer's disease.  Ann Neurol. 1988;2417- 22Google ScholarCrossref
23.
Hughes  CPBerg  LDanziger  WL  et al.  A new clinical scale for the staging of dementia.  Br J Psychiatry. 1982;140566- 572Google ScholarCrossref
24.
Morris  JC The Clinical Dementia Rating (CDR): current version and scoring rules.  Neurology. 1993;432412- 2414Google ScholarCrossref
25.
Berg  LMiller  JPStorandt  M  et al.  Mild senile dementia of the Alzheimer type, 2: longitudinal assessment.  Ann Neurol. 1988;23477- 484Google ScholarCrossref
26.
Burke  WJMiller  JPRubin  EH  et al.  Reliability of the Washington University Clinical Dementia Rating (CDR).  Arch Neurol. 1988;4531- 32Google ScholarCrossref
27.
McCulla  MMCoats  MVan Fleet  NDuchek  JGrant  EMorris  JC Reliability of nurse specialists in the staging of dementia.  Arch Neurol. 1989;461210- 1211Google ScholarCrossref
28.
Davis  PBWhite  HPrice  JLMcKeel  DWRobins  LN Retrospective postmortem dementia assessment: validation of a new clinical interview to assist neuropathologic study.  Arch Neurol. 1991;48613- 617Google ScholarCrossref
29.
American Psychiatric Association, Committee on Nomenclature and Statistics, Diagnostic and Statistical Manual of Mental Disorders, Revised Third Edition.  Washington, DC American Psychiatric Association1987;
30.
Price  JLDavis  PBMorris  JCWhite  DL The distribution of tangles, plaques and related immunohistochemical markers in healthy aging and Alzheimer's disease.  Neurobiol Aging. 1991;12295- 312Google ScholarCrossref
31.
Price  JL Tangles and plaques in healthy aging and Alzheimer's disease: independence or interaction?  Semin Neurosci. 1994;6395- 402Google ScholarCrossref
32.
Hixson  JEVernier  DT Restriction isotyping of human apolipoprotein E by gene amplification and cleavage with Hha 1.  J Lipid Res. 1990;31545- 548Google Scholar
33.
Talbot  CHoulden  HCraddock  N  et al.  Polymorphism in AACT gene may lower age of onset of Alzheimer's disease.  Neuroreport. 1996;7534- 536Google ScholarCrossref
34.
Gearing  MSchneider  JARebeck  GWHyman  BTMirra  SS Alzheimer's disease with and without coexisting Parkinson's disease changes: apolipoprotein E genotype and neuropathologic correlates.  Neurology. 1995;451985- 1990Google ScholarCrossref
35.
De Souza  ATHankins  GRWashington  MKFine  RLOrton  TCJirtle  RL Frequent loss of heterozygosity on 6q at the mannose 6-phosphate/insulin-like growth factor II receptor locus in human hepatocellular tumors.  Oncogene. 1995;101725- 1729Google Scholar
36.
Hedreen  JCRaskin  LSStruble  RGPrice  DL Selective silver impregnation of senile plaques: a method useful for computer imaging.  J Neurosci Methods. 1988;25151- 158Google ScholarCrossref
37.
Hibbard  LSMcKeel  DW  Jr Automated identification and quantitative morphometry of the senile plaques of Alzheimer's disease.  Anal Quant Cytol Histol. 1997;19123- 138Google Scholar
38.
Khachaturian  ZS Diagnosis of Alzheimer's disease.  Arch Neurol. 1985;421097- 1105Google ScholarCrossref
39.
Rezaie  PCairns  NJChadwick  ALantos  PL Lewy bodies are located preferentially in limbic areas in diffuse Lewy body disease.  Neurosci Lett. 1996;212111- 114Google ScholarCrossref
40.
Not Available, SAS/STAT Software: Changes and Enhancements Through Release 6.12.  Cary, NC SAS Institute Inc1997;
41.
Kramer  CY Extension of the multiple range tests to group means with unequal numbers of replications.  Biometrics. 1956;12309- 310Google ScholarCrossref
42.
Schmidt  MLDiDario  AGLee  VM-YTrojanowski  JQ An extensive network of PHF tau-rich dystrophic neurites permeates neocortex and nearly all neuritic and diffuse amyloid plaques in Alzheimer disease.  FEBS Lett. 1994;34469- 73Google ScholarCrossref
43.
McKee  ACKosik  KSKowall  NW Neuritic pathology and dementia in Alzheimer's disease.  Ann Neurol. 1991;30156- 165Google ScholarCrossref
44.
Arriagada  PVGrowdon  JHHedley-Whyte  ETHyman  BT Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer's disease.  Neurology. 1992;42631- 639Google ScholarCrossref
45.
Hyman  BTMarzloff  KArriagada  PV The lack of accumulation of senile plaques or amyloid burden in Alzheimer's disease suggests a dynamic balance between amyloid deposition and resolution.  J Neuropathol Exp Neurol. 1993;52594- 600Google ScholarCrossref
46.
Samuel  WTerry  RDDeTeresa  RButters  NMasliah  E Clinical correlates of cortical and nucleus basalis pathology in Alzheimer dementia.  Arch Neurol. 1994;51772- 778Google ScholarCrossref
47.
Dickson  DWCrystal  HABevona  CHoner  WVincent  IDavies  P Correlations of synaptic and pathological markers with cognition of the elderly.  Neurobiol Aging. 1995;16285- 297Google ScholarCrossref
48.
Dournaud  PDeLaére  PHauw  JJEpelbaum  J Differential correlation between neurochemical deficits, neuropathology, and cognitive status in Alzheimer's disease.  Neurobiol Aging. 1995;16817- 823Google ScholarCrossref
49.
Bierer  LMHof  PRDushyant  PP  et al.  Neocortical neurofibrillary tangles correlate with dementia severity in Alzheimer's disease.  Arch Neurol. 1995;5281- 88Google ScholarCrossref
50.
Gómez-Isla  TWest  HLRebeck  GW  et al.  Clinical and pathological correlates of apolipoprotein E ϵ4 in Alzheimer's disease.  Ann Neurol. 1996;3962- 70Google ScholarCrossref
51.
Gómez-Isla  THollister  RWest  H  et al.  Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer's disease.  Ann Neurol. 1997;4117- 24Google ScholarCrossref
52.
Cummings  BJPike  CJShankle  RCotman  CW β-Amyloid deposition and other measures of neuropathology predict cognitive status in Alzheimer's disease.  Neurobiol Aging. 1996;17921- 933Google ScholarCrossref
53.
Blessed  GTomlinson  BERoth  M The association between quantitative measures of dementia and of senile changes in the cerebral grey matter of elderly subjects.  Br J Psychiatry. 1968;114797- 811Google ScholarCrossref
54.
Terry  RD The pathogenesis of Alzheimer disease: an alternative to the amyloid hypothesis.  J Neuropathol Exp Neurol. 1996;551023- 1025Google ScholarCrossref
55.
Terry  RDMasliah  ESalmon  DP  et al.  Physical basis of cognitive alterations in Alzheimer's disease: synapse loss is the major correlate of cognitive impairment.  Ann Neurol. 1991;30572- 580Google ScholarCrossref
56.
Gómez-Isla  TPrice  JLMcKeel  DW  et al.  Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer's disease.  J Neurosci. 1996;164491- 4500Google Scholar
57.
Premkumar  DRDCohen  DLHedera  PFriedland  RPKalaria  RN Apolipoprotein E-ϵ4 alleles in cerebral amyloid angiopathy and cerebrovascular pathology associated with Alzheimer's disease.  Am J Pathol. 1996;482083- 2095Google Scholar
58.
Nagy  ZEsiri  MMJobst  KA  et al.  The effects of additional pathology on the cognitive deficit in Alzheimer disease.  J Neuropathol Exp Neurol. 1997;56165- 170Google ScholarCrossref
59.
Snowdon  DAGreiner  LHMortimer  JARiley  KPGreiner  PAMarkesbery  WR Brain infarction and the clinical expression of Alzheimer disease: the Nun Study.  JAMA. 1997;277813- 817Google ScholarCrossref
60.
Berg  LMiller  JPBaty  JRubin  EHMorris  JCFigiel  G Mild senile dementia of the Alzheimer type, 4: evaluation of intervention.  Ann Neurol. 1992;31242- 249Google ScholarCrossref
61.
Hill  RDStorandt  MLaBarge  E Psychometric discrimination of moderate senile dementia of the Alzheimer type.  Arch Neurol. 1992;49377- 380Google ScholarCrossref
62.
Storandt  MHill  RD Very mild senile dementia of the Alzheimer type, II: psychometric test performance.  Arch Neurol. 1989;46383- 386Google ScholarCrossref
63.
Terry  RDHansen  LADeTeresa  RDavies  PTobias  HKatzman  R Senile dementia of the Alzheimer type without neocortical neurofibrillary tangles.  J Neuropathol Exp Neurol. 1987;46262- 268Google ScholarCrossref
64.
Hansen  LASamuel  W Criteria for Alzheimer's disease and the nosology of dementia with Lewy bodies.  Neurology. 1997;48126- 132Google ScholarCrossref
65.
Hulette  CMirra  SSWilkinson  WHeyman  AFillenbaum  GClark  CM CERAD part IX: a prospective cliniconeuropathologic study of Parkinson's features in Alzheimer's disease.  Neurology. 1995;451991- 1995Google ScholarCrossref
66.
Corder  EHSaunders  AMRisch  NJ  et al.  Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease.  Nat Genet. 1994;7180- 184Google ScholarCrossref
67.
Rebeck  GWPerls  TTWest  HLSodhi  PLipsitz  LAHyman  BT Reduced apolipoprotein ϵ4 allele frequency in the oldest old Alzheimer's patients and cognitively normal individuals.  Neurology. 1994;441513- 1516[published correction appears in Neurology. 1995;45:598].Google ScholarCrossref
68.
Corder  EHSaunders  AMStrittmatter  WJ  et al.  Apolipoprotein E, survival in Alzheimer's disease patients, and the competing risks of death and Alzheimer's disease.  Neurology. 1995;451323- 1328Google ScholarCrossref
69.
Sobel  ELouhija  JSulkava  R  et al.  Lack of association of apolipoprotein E allele ϵ4 with late-onset Alzheimer's disease among Finnish centenarians.  Neurology. 1995;45903- 907Google ScholarCrossref
70.
Morris  CMBenjamin  RLeake  A  et al.  Effect of apolipoprotein E genotype on Alzheimer's disease neuropathology in a cohort of elderly Norwegians.  Neurosci Lett. 1995;20145- 47Google ScholarCrossref
71.
Sulkava  RKainulainen  KVerkkoniemi  A  et al.  APOE alleles in Alzheimer's disease and vascular dementia in a population aged 85+.  Neurobiol Aging. 1996;17373- 376Google ScholarCrossref
72.
Blacker  DHaines  JLRodes  L  et al.  ApoE-4 and age at onset of Alzheimer's disease: the NIMH Genetics Initiative.  Neurology. 1997;48139- 147Google ScholarCrossref
73.
Polvikoski  TSulkava  RHaltia  M  et al.  Apolipoprotein E, dementia, and cortical deposition of β-amyloid protein.  N Engl J Med. 1995;3331242- 1247Google ScholarCrossref
74.
Gearing  MMori  HMirra  SS Aβ-peptide length and apolipoprotein E genotype in Alzheimer's disease.  Ann Neurol. 1996;39395- 399Google ScholarCrossref
75.
Fabian  VAJones  TMWilton  SD  et al.  Alzheimer's disease and apolioprotein E genotype in western Australia: an autopsy-verified series.  Med J Aust. 1996;16577- 80Google Scholar
76.
Landén  MThrosell  AWallin  ABlennow  K The apolipoprotein E allele ϵ4 does not correlate with the number of senile plaques or neurofibrillary tangles in patients with Alzheimer's disease.  J Neurol Neurosurg Psychiatry. 1996;61352- 356Google ScholarCrossref
77.
Pirttilä  TSoininen  HMehta  PD  et al.  Apolipoprotein E genotype and amyloid load in Alzheimer disease and control brains.  Neurobiol Aging. 1997;18121- 127Google ScholarCrossref
78.
Heinonen  OLehtovirta  MSoininen  H  et al.  Alzheimer pathology of patients carrying apolipoprotein E ϵ4 allele.  Neurobiol Aging. 1995;16505- 513Google ScholarCrossref
79.
Greenberg  SMRebeck  GWVonsattel  JPGomez-Isla  THyman  BT Apolipoprotein E ϵ4 and cerebral hemorrhage associated with amyloid angiopathy.  Ann Neurol. 1995;38254- 259Google ScholarCrossref
80.
Talbot  CELendon  CCraddock  NShears  SMorris  JCGoate  A Protection against Alzheimer's disease with apoE ϵ2.  Lancet. 1994;3431432- 1433Google ScholarCrossref
81.
Chartier-Harlin  MCParfitt  MLegrain  S  et al.  Apolipoprotein E ϵ4 allele as a major risk factor for sporadic early and late-onset form of Alzheimer's disease: analysis of the 19q13.2 chromosomal region.  Hum Mol Genet. 1994;3569- 574Google ScholarCrossref
82.
Mirra  SSHeyman  AMcKeel  D  et al.  The Consortium to Establish a Registry for Alzheimer's Disease (CERAD), part II: standardization of the neuropathological assessment of Alzheimer's disease.  Neurology. 1991;41479- 486Google ScholarCrossref
83.
Katzman  RTerry  RD The Neurology of Aging.  Philadelphia, Pa FA Davis Co1983;40
84.
Ebly  EMHogan  DBParhad  IM Cognitive impairment in the nondemented elderly.  Arch Neurol. 1995;52612- 619Google ScholarCrossref
85.
The National Institute on Aging and Reagan Institute Working Group on Diagnostic Criteria for the Neuropathological Assessment of Alzheimer's Disease, Consensus recommendations for the postmortem diagnosis of Alzheimer's disease.  Neurobiol Aging. 1997;18 ((4S)) S1- S105Google ScholarCrossref
86.
Price  JL Diagnostic criteria for Alzheimer's disease: position paper.  Neurobiol Aging. 1997;18 ((4S)) S67- S70Google ScholarCrossref
87.
Berg  LMorris  JC Diagnosis. Terry  RDKatzman  RBick  K Alzheimer Disease. New York, NY Raven Press1994;9- 25Google Scholar
88.
Gearing  MMirra  SSSumi  MHansen  LHedreen  JHeyman  A CERAD part X: neuropathology confirmation of the clinical diagnosis of Alzheimer's disease.  Neurology. 1995;45461- 466Google ScholarCrossref
89.
Rasmusson  DXBrandt  JSteele  CHedreen  JCTroncoso  JCFolstein  MF Accuracy of clinical diagnosis of Alzheimer disease and clinical features of patients with non-Alzheimer disease neuropathology.  Alzheimer Dis Assoc Disord. 1996;10180- 188Google ScholarCrossref
90.
Torack  RMMorris  JC Mesolimbocortical dementia.  Arch Neurol. 1986;431074- 1078Google ScholarCrossref
91.
Crystal  HADickson  DWSliwinski  MJ  et al.  Pathological markers associated with normal aging and dementia in the elderly.  Ann Neurol. 1993;34566- 573Google ScholarCrossref
92.
Dickson  DWDavies  PBevona  C  et al.  Hippocampal sclerosis: a common pathological feature in very old (≥80 years of age) humans.  Acta Neuropathol. 1994;88212- 221Google ScholarCrossref
93.
Corey-Bloom  JSabbagh  MNBondi  MW  et al.  Hippocampal sclerosis contributes to dementia in the elderly.  Neurology. 1997;48154- 160Google ScholarCrossref
94.
Troncoso  JCMartin  LJDal Forno  GKawas  CH Neuropathology in controls and demented subjects from the Baltimore Longitudinal Study of Aging.  Neurobiol Aging. 1996;17365- 371Google ScholarCrossref
95.
McKeith  IGGalasko  DKosaka  K  et al.  Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): report of the Consortium on DLB International Workshop.  Neurology. 1996;471113- 1124Google ScholarCrossref
96.
Litvan  IAgid  YGoetz  C  et al.  Accuracy of the clinical diagnosis of corticobasal degeneration: a clinicopathologic study.  Neurology. 1997;48119- 125Google ScholarCrossref
97.
Bancher  CJellinger  KA Neurofibrillary tangle predominant form of senile dementia of Alzheimer type: a rare subtype in very old subjects.  Acta Neuropathol. 1994;88565- 570Google ScholarCrossref
Original Contribution
March 1998

Clinicopathologic Studies in Cognitively Healthy Aging and Alzheimer Disease: Relation of Histologic Markers to Dementia Severity, Age, Sex, and Apolipoprotein E Genotype

Author Affiliations

From the Alzheimer's Disease Centers of Washington University, St Louis, Mo (Drs Berg, McKeel, Storandt, Rubin, Morris, Goate, and Price, Messrs Miller and Baty, and Mss Coats and Norton); Emory University, Atlanta, Ga (Drs Gearing and Mirra); and Duke University, Durham, NC (Dr Saunders).

Arch Neurol. 1998;55(3):326-335. doi:10.1001/archneur.55.3.326
Abstract

Objective  To study differences between subjects with Alzheimer disease (AD) and cognitively intact control subjects, with respect to brain histologic markers of AD, and the relationship of those markers in the AD group to severity of dementia, age at death, sex, and apolipoprotein E genotype.

Setting  Washington University Alzheimer's Disease Research Center, St Louis, Mo.

Design and Subjects  Consecutive neuropathologic series of 224 prospectively studied volunteer research subjects, 186 with dementia of the Alzheimer type (DAT) or "incipient" DAT and confirmed to have AD by postmortem examination and 13 cognitively intact subjects, confirmed to lack postmortem findings of AD.

Main Outcome Measures  Brain densities (number per square millimeter) of senile plaques and neurofibrillary tangles, extent of cerebral amyloid angiopathy, cortical Lewy bodies, and apolipoprotein E genotype.

Results  Neocortical neurofibrillary tangle densities were substantially correlated with dementia severity, and to a greater degree than was true for senile plaque densities. When infarcts, hemorrhages, and Parkinson disease changes coexisted with AD, neurofibrillary tangle and senile plaque densities were lower. Plaque-predominant AD was found in a greater proportion of subjects with milder than more severe dementia. Entorhinal cortical Lewy bodies were no more frequent in plaque-predominant AD than in the remaining AD cases. Increasing age at death was negatively correlated with dementia severity and densities of senile plaques and neurofibrillary tangles. The apolipoprotein E ϵ4 allele frequency was greater in AD than in control subjects but decreased with increasing age. After controlling for dementia severity, senile plaque densities were only weakly related to ϵ4 allele frequency, and only in hippocampus. However, the degree of cerebral amyloid angiopathy was clearly related to ϵ4 allele frequency. Among subjects diagnosed during life as having DAT or incipient DAT, only 7% were found to have a neuropathologic disorder other than AD causing their dementia.

Conclusions  (1) The order of the strength of relationships between densities of histologic markers and dementia severity in AD is neurofibrillary tangles greater than cored senile plaques greater than total senile plaques. (2) Advanced age at death is associated with somewhat less severe dementia and fewer senile plaques and neurofibrillary tangles. (3) Plaque-predominant AD may represent a developmental stage in AD. (4) Despite a substantial effect of apolipoprotein E ϵ4 as a risk factor for AD, on decreasing the age at AD onset, and increasing the amount of cerebral amyloid angiopathy, its effect on senile plaque densities is variable and complex, being confounded with age, dementia severity, and methodologic differences. (5) Stringent clinical diagnostic criteria for DAT, even in the very mild stage, and senile plaque–based neuropathologic criteria for AD are highly accurate.

IN 1993, some of us published in the ARCHIVES a clinicopathologic study of persons who had brain postmortem examination at or after 80 years of age.1 Of the 42 subjects, 37 were diagnosed clinically as having dementia of the Alzheimer type (DAT). Only 1 of the 37 had a non-Alzheimer degenerative disease; 36 were confirmed to have Alzheimer disease (AD) by the criterion of abundant neocortical senile plaques (SPs). The brains of the 5 cognitively healthy control subjects were largely free of SPs. That publication addressed the many reports that there are lesser differences in brain neuropathologic markers of AD between groups of persons with AD and nondemented control individuals aged 80 years and older, as compared with the considerable differences between younger persons with AD and controls.2-5 We concluded that "neocortical senile plaque densities differentiate very old Alzheimer's disease subjects from nondemented controls, but there is a need for more postmortem studies of old people demonstrated to be free of dementia."1

A major challenge in comparing the prevalence of AD lesions in old individuals with AD and "nondemented" control subjects is the selection of appropriate criteria for excluding mild dementia in the controls. Reports of numerous neocortical SPs in the apparent absence of dementia had provided a case in point.6,7 In 1 study, the authors concluded that nondemented old people whose brains have SP densities that exceed minimal criteria for AD should be considered to show "pathological aging" (but not AD) in contrast to "normal aging," ie, not associated with cerebral amyloid (SP) deposition.8 We posited that some of those people with "pathological aging" may already have had very mild AD that might have been diagnosed by more sensitive methods, such as historical information from a knowledgeable informant, as we have found.9 Furthermore, we have since reported on the clinical indications of slight cognitive decline in some of our control subjects shortly before their death and the implications of those minimal clinical changes for the finding of abundant neocortical amyloid-containing SPs, despite the lack of overt dementia.10

The second major conclusion of the 1993 article was that "among the microscopic lesions studied, densities of neocortical neurofibrillary tangles [NFTs] were most closely related to the degree and duration of dementia."1 Densities (counts per square millimeter) of total neocortical SPs were not related to severity of dementia in the subjects with AD, but cored neocortical plaque densities were.

In the last few years, there have been 2 major advances pertinent to such clinicopathologic studies. The apolipoprotein E (apoE) genotype, specifically the ϵ4 allele, has been recognized as a major risk factor for late-onset AD that lowers the age at onset and has been reported to increase the extent of β-amyloid deposition in brain parenchyma and in cerebral and meningeal blood vessels.11-16 As Olichney and colleagues16 pointed out, "the potential confounding factors of the ϵ4 allele. . . being associated with an earlier age of onset and possible apoE-gender interactions also need to be addressed since these factors have not been controlled for in most neuropathologic studies of apoE in AD." The second recent advance is the recognition that cortical Lewy bodies are often found in the brains of those older individuals with "plaque-only" or "plaque-predominant" AD ("Lewy body variant of AD").17

This report extends the scope of the previous communication. It is based on a much larger series, 224 subjects (including those previously described) aged 46 to 106 years at death, studied by clinical assessments, apoE genotyping, and postmortem analysis. Brain densities of NFTs and SPs were examined, as were the extent of cerebral amyloid angiopathy (CAA) and presence or absence of other neuropathologic features, including infarcts, nigral degeneration, and cortical or nigral Lewy bodies. The study provided the opportunity to compare (1) cognitively healthy aging with DAT and AD and (2) the severity of dementia (very mild to severe) close to death in the AD sample with the neuropathologic markers, a topic of ongoing controversy in the literature. The relationship of these markers to age, sex, and apoE genotype of the subjects is also addressed.

Subjects and methods
Sample

All subjects were volunteers seen for longitudinal research studies of DAT and cognitively healthy aging. None were members of AD kindreds with known genetic mutations. Those with dementia met clinical research inclusionary and exclusionary diagnostic criteria for DAT,18 corresponding to those for "probable AD."19 Control subjects and those with "incipient" dementia (see next section for definition) met the same exclusionary criteria. All subjects meeting these criteria, examined during life and coming to autopsy at Washington University, St Louis, Mo, from January 1, 1981, through May 31, 1996 (n=224), were considered for this report. Two of 17 control subjects were eliminated from analyses because they suffered massive craniocerebral trauma that led to their death. As discussed previously,10 their brains had abundant SPs, interpretable either as induced by the trauma20,21 (a debatable point) or evidence of preclinical AD. Two other controls (aged 74 and 85 years at death) had brains with neocortical SP densities that met neuropathologic criteria for AD (see that section for definition). Thus, sample size for the controls in the analyses reported here was 13.

There were 207 subjects diagnosed as having DAT or incipient DAT. The presence of AD was confirmed neuropathologically in 192 of the 207, a clinical diagnostic accuracy rate of 93%. Twenty-one of the 207 subjects were eliminated from this series. In 14, a non-AD cause for the clinically diagnosed DAT was found (Table 1). In the brain of 1 subject diagnosed clinically as having incipient DAT, no abnormalities were observed on neuropathologic study. In 6 persons with autopsy-confirmed AD, the cognitive status near death could not be ascertained or major intervening comorbidity made it impossible to know how much of the dementia was attributable to AD. Thus, the sample examined here (N=199) included 13 control subjects and 186 subjects with DAT or incipient DAT with autopsy-confirmed AD. Demographic information is provided in Table 2.

Clinical assessment

At each clinical assessment, the subjects were assigned a Washington University Clinical Dementia Rating (CDR)23,24 in which 0 indicates no dementia and 0.5, 1, 2, and 3 signify questionable (or very mild), mild, moderate, and severe dementia, respectively. The CDR was assigned by an experienced physician (L.B., E.H.R., or J.C.M.) or nurse specialist (M.C., or J.N.) with physician review after standardized interview18,23 of a knowledgeable informant and examination and interview of the research subject. To derive the CDR, the same 5-point scale (0-3) was used to rate decline in each of 6 cognitive categories—memory; orientation; judgment and problem solving; community affairs; home and hobbies; and personal care. Raters scored the absence or the degree of impairment in the 6 cognitive categories according to descriptors provided in the CDR table24 regardless of the subject's age. That effort allows the recognition of very mild but clinically significant cognitive decline even at advanced age. An additional useful quantitative measure is the sum of these 6 ratings ("sum of boxes"),25 which provides an expansion of the CDR scale. The range of sum of boxes extends from 0 (no impairment) to 18 (maximum impairment). Interrater reliability of the CDR and sum of boxes among trained physicians and nurses has been good.26,27 (Results of psychometric testing were not disclosed to the physicians or nurses at the time the CDR was assigned.)

Experienced nurse specialists (M.C. and J.N.) or physicians (L.B., E.H.R. and J.C.M.) interviewed a knowledgeable informant after the subject's death, but before the results of autopsy were known, and derived a CDR and sum of boxes pertinent to the subject's level of cognitive performance just before the terminal events leading to death. This interview was a portion of our validated postmortem interview protocol.28 In addition, a physician reviewed the records of all clinical assessments (usually multiple and videotaped for independent rating by a second clinician) and the postmortem interview to prepare an "expiration summary" with its own CDR and sum of boxes, also before results of autopsy were known. This method was useful to take into account discrepancies between ratings during life and those on postmortem interview with respect to CDR 0.5 vs CDR 0.10 When there were disagreements regarding CDR 0 or CDR 0.5 between clinical raters or between last clinical assessment and postmortem interview/expiration summary, for the present study the subject was assigned to a CDR 0/0.5 classification. The sum of boxes associated with the CDR 0.5 was then used for data analysis. By this procedure, the CDR 0 classification was preserved as one in which no rating other than CDR 0 was applied during life or post mortem. Our experience9,10 has led us to recognize that a CDR 0.5 designation is an indication of the beginning manifestation of DAT (and a predictor of postmortem confirmation of AD) when there is no other ready explanation. Whereas some subjects with CDR 0.5 satisfy our research criteria for DAT18 (impairment in memory plus 3 of the other CDR cognitive domains), others do not, because they are judged to be impaired in fewer domains. Similarly, those subjects with CDR 0.5 who do not meet our criteria for DAT would not satisfy other standard diagnostic criteria19,29 for DAT, often because the cognitive decline has not reached the threshold of interfering with social or occupational activity. In our studies, they are being labeled as having "incipient" DAT, CDR 0.5, or CDR 0/0.5. Because quantitative data on the neuropathologic markers in the brains of subjects with AD who had CDR 0/0.5 (n=6) were highly similar to those of subjects with AD who had CDR 0.5 (n=11), data on these 2 groups were combined and labeled CDR 0.5 in subsequent analyses.

Estimated age at onset was based on reports from collateral sources when cognitive decline was first diagnosed. Duration of the severe dementia stage (CDR 3) was estimated for all subjects who reached that point before death. All procedures and the means for obtaining informed consent were approved by the institutional review board. Relevant clinicopathologic data on small groups of these subjects have been reported previously.1,9,10,22,30,31

apoE GENOTYPING

At Washington University, DNA was extracted from frozen brain or antemortem blood samples by means of QIamp kits (Qiagen, Chatsworth, Calif) as per the manufacturer's protocols. Two hundred microliters of blood was placed in a tube with 25 µL of Qiagen proteinase K and 200 µL of buffer AL, then vortexed, incubated at 70°C for 10 minutes, and mixed with 210 µL of ethanol. The mixture was spun through a QIAamp spin column at 6000g for 1 minute. The column was washed twice with 500 µL of buffer AL and then DNA was eluted with 200 µL of buffer AE. Genotypes were determined by polymerase chain reaction amplification, digestion with Cfo I (Boehringer Mannheim, Indianapolis, Ind), and electrophoresis through 6% NuSieve 3:1 agarose (FMC Bioproducts, Rockland, Me). The electrophoresis conditions were 4.5 V/cm for 90 minutes. Products were visualized under UV light after the gel was incubated in ethidium bromide solution. Primer sequences and polymerase chain reaction conditions were as previously described.32,33 When blood or frozen brain samples were not available, paraffin-embedded fixed brain samples were sent for genotyping at both Emory University, Atlanta, Ga, and Duke University, Durham, NC, as a quality control measure. At Emory, DNA extracts were prepared from sections of these samples mounted on glass slides; 2 different methods were used as previously described.34 Polymerase chain reaction amplification and restriction enzyme (Hha 1) digestion32 were then carried out, and the resulting DNA fragments were visualized with ethidium bromide. At Duke, a crude DNA extract was prepared from sections mounted on glass slides.35 Two microliters of the extract was used in the 15-µL radioactive apoE restriction fragment isotyping protocol.11 Genotype reports that were initially discrepant between the 2 laboratories studying paraffin-embedded tissue sections were repeated and resolved. For 7 of the 150 subjects whose paraffin-embedded tissue was studied, a genotype could not be determined in one or the other laboratory, but the successful laboratory was able to confirm the genotype by repeating the procedure. The apoE genotypes were successfully obtained in 10 of the 13 controls and in 166 of the 186 subjects with autopsy-confirmed AD.

Neuropathologic assessment

The following regions from the left cerebral hemisphere were sampled for microscopic morphometric analyses: middle frontal gyrus, anterior third of superior temporal gyrus, inferior parietal lobule, CA1 portion of the hippocampus and subiculum, and entorhinal cortex between the levels of the mamillary and lateral geniculate bodies. Sections (6 µm) were cut from each paraffin-embedded block perpendicularly to the pial surface. The staining and counting procedures for NFTs and SPs were detailed previously1 and are summarized here. Two modifications of the Bielschowsky ammoniacal silver method were used. One was optimized to demonstrate neurofibrillary abnormalities, including extracellular and intracellular NFTs and cored plus noncored neuritic plaques. The other, adapted from Hedreen and colleagues,36 provided optimal detection of all SPs, including diffuse and neuritic plaques.

In the microscopic sections from each region, densities of NFTs and SPs (total and subtypes), expressed as average number per square millimeter, were determined in a standardized method detailed previously1 without selection bias based on variations of lesion densities or distributions in individual cases. Counts were taken in 10 consecutive 1×1-mm cortical fields per slide, 5 along the pial surface and 5 along the white matter–cortex junction. Both intracellular and extracellular tangles were included in the NFT counts. Total SPs included all varieties of argyrophilic diffuse and neuritic plaques. Diffuse plaques are amorphous or finely fibrillar deposits and lack abnormal argyrophilic neurites or central cores. Neuritic plaques contain abnormal swollen argyrophilic neurites. Cored SPs are a subset of neuritic plaques and contain central compact cores. Neuritic plaque densities were determined by means of one silver method on a section of frontal cortex within 50 µm of the section used for total SP densities with the other silver method.36 A previous publication from this laboratory provided evidence that total SP densities by this method are highly correlated with percentage of cortical area occupied by SPs and therefore with "amyloid burden."37 It also provided evidence for cross-validation of the manual method used here with the automated counting. Because there were 8- to 10-fold more severely demented (CDR 3) subjects with AD than those in any of the less severe CDR stages (Table 2), complete NFT and SP morphometric studies were performed on all subjects with CDR less than 3 and on 78 of the 144 CDR 3 subjects. (Power considerations on comparing data on CDR 3 subjects with those on any of the less severely demented groups indicated that the gain from providing NFT and SP data on 144 instead of 78 CDR 3 subjects would be minimal.) The 78 were chosen to include the youngest and oldest subjects to analyze for age effect. No other selection criteria were used. Neuritic plaque densities were determined on all 144 CDR 3 subjects.

Because of their quantitative nature, the consensus criteria reported by Khachaturian38 were used for the diagnosis of AD, with the added requirement that the average total SP density of the 10 microscopic fields exceeded the age-adjusted criteria in at least 1 neocortical region. "Plaque-predominant" AD (PPAD) was defined as having no more than 1 NFT per square millimeter averaged across the 10 fields in any neocortical region.

Cerebral amyloid angiopathy was assessed by means of thioflavine S–stained tissue sections.1 The investigator (D.W.M.) scanned the entire section (measuring approximately 2.5 cm2) to ensure detecting all thioflavine S–positive meningeal and parenchymal blood vessels. The maximum number of positive blood vessel profiles in any single 1-mm2 field was measured for a given section as follows: grade 0 (none), grade 1 (1-2 positive profiles), grade 2 (3-5 positive), and grade 3 (>5 positive). This sampling strategy was adopted because of our experience that AD brains with widespread CAA also have high CAA scores in individual fields.

Cortical Lewy bodies (LB) were assessed with an anti-ubiquitin–stained section of entorhinal cortex, chosen to be representative of the limbic system where cortical LBs tend to be prevalent.39 (In an unpublished consecutive series of 30 AD subjects with cortical LBs in which at least 5 neocortical regions were studied by 2 of us [S.S.M. and M.G.], all had entorhinal LBs; 29 had neocortical LBs.) The LBs were noted as present or absent after search through consecutive 1-mm2 fields from the medial edge of entorhinal cortex to the depth of the collateral sulcus. The LBs were distinguished from NFTs by being circular or oval, nonfibrillar, and usually associated with an eccentric nucleus. On hematoxylin-eosin preparations of the substantia nigra, LBs were noted as present or absent. In addition, nigral neuronal loss, gliosis, and free neuromelanin pigment were each assessed on a scale of 0 to 3+. When there was a combined score of 2.5 or higher on those scales, substantia nigral degeneration was diagnosed. All histologic data reported here were acquired by 1 of us (D.W.M.) without knowledge of clinical data, genotype, or prior neuropathologic diagnostic assessment.

Statistical analyses

The distributions of plaque and tangle densities in the 10 fields for each of the 5 regions for each subject showed substantial intrasubject variability with distributions skewed to the right. By taking the logarithm of each density (adding 0.5 to each density to avoid logarithms of 0) and taking the average of the logarithms, a "typical" density was computed for each lesion, for each region, for each subject. This transformation also reduced the skew of the distribution of counts for a particular lesion and region across subjects. An average across the 3 neocortical regions was also computed for each subject. Average values were transformed back to densities (number per square millimeter) for greater clarity in presentation. Other treatments of the raw densities, including taking the average of the 3 fields with the highest densities, using the maximum of the 10 densities, and using the arithmetic average of the 10 densities, were also subjected to statistical analyses with results similar to those presented here, except that the resulting analyses were more suspect because of failure to meet the ordinary distributional assumptions. All calculations were performed with SAS.40

Analyses of covariance, adjusting for age at death, were used to compare neuropathologic lesion densities across the 4 severity groups (CDRs 0.5, 1, 2, and 3). Pairwise comparisons between least square means were adjusted for multiple comparisons by the Tukey-Kramer method.41

Results
Neuropathologic diagnoses

The 13 control subjects (CDR 0) had brains with very few, if any, SPs or NFTs (exemplified in Figure 1, Figure 2, and Figure 3). Of the 186 AD cases, 114 (61.3%) had pure AD. A substantial number had both AD and Parkinson disease changes (substantia nigral degeneration plus nigral LBs [PD], 14.0%) or nonspecific substantia nigral degeneration (SND, 8.1%). Only 8.6% of the subjects had AD plus vascular lesions, defined as acute, subacute, or remote infarcts (including microinfarcts) or hemorrhage but excluding CAA. The remaining 8.1% had AD, vascular lesions, and either PD or SND. (None had signs of stroke or parkinsonism at onset of dementia.) Of the 13 controls, 9 had vascular lesions, 1 had PD, and 4 others had SND (1 control subject had vascular lesions and SND).

Effect of age

Older subjects had less severe dementia as indicated by CDR at death (r=−0.33). Similarly, the correlations between age and lesion density shown in the last column of Table 3 were also negative, except for a nonsignificant positive age correlation with entorhinal cored SPs. For these reasons, age at death was used as a covariate in the next analyses.

Relationship of nft and sp to dementia severity

There was considerable intersubject variability in marker densities within a given CDR group, exemplified in Figure 1, Figure 2, and Figure 3, no greater for older than younger subjects. Nevertheless, there was a significant relationship between dementia severity (both CDR and its sum of boxes) and NFT densities in all regions (Table 3). The NFTs were less dense in neocortical compared with hippocampal regions. Furthermore, the relation of NFTs to dementia severity varied for neocortical compared with hippocampal regions. The NFTs in the neocortex were substantially correlated with dementia severity (r values with sum of boxes ranged from 0.44-0.49). Analysis of variance comparing the 4 CDR groups and subsequent post hoc tests showed that this resulted primarily from increased NFTs in severe dementia (CDR 3). The correlations with dementia severity were more modest in the hippocampal and entorhinal regions (0.30 and 0.21). In these regions, the same approach disclosed that the increase in NFTs occurred in the milder stages of the disease between CDR 0.5 and 1, remaining relatively stable thereafter. These analyses were repeated for only those subjects with pure AD, with similar results.

The relation of SPs to dementia severity is complicated by the anomalous results for the CDR 1 group, which had fewer SPs in most areas than the CDR 0.5 group. Given the small size of the CDR 1 group (n=8), these results may be spurious and will be treated that way here. Both total and cored SPs were more prevalent in neocortical than hippocampal or entorhinal regions. As shown in Table 3, cored plaques demonstrated a stronger relation to dementia severity (r=0.41 for 3 regions combined) than did total or neuritic plaques, especially in neocortex. Neocortical cored SPs did not increase substantially until the severe stage of the disease. Using a ratio of cored to total plaques in each of the regions did not improve the strength of the relationship to dementia severity. An estimate of diffuse plaque densities was computed by subtracting the number of neuritic plaques from the total plaque densities in the nearby section for each region. These analyses suggested that diffuse plaques were equally prevalent at all stages of severity. When analyses were repeated for only those subjects with pure AD, the results were essentially the same.

For the CDR 3 subjects, the duration of disease in that severe stage ranged from 0.2 to 12.2 years (mean±SD, 3.5±2.9 years). Neocortical NFT densities were significantly correlated with duration in the CDR 3 stage (r=0.30-0.40), but those in hippocampal and entorhinal regions were not (r=0.12 and 0.20). Total SPs in temporal and parietal cortex were correlated with duration in CDR 3 (r=0.29 and 0.33) but not in frontal cortex (r=−0.05) or hippocampal or entorhinal regions (r=−0.03 and 0.08). No correlations of CDR 3 duration with cored or neuritic plaque densities or with the meningeal or parenchymal CAA scores were significant.

Other neuropathologic features

Mean±SD brain weight for the men who were CDR 3 at death was 1174±146 g, whereas it was 1040±115 g in the women. Brain weight decreased with increasing duration in the CDR 3 stage (r=−0.39 for each sex).

Plaque-predominant AD (PPAD) was identified in 37 subjects (mean±SD age, 83.7±9.6 years at death) of the 120 with complete morphometric analysis listed in Table 3. Plaque-predominant AD was present in a greater proportion of subjects with milder dementia than among those more severely affected (71%, 63%, 29%, and 19% of subjects with CDR 0.5, 1, 2, and 3, respectively) (Mantel-Haenszel χ2 [1] =20.361, P<.001). In PPAD, total and neuritic cored and noncored plaque densities in almost all regions examined were significantly lower than in the remaining subjects with AD when severity of dementia was controlled. There was no relation between presence of PPAD and age at death. Of the 36 PPAD cases with antiubiquitin preparations, 22% had cortical LBs. Of the 82 cases of AD that were not plaque-predominant and that were assessed for cortical LBs, 32% were positive. This difference in percentages was not significant. Age did not influence the presence or absence of cortical LBs.

After controlling for duration in the CDR 3 stage, NFT and SP regional densities were higher in the pure AD CDR 3 group than in the various CDR 3 mixed groups (AD+PD, AD+SND, AD+vascular, AD+vascular+PD or SND), as exemplified in Figure 1, Figure 2, and Figure 3. The significant comparisons were for NFTs in each neocortical region as well as hippocampal and entorhinal regions, for parietal total SPs, and for frontal and mean neocortical cored SPs (all P<.05). There were no differences in marker densities among the various mixed AD groups.

apoE GENOTYPE

The numbers of each apoE genotype and the ϵ4 allele frequencies in control and AD-confirmed subjects are given in Table 2. (The ϵ4 allele frequency is the ratio of the number of ϵ4 alleles in a group of persons to the total number of apoE alleles, 2 per person, in that group.) An increase in ϵ4 allele frequency in the AD group is clear. The Mantel-Haenszel χ2 was significant (P=.04). The ϵ4 allele frequency in the AD-confirmed group was slightly higher for men than for women (P=.06). It was also related to age at death (F2,163=7.10, P=.001). Average age at death was 84, 80, and 77 years for those with 0, 1, or 2 ϵ4 alleles, respectively. Similarly, estimated average age at onset of AD was 75, 70, and 67 years for those with 0, 1, or 2 ϵ4 alleles, respectively. Expressed another way, 78% of those with AD onset before 70 years of age but only 28% of those with onset after 80 years had 1 or 2 ϵ4 alleles. Continuous estimates of the relationship between ϵ4 allele frequency and age at onset indicated an allele frequency of about 0.6 at age 50 years, declining to about 0.2 at age 85 years and beyond, with little difference between men and women. The increasing ϵ4 allele frequencies across the CDR groups (CDR 0.5 to 3) is related to the decreasing mean ages across the groups (Table 2).

After controlling for dementia severity, hippocampal NFT and SP marker densities were weakly related to ϵ4 allele frequency, sometimes to a degree that reached statistical significance. No significant correlations (P>.05) of ϵ4 allele frequency and NFT or SP densities were obtained in any of the other regions examined. Even among the CDR 3 group alone, the relation between ϵ4 allele frequency and NFT or SP densities was no higher than for the entire AD group. There was no significant difference between younger (age <80 years) and older (age ≥80 years) subjects in the relation between ϵ4 allele frequency and marker densities. Comparing subjects with no ϵ4 alleles and those with either 1 or 2 ϵ4 alleles led to similar results.

Scores for both meningeal and parenchymal CAA in the neocortex were moderately correlated with ϵ4 allele frequency; after controlling for dementia severity, Kendall τ b correlations were 0.30 and 0.34, respectively, for the combined neocortical regions. This relation was not found in the hippocampal or entorhinal regions examined (all P>.05). The same pattern of correlations was obtained when the sample was restricted to cases with pure AD.

Comment
Nft and sp vs dementia severity and duration

The slightly stronger relationship of NFT densities to dementia severity in AD as compared with that of SP densities, and stronger relationship in neocortical than hippocampal or entorhinal regions, are confirmed. The NFT correlations were driven mainly by NFT increases in severe dementia for neocortical NFTs, but by increases in the mild stage for hippocampal and entorhinal NFTs. Neocortical cored plaque densities were substantially related to dementia severity, more so than densities of total plaques or neuritic plaques, of which the cored plaques are a subset. Diffuse plaque densities were not related to degree of dementia. This conclusion is tempered by the recognition that absolute histopathologic criteria for distinguishing among SP subtypes (especially diffuse vs neuritic) are not yet available. For instance, most neocortical "diffuse" SPs in AD can be shown42 to contain PHF-1 immunoreactive dystrophic neurites, a criterion used to recognize neuritic SPs.

In an earlier report,1 there was a substantial relationship of dementia severity and duration to neocortical NFT and cored SP densities but not to neocortical total SP densities. The differences in sample size between the 2 studies may have accounted for the finding of a relationship between neocortical total SP densities and dementia severity in the present report. The consensus in the recent literature is that dementia severity is substantially more likely to be related to NFT than to SP densities.43-51 Hyman and colleagues45 pointed to their evidence that total SP and amyloid burden did not appear to accumulate across the stages of dementia severity in AD (plaque subtypes not examined). Contrary results have been published,47,52 more in keeping with the pioneering report of Blessed et al.53 Differences in sample size, selection criteria, and histologic methods may well contribute to the continuing controversy. Indeed, intersubject and intrasubject variability reduces the strength of the relationships between lesion densities and dementia severity. Biologic variability is likely to play an important role, but there is still a substantial problem of sampling error in assessing densities of lesions as well as other relevant measures, such as neuronal numbers. We have focused on SPs and NFTs, the hallmarks of AD. They are appropriate for diagnostic criteria but far from ideal as markers of severity of brain dysfunction. Cytoskeletal destabilization54 or loss of synapses55 or critical neuronal populations51,56 may well be more central to mechanisms of dementia in AD than are SPs or NFTs.

Not surprisingly, additional neuropathologic lesions, such as those of Parkinson disease and infarcts, add to the dementia of AD and, on average, SP and NFT densities for a given degree of dementia are lower in AD mixed with other brain disorders than in pure AD.1,57-59 Also not surprising is that older subjects with AD at death have somewhat less severe dementia and lower densities of SPs and NFTs, given the likelihood of more frequent fatal comorbidity than is true at younger ages. (The measures of dementia severity chosen for this report were the CDR and its sum of boxes. They are highly correlated with and have performed as well as brief clinical scales or psychometric measures in DAT.60-62)

Other neuropathologic features

A larger percentage of subjects in the milder than the more severe stages of dementia in this series had PPAD.63 Others have commented that this AD subtype may represent a developmental stage of AD preceding the appearance of more abundant NFTs.17 One can argue, therefore, that the amyloid-containing plaque is a more relevant lesion in early AD.10 The presence of PPAD has been reported to be accompanied by cortical LBs ("Lewy body variant of AD") in most cases,17,64,65 but the present study failed to confirm that finding.

apoE GENOTYPE

Consistent with many published reports,11,34,66-72 this study found an association of apoE ϵ4 with AD and a relationship between apoE ϵ4 alleles and age at AD onset, with ϵ4 more prevalent in those persons having a younger age at onset. There was only a weak male-female difference. An association of the ϵ4 allele with increased β-amyloid deposition and numbers of diffuse and neuritic SPs has been noted in reports from several laboratories.13,14,16,34,49,73,74 However, consistent with our results on neocortex, others have noted no effect of ϵ4 on SP numbers in silver preparations75-77 or with β-amyloid immunostains.78 In this study, a confounding of age at death with dementia severity and a relation between age at onset and apoE genotype were noted. These factors make the correlation between genotype and SP density complex. In addition, varying methods may contribute to the discrepant results, with β-amyloid immunostains more likely than silver methods to show a relationship to ϵ4. In contrast, with thioflavine S we found a major effect of the ϵ4 allele on amyloid angiopathy, consistent with other observations in the literature.14,57,79

There was not much power in the study of this sample to examine a possible "protective effect" of apoE ϵ2,66,67,80,81 but we noted a trend to lower NFT and SP densities with ϵ2, even when controlling for ϵ4 alleles and severity of dementia.

Clinicopathologic correlation

In this consecutive series of volunteer subjects, those who were judged clinically to be cognitively healthy (CDR 0) had brains with very few SPs or NFTs, except for 4 subjects with sufficient neocortical SP densities to meet neuropathologic criteria38 for AD, 2 of whom suffered severe craniocerebral trauma shortly before death. The 4 may well have represented true preclinical AD, expected to be present in at least a small proportion of cognitively intact elders. Some might propose for them the term pathologic aging.8 The Consortium to Establish a Registry for Alzheimer's Disease82 designation would have been "possible AD" based on age-adjusted neuritic plaque score and absence of clinical history of dementia.

Subjects judged clinically to show slight cognitive decline (CDR 0.5 or 0/0.5), too mild for standard definitions of dementia, were almost always found to have abundant and widely distributed argyrophilic neocortical SPs. In attempts to detect clinically the mildest and earliest manifestations of AD, it is not surprising that an individual older person may be rated as cognitively healthy by one clinician and in slight cognitive decline by another clinician, as was true in the 1 subject in this series rated CDR 0/0.5 whose brain had no neuropathologic abnormalities. We interpret this as an instance of the diagnosis of incipient DAT, CDR 0/0.5, in error. With 17 of 18 people judged to have slight cognitive decline showing abundant neocortical SPs and 13 of 17 people judged cognitively healthy showing few if any neocortical SPs, we submit that there is validity in 2 conclusions: (1) slight cognitive decline in subjects who meet rigorous exclusion criteria suggests the presence of sufficient AD lesions in the brain to support a diagnosis of AD, and (2) abundant neocortical SPs are likely to be associated with at least slight cognitive decline. These numbers speak to the accuracy of both the clinical diagnostic and neuropathologic criteria for DAT and AD used in this study. The 13 remaining CDR 0 elderly adults whose brains were largely free of AD markers suggest that at least some persons in samples reported by others6-8 to have had plentiful SPs in the absence of dementia would have been rated as having at least incipient dementia by methods used in this study. There is still merit in the 1983 statement of Katzman and Terry that "there should be no question but that the generalization is a very strong one: many plaques and even a few tangles in the neocortex indicate dementia."83

Subjects with CDR 0/0.5 or 0.5 who fail to reach standard criteria for DAT have been discussed by many other groups and have been labeled with various terms, such as mild cognitive impairment28 or cognitive impairment in the nondemented elderly.84 We are adding to evidence10 that minimal cognitive decline signifies that AD is highly likely to be present when no other cause is readily apparent.

Neuropathologic criteria for AD are still subject to periodic review and debate.8,64,82,85,86 One of the relevant issues is the potential importance of SP subtypes, for example, diffuse vs neuritic SP. In other reports,9,30,31,86 we have commented on the predominance of diffuse over neuritic plaques in very mild AD, whereas the reverse is true in more severe disease. However, uncertainties regarding differentiation of diffuse from neuritic plaques42 suggest caution in evaluating apparent densities of those 2 plaque subtypes. Nevertheless, our data support the utility (for clinicopathologic correlation) of the consensus criteria published by Khachaturian,38 based on neocortical total SP densities.

Subjects in this series who met clinical research criteria for DAT ("probable AD") almost always proved to have AD on histologic examination of their brains; in only 7% was a brain disease other than AD responsible for the dementia. As reviewed elsewhere,87-89 clinical Research Diagnostic Criteria for DAT continue to be highly accurate; rarely non-AD causes are found in persons who fulfill clinical criteria for DAT.90-96 In the present series there were no examples of "tangle-only" AD97 and only 2 instances of diffuse LB disease (lacking SPs).64,95 The exclusion of persons with signs of parkinsonism preceding cognitive decline18 may explain the rarity of the second category in this series.

Conclusion

The results of this study support 5 main conclusions: (1) neocortical NFTs and, to a lesser degree, neocortical total and cored plaque densities are related to dementia severity in AD, but biologic and methodologic variability are important, and better histologic or biochemical markers should be sought for this purpose; (2) PPAD is much more prevalent in the milder than the more severe stages of dementia; (3) advanced age in AD is associated with somewhat lesser severity of dementia at death and lower densities of SPs and NFTs in most regions studied; (4) the robust effect of apoE ϵ4 alleles on SP densities reported by others was not found in this study, despite confirmation of an effect of ϵ4 as a risk factor for AD with onset before age 75 or 80 years and for the development of CAA; and (5) stringent clinical diagnostic criteria for DAT, even in the very mild or "incipient" stage, and neuropathologic criteria for AD based on total SP densities are highly accurate.

Accepted for publication August 20, 1997.

This work was supported by grants AG03991, AG05681, and AG00634 (Washington University) and AG10130 (Emory University) from the National Institute on Aging, Bethesda, Md, and a grant from Metropolitan Life Foundation, New York, NY.

We thank the other members of the Washington University Alzheimer's Disease Research Center Clinical Core for detailed clinical assessments; Louise Burrell, Deborah Carter, Chris Talbot, Sang Woo Han, and Elizabeth Lakin for fine technical assistance; and Corinne Lendon, PhD, for genotype data management. Faculty of the Washington University Division of Neuropathology offered advice and support. Norma Urani expertly prepared the manuscript.

Reprints: Leonard Berg, MD, Washington University Alzheimer's Disease Research Center, 4488 Forest Park Ave, Suite 130, St Louis, MO 63108-2293 (e-mail: adrcsec@neuro.wustl.edu).

References
1.
Berg  LMcKeel  DW  JrMiller  JPBaty  JMorris  JC Neuropathologic indexes of Alzheimer's disease in demented and nondemented people aged 80 years and older.  Arch Neurol. 1993;50349- 358Google ScholarCrossref
2.
Mann  DMAYates  POMarcyniuk  B Some morphometric observations on the cerebral cortex and hippocampus in presenile Alzheimer's disease, senile dementia of the Alzheimer type and Down's syndrome in middle age.  J Neurol Sci. 1985;69139- 159Google ScholarCrossref
3.
Bondareff  WMountjoy  CQRoth  MRossor  MNIverson  LLReynolds  GP Age and histopathological heterogeneity in Alzheimer's disease: evidence for subtypes.  Arch Gen Psychiatry. 1987;44412- 417Google ScholarCrossref
4.
Coleman  PDFlood  DG Neuron numbers and dendritic extent in normal aging and Alzheimer's disease.  Neurobiol Aging. 1987;8521- 545Google ScholarCrossref
5.
Hansen  LADeTeresa  RTerry  RD Neocortical morphometry, lesion counts, and choline acetyltransferase levels in the age spectrum of Alzheimer's disease.  Neurology. 1988;3848- 54Google ScholarCrossref
6.
Katzman  RTerry  RDDeTeresa  R  et al.  Clinical, pathological, and neurochemical changes in dementia: a subgroup with preserved mental status and numerous neocortical plaques.  Ann Neurol. 1988;23138- 144Google ScholarCrossref
7.
Crystal  HDickson  DWFuld  P  et al.  Clinicopathologic studies in dementia: nondemented subjects with pathologically confirmed Alzheimer's disease.  Neurology. 1988;381682- 1687Google ScholarCrossref
8.
Dickson  DWCrystal  HAMattiace  LA  et al.  Identification of normal and pathological aging in prospectively studied nondemented elderly humans.  Neurobiol Aging. 1992;13179- 189Google ScholarCrossref
9.
Morris  JCMcKeel  DW  JrStorandt  M  et al.  Very mild Alzheimer's disease: informant-based clinical, psychometric, and pathological distinction from normal aging.  Neurology. 1991;41469- 478Google ScholarCrossref
10.
Morris  JCStorandt  MMcKeel  DW  Jr  et al.  Cerebral amyloid deposition and diffuse plaques in "normal" aging: evidence for presymptomatic and very mild Alzheimer's disease.  Neurology. 1996;46707- 719Google ScholarCrossref
11.
Saunders  AMStrittmatter  WJSchmechel  D  et al.  Association of apolipoprotein E allele ϵ4 with late-onset familial and sporadic Alzheimer's disease.  Neurology. 1993;431467- 1472Google ScholarCrossref
12.
Strittmatter  WJSaunders  AMSchmechel  D  et al.  Apolipoprotein E: high avidity binding to b-amyloid and increased frequency of type 4 allele in late onset familial Alzheimer disease.  Proc Natl Acad Sci U S A. 1993;901977- 1981Google ScholarCrossref
13.
Schmechel  DESaunders  AMStrittmatter  WJ  et al.  Increased amyloid β-peptide deposition in cerebral cortex as a consequence of apolipoprotein E genotype in late-onset Alzheimer disease.  Proc Natl Acad Sci U S A. 1993;909649- 9653Google ScholarCrossref
14.
Rebeck  GWReiter  JSStrickland  DKHyman  BT Apolipoprotein E in sporadic Alzheimer's disease: allelic variation and receptor interactions.  Neuron. 1993;11575- 580Google ScholarCrossref
15.
Roses  AD Apolipoprotein E alleles as risk factors in Alzheimer's disease.  Annu Rev Med. 1996;47387- 400Google ScholarCrossref
16.
Olichney  JMHansen  LAGalasko  D  et al.  The apolipoprotein E ϵ4 allele is associated with increased neuritic plaques and cerebral amyloid angiopathy in Alzheimer's disease and Lewy body variant.  Neurology. 1996;47190- 196Google ScholarCrossref
17.
Hansen  LAMasliah  EGalasko  DTerry  RD Plaque-only Alzheimer's disease is usually the Lewy body variant, and vice versa.  J Neuropathol Exp Neurol. 1993;52648- 654Google ScholarCrossref
18.
Berg  LHughes  CPCoben  LA  et al.  Mild senile dementia of Alzheimer type: Research Diagnostic Criteria, recruitment, and description of a study population.  J Neurol Neurosurg Psychiatry. 1982;45962- 968Google ScholarCrossref
19.
McKhann  GDrachman  DFolstein  MKatzman  RPrice  DStadlan  AM Clinical diagnosis of Alzheimer's disease: report of the NINCDS/ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease.  Neurology. 1984;34939- 944Google ScholarCrossref
20.
Roberts  GWGentleman  SMLynch  AMurray  LLandon  MGraham  DI β-Amyloid protein deposition in the brain after severe head injury: implications for the pathogenesis of Alzheimer's disease.  J Neurol Neurosurg Psychiatry. 1994;57419- 425Google ScholarCrossref
21.
Adle-Biassette  HDuyckaerts  CWasowicz  M  et al.  βAP deposition and head trauma.  Neurobiol Aging. 1996;17415- 419Google ScholarCrossref
22.
Morris  JCMcKeel  DW  JrFulling  KTorack  RMBerg  L Validation of clinical diagnostic criteria for Alzheimer's disease.  Ann Neurol. 1988;2417- 22Google ScholarCrossref
23.
Hughes  CPBerg  LDanziger  WL  et al.  A new clinical scale for the staging of dementia.  Br J Psychiatry. 1982;140566- 572Google ScholarCrossref
24.
Morris  JC The Clinical Dementia Rating (CDR): current version and scoring rules.  Neurology. 1993;432412- 2414Google ScholarCrossref
25.
Berg  LMiller  JPStorandt  M  et al.  Mild senile dementia of the Alzheimer type, 2: longitudinal assessment.  Ann Neurol. 1988;23477- 484Google ScholarCrossref
26.
Burke  WJMiller  JPRubin  EH  et al.  Reliability of the Washington University Clinical Dementia Rating (CDR).  Arch Neurol. 1988;4531- 32Google ScholarCrossref
27.
McCulla  MMCoats  MVan Fleet  NDuchek  JGrant  EMorris  JC Reliability of nurse specialists in the staging of dementia.  Arch Neurol. 1989;461210- 1211Google ScholarCrossref
28.
Davis  PBWhite  HPrice  JLMcKeel  DWRobins  LN Retrospective postmortem dementia assessment: validation of a new clinical interview to assist neuropathologic study.  Arch Neurol. 1991;48613- 617Google ScholarCrossref
29.
American Psychiatric Association, Committee on Nomenclature and Statistics, Diagnostic and Statistical Manual of Mental Disorders, Revised Third Edition.  Washington, DC American Psychiatric Association1987;
30.
Price  JLDavis  PBMorris  JCWhite  DL The distribution of tangles, plaques and related immunohistochemical markers in healthy aging and Alzheimer's disease.  Neurobiol Aging. 1991;12295- 312Google ScholarCrossref
31.
Price  JL Tangles and plaques in healthy aging and Alzheimer's disease: independence or interaction?  Semin Neurosci. 1994;6395- 402Google ScholarCrossref
32.
Hixson  JEVernier  DT Restriction isotyping of human apolipoprotein E by gene amplification and cleavage with Hha 1.  J Lipid Res. 1990;31545- 548Google Scholar
33.
Talbot  CHoulden  HCraddock  N  et al.  Polymorphism in AACT gene may lower age of onset of Alzheimer's disease.  Neuroreport. 1996;7534- 536Google ScholarCrossref
34.
Gearing  MSchneider  JARebeck  GWHyman  BTMirra  SS Alzheimer's disease with and without coexisting Parkinson's disease changes: apolipoprotein E genotype and neuropathologic correlates.  Neurology. 1995;451985- 1990Google ScholarCrossref
35.
De Souza  ATHankins  GRWashington  MKFine  RLOrton  TCJirtle  RL Frequent loss of heterozygosity on 6q at the mannose 6-phosphate/insulin-like growth factor II receptor locus in human hepatocellular tumors.  Oncogene. 1995;101725- 1729Google Scholar
36.
Hedreen  JCRaskin  LSStruble  RGPrice  DL Selective silver impregnation of senile plaques: a method useful for computer imaging.  J Neurosci Methods. 1988;25151- 158Google ScholarCrossref
37.
Hibbard  LSMcKeel  DW  Jr Automated identification and quantitative morphometry of the senile plaques of Alzheimer's disease.  Anal Quant Cytol Histol. 1997;19123- 138Google Scholar
38.
Khachaturian  ZS Diagnosis of Alzheimer's disease.  Arch Neurol. 1985;421097- 1105Google ScholarCrossref
39.
Rezaie  PCairns  NJChadwick  ALantos  PL Lewy bodies are located preferentially in limbic areas in diffuse Lewy body disease.  Neurosci Lett. 1996;212111- 114Google ScholarCrossref
40.
Not Available, SAS/STAT Software: Changes and Enhancements Through Release 6.12.  Cary, NC SAS Institute Inc1997;
41.
Kramer  CY Extension of the multiple range tests to group means with unequal numbers of replications.  Biometrics. 1956;12309- 310Google ScholarCrossref
42.
Schmidt  MLDiDario  AGLee  VM-YTrojanowski  JQ An extensive network of PHF tau-rich dystrophic neurites permeates neocortex and nearly all neuritic and diffuse amyloid plaques in Alzheimer disease.  FEBS Lett. 1994;34469- 73Google ScholarCrossref
43.
McKee  ACKosik  KSKowall  NW Neuritic pathology and dementia in Alzheimer's disease.  Ann Neurol. 1991;30156- 165Google ScholarCrossref
44.
Arriagada  PVGrowdon  JHHedley-Whyte  ETHyman  BT Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer's disease.  Neurology. 1992;42631- 639Google ScholarCrossref
45.
Hyman  BTMarzloff  KArriagada  PV The lack of accumulation of senile plaques or amyloid burden in Alzheimer's disease suggests a dynamic balance between amyloid deposition and resolution.  J Neuropathol Exp Neurol. 1993;52594- 600Google ScholarCrossref
46.
Samuel  WTerry  RDDeTeresa  RButters  NMasliah  E Clinical correlates of cortical and nucleus basalis pathology in Alzheimer dementia.  Arch Neurol. 1994;51772- 778Google ScholarCrossref
47.
Dickson  DWCrystal  HABevona  CHoner  WVincent  IDavies  P Correlations of synaptic and pathological markers with cognition of the elderly.  Neurobiol Aging. 1995;16285- 297Google ScholarCrossref
48.
Dournaud  PDeLaére  PHauw  JJEpelbaum  J Differential correlation between neurochemical deficits, neuropathology, and cognitive status in Alzheimer's disease.  Neurobiol Aging. 1995;16817- 823Google ScholarCrossref
49.
Bierer  LMHof  PRDushyant  PP  et al.  Neocortical neurofibrillary tangles correlate with dementia severity in Alzheimer's disease.  Arch Neurol. 1995;5281- 88Google ScholarCrossref
50.
Gómez-Isla  TWest  HLRebeck  GW  et al.  Clinical and pathological correlates of apolipoprotein E ϵ4 in Alzheimer's disease.  Ann Neurol. 1996;3962- 70Google ScholarCrossref
51.
Gómez-Isla  THollister  RWest  H  et al.  Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer's disease.  Ann Neurol. 1997;4117- 24Google ScholarCrossref
52.
Cummings  BJPike  CJShankle  RCotman  CW β-Amyloid deposition and other measures of neuropathology predict cognitive status in Alzheimer's disease.  Neurobiol Aging. 1996;17921- 933Google ScholarCrossref
53.
Blessed  GTomlinson  BERoth  M The association between quantitative measures of dementia and of senile changes in the cerebral grey matter of elderly subjects.  Br J Psychiatry. 1968;114797- 811Google ScholarCrossref
54.
Terry  RD The pathogenesis of Alzheimer disease: an alternative to the amyloid hypothesis.  J Neuropathol Exp Neurol. 1996;551023- 1025Google ScholarCrossref
55.
Terry  RDMasliah  ESalmon  DP  et al.  Physical basis of cognitive alterations in Alzheimer's disease: synapse loss is the major correlate of cognitive impairment.  Ann Neurol. 1991;30572- 580Google ScholarCrossref
56.
Gómez-Isla  TPrice  JLMcKeel  DW  et al.  Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer's disease.  J Neurosci. 1996;164491- 4500Google Scholar
57.
Premkumar  DRDCohen  DLHedera  PFriedland  RPKalaria  RN Apolipoprotein E-ϵ4 alleles in cerebral amyloid angiopathy and cerebrovascular pathology associated with Alzheimer's disease.  Am J Pathol. 1996;482083- 2095Google Scholar
58.
Nagy  ZEsiri  MMJobst  KA  et al.  The effects of additional pathology on the cognitive deficit in Alzheimer disease.  J Neuropathol Exp Neurol. 1997;56165- 170Google ScholarCrossref
59.
Snowdon  DAGreiner  LHMortimer  JARiley  KPGreiner  PAMarkesbery  WR Brain infarction and the clinical expression of Alzheimer disease: the Nun Study.  JAMA. 1997;277813- 817Google ScholarCrossref
60.
Berg  LMiller  JPBaty  JRubin  EHMorris  JCFigiel  G Mild senile dementia of the Alzheimer type, 4: evaluation of intervention.  Ann Neurol. 1992;31242- 249Google ScholarCrossref
61.
Hill  RDStorandt  MLaBarge  E Psychometric discrimination of moderate senile dementia of the Alzheimer type.  Arch Neurol. 1992;49377- 380Google ScholarCrossref
62.
Storandt  MHill  RD Very mild senile dementia of the Alzheimer type, II: psychometric test performance.  Arch Neurol. 1989;46383- 386Google ScholarCrossref
63.
Terry  RDHansen  LADeTeresa  RDavies  PTobias  HKatzman  R Senile dementia of the Alzheimer type without neocortical neurofibrillary tangles.  J Neuropathol Exp Neurol. 1987;46262- 268Google ScholarCrossref
64.
Hansen  LASamuel  W Criteria for Alzheimer's disease and the nosology of dementia with Lewy bodies.  Neurology. 1997;48126- 132Google ScholarCrossref
65.
Hulette  CMirra  SSWilkinson  WHeyman  AFillenbaum  GClark  CM CERAD part IX: a prospective cliniconeuropathologic study of Parkinson's features in Alzheimer's disease.  Neurology. 1995;451991- 1995Google ScholarCrossref
66.
Corder  EHSaunders  AMRisch  NJ  et al.  Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease.  Nat Genet. 1994;7180- 184Google ScholarCrossref
67.
Rebeck  GWPerls  TTWest  HLSodhi  PLipsitz  LAHyman  BT Reduced apolipoprotein ϵ4 allele frequency in the oldest old Alzheimer's patients and cognitively normal individuals.  Neurology. 1994;441513- 1516[published correction appears in Neurology. 1995;45:598].Google ScholarCrossref
68.
Corder  EHSaunders  AMStrittmatter  WJ  et al.  Apolipoprotein E, survival in Alzheimer's disease patients, and the competing risks of death and Alzheimer's disease.  Neurology. 1995;451323- 1328Google ScholarCrossref
69.
Sobel  ELouhija  JSulkava  R  et al.  Lack of association of apolipoprotein E allele ϵ4 with late-onset Alzheimer's disease among Finnish centenarians.  Neurology. 1995;45903- 907Google ScholarCrossref
70.
Morris  CMBenjamin  RLeake  A  et al.  Effect of apolipoprotein E genotype on Alzheimer's disease neuropathology in a cohort of elderly Norwegians.  Neurosci Lett. 1995;20145- 47Google ScholarCrossref
71.
Sulkava  RKainulainen  KVerkkoniemi  A  et al.  APOE alleles in Alzheimer's disease and vascular dementia in a population aged 85+.  Neurobiol Aging. 1996;17373- 376Google ScholarCrossref
72.
Blacker  DHaines  JLRodes  L  et al.  ApoE-4 and age at onset of Alzheimer's disease: the NIMH Genetics Initiative.  Neurology. 1997;48139- 147Google ScholarCrossref
73.
Polvikoski  TSulkava  RHaltia  M  et al.  Apolipoprotein E, dementia, and cortical deposition of β-amyloid protein.  N Engl J Med. 1995;3331242- 1247Google ScholarCrossref
74.
Gearing  MMori  HMirra  SS Aβ-peptide length and apolipoprotein E genotype in Alzheimer's disease.  Ann Neurol. 1996;39395- 399Google ScholarCrossref
75.
Fabian  VAJones  TMWilton  SD  et al.  Alzheimer's disease and apolioprotein E genotype in western Australia: an autopsy-verified series.  Med J Aust. 1996;16577- 80Google Scholar
76.
Landén  MThrosell  AWallin  ABlennow  K The apolipoprotein E allele ϵ4 does not correlate with the number of senile plaques or neurofibrillary tangles in patients with Alzheimer's disease.  J Neurol Neurosurg Psychiatry. 1996;61352- 356Google ScholarCrossref
77.
Pirttilä  TSoininen  HMehta  PD  et al.  Apolipoprotein E genotype and amyloid load in Alzheimer disease and control brains.  Neurobiol Aging. 1997;18121- 127Google ScholarCrossref
78.
Heinonen  OLehtovirta  MSoininen  H  et al.  Alzheimer pathology of patients carrying apolipoprotein E ϵ4 allele.  Neurobiol Aging. 1995;16505- 513Google ScholarCrossref
79.
Greenberg  SMRebeck  GWVonsattel  JPGomez-Isla  THyman  BT Apolipoprotein E ϵ4 and cerebral hemorrhage associated with amyloid angiopathy.  Ann Neurol. 1995;38254- 259Google ScholarCrossref
80.
Talbot  CELendon  CCraddock  NShears  SMorris  JCGoate  A Protection against Alzheimer's disease with apoE ϵ2.  Lancet. 1994;3431432- 1433Google ScholarCrossref
81.
Chartier-Harlin  MCParfitt  MLegrain  S  et al.  Apolipoprotein E ϵ4 allele as a major risk factor for sporadic early and late-onset form of Alzheimer's disease: analysis of the 19q13.2 chromosomal region.  Hum Mol Genet. 1994;3569- 574Google ScholarCrossref
82.
Mirra  SSHeyman  AMcKeel  D  et al.  The Consortium to Establish a Registry for Alzheimer's Disease (CERAD), part II: standardization of the neuropathological assessment of Alzheimer's disease.  Neurology. 1991;41479- 486Google ScholarCrossref
83.
Katzman  RTerry  RD The Neurology of Aging.  Philadelphia, Pa FA Davis Co1983;40
84.
Ebly  EMHogan  DBParhad  IM Cognitive impairment in the nondemented elderly.  Arch Neurol. 1995;52612- 619Google ScholarCrossref
85.
The National Institute on Aging and Reagan Institute Working Group on Diagnostic Criteria for the Neuropathological Assessment of Alzheimer's Disease, Consensus recommendations for the postmortem diagnosis of Alzheimer's disease.  Neurobiol Aging. 1997;18 ((4S)) S1- S105Google ScholarCrossref
86.
Price  JL Diagnostic criteria for Alzheimer's disease: position paper.  Neurobiol Aging. 1997;18 ((4S)) S67- S70Google ScholarCrossref
87.
Berg  LMorris  JC Diagnosis. Terry  RDKatzman  RBick  K Alzheimer Disease. New York, NY Raven Press1994;9- 25Google Scholar
88.
Gearing  MMirra  SSSumi  MHansen  LHedreen  JHeyman  A CERAD part X: neuropathology confirmation of the clinical diagnosis of Alzheimer's disease.  Neurology. 1995;45461- 466Google ScholarCrossref
89.
Rasmusson  DXBrandt  JSteele  CHedreen  JCTroncoso  JCFolstein  MF Accuracy of clinical diagnosis of Alzheimer disease and clinical features of patients with non-Alzheimer disease neuropathology.  Alzheimer Dis Assoc Disord. 1996;10180- 188Google ScholarCrossref
90.
Torack  RMMorris  JC Mesolimbocortical dementia.  Arch Neurol. 1986;431074- 1078Google ScholarCrossref
91.
Crystal  HADickson  DWSliwinski  MJ  et al.  Pathological markers associated with normal aging and dementia in the elderly.  Ann Neurol. 1993;34566- 573Google ScholarCrossref
92.
Dickson  DWDavies  PBevona  C  et al.  Hippocampal sclerosis: a common pathological feature in very old (≥80 years of age) humans.  Acta Neuropathol. 1994;88212- 221Google ScholarCrossref
93.
Corey-Bloom  JSabbagh  MNBondi  MW  et al.  Hippocampal sclerosis contributes to dementia in the elderly.  Neurology. 1997;48154- 160Google ScholarCrossref
94.
Troncoso  JCMartin  LJDal Forno  GKawas  CH Neuropathology in controls and demented subjects from the Baltimore Longitudinal Study of Aging.  Neurobiol Aging. 1996;17365- 371Google ScholarCrossref
95.
McKeith  IGGalasko  DKosaka  K  et al.  Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): report of the Consortium on DLB International Workshop.  Neurology. 1996;471113- 1124Google ScholarCrossref
96.
Litvan  IAgid  YGoetz  C  et al.  Accuracy of the clinical diagnosis of corticobasal degeneration: a clinicopathologic study.  Neurology. 1997;48119- 125Google ScholarCrossref
97.
Bancher  CJellinger  KA Neurofibrillary tangle predominant form of senile dementia of Alzheimer type: a rare subtype in very old subjects.  Acta Neuropathol. 1994;88565- 570Google ScholarCrossref
×