[Skip to Navigation]
Sign In
Figure 1. Box plots and superimposed data points showing the distribution of Alzheimer disease (AD) biomarkers by baseline diagnosis and visit. The horizontal line in each box indicates the median, whereas the top and bottom borders of the box mark the 75th and 25th percentiles, respectively. The whiskers above and below the box mark the largest and smallest data point that is within 1.5 times the interquartile range of the top and bottom of the box. A, For participants with both baseline and 12-month data, the cerebrospinal fluid (CSF) Aβ42 level did not change from baseline to 12 months in the cognitively normal (CN) group (P = .52), the mild cognitive impairment (MCI) group (P = .13), or the AD group (P = .51). B, The CSF total tau level is shown on the log scale. It increased from baseline to 12 months in CN participants (P = .002) but not in participants with MCI (P = .12) or AD (P = .36). C, The adjusted hippocampal volume decreased from baseline to 12 months in all clinical groups (P < .001). The dotted horizontal line extending across all box plots represents the cut point denoting normal vs abnormal for each biomarker.

Figure 1. Box plots and superimposed data points showing the distribution of Alzheimer disease (AD) biomarkers by baseline diagnosis and visit. The horizontal line in each box indicates the median, whereas the top and bottom borders of the box mark the 75th and 25th percentiles, respectively. The whiskers above and below the box mark the largest and smallest data point that is within 1.5 times the interquartile range of the top and bottom of the box. A, For participants with both baseline and 12-month data, the cerebrospinal fluid (CSF) Aβ42 level did not change from baseline to 12 months in the cognitively normal (CN) group (P = .52), the mild cognitive impairment (MCI) group (P = .13), or the AD group (P = .51). B, The CSF total tau level is shown on the log scale. It increased from baseline to 12 months in CN participants (P = .002) but not in participants with MCI (P = .12) or AD (P = .36). C, The adjusted hippocampal volume decreased from baseline to 12 months in all clinical groups (P < .001). The dotted horizontal line extending across all box plots represents the cut point denoting normal vs abnormal for each biomarker.

Figure 2. Estimated probability of abnormality for each Alzheimer disease (AD) biomarker in all participants (n = 401) (A and B) and within the subset of participants with an abnormal cerebrospinal fluid (CSF) Aβ42 level at baseline (n = 274) (C and D). Abnormality is shown by clinical diagnosis (ie, cognitively normal [CN], mild cognitive impairment [MCI], or AD) (A and C) and Mini-Mental State Examination (MMSE) score (B and D). The cutoffs used are 192 pg/mL for the CSF Aβ42 level, 93 pg/mL for the CSF total tau level (t-tau), and 0.48 for the adjusted hippocampal volume (AHV).

Figure 2. Estimated probability of abnormality for each Alzheimer disease (AD) biomarker in all participants (n = 401) (A and B) and within the subset of participants with an abnormal cerebrospinal fluid (CSF) Aβ42 level at baseline (n = 274) (C and D). Abnormality is shown by clinical diagnosis (ie, cognitively normal [CN], mild cognitive impairment [MCI], or AD) (A and C) and Mini-Mental State Examination (MMSE) score (B and D). The cutoffs used are 192 pg/mL for the CSF Aβ42 level, 93 pg/mL for the CSF total tau level (t-tau), and 0.48 for the adjusted hippocampal volume (AHV).

Figure 3. Estimated proportion of participants who had abnormal Alzheimer disease (AD) biomarker values at baseline and at 12 months shown by baseline clinical diagnosis for the subset of participants with serial data (n = 298) (A) and for a subset of participants with serial data who had an abnormal cerebrospinal fluid (CSF) Aβ42 level at baseline (n = 209) (B). Values are shifted slightly along the x-axis for the middle biomarker to reduce overlap in lines. The cutoffs used are 192 pg/mL for the CSF Aβ42 level, 93 pg/mL for the CSF total tau level (t-tau), and 0.48 for the adjusted hippocampal volume (AHV). CN indicates cognitively normal; MCI, mild cognitive impairment.

Figure 3. Estimated proportion of participants who had abnormal Alzheimer disease (AD) biomarker values at baseline and at 12 months shown by baseline clinical diagnosis for the subset of participants with serial data (n = 298) (A) and for a subset of participants with serial data who had an abnormal cerebrospinal fluid (CSF) Aβ42 level at baseline (n = 209) (B). Values are shifted slightly along the x-axis for the middle biomarker to reduce overlap in lines. The cutoffs used are 192 pg/mL for the CSF Aβ42 level, 93 pg/mL for the CSF total tau level (t-tau), and 0.48 for the adjusted hippocampal volume (AHV). CN indicates cognitively normal; MCI, mild cognitive impairment.

Table 1. Characteristics of 401 Elderly Participants in the Alzheimer's Disease Neuroimaging Initiative at Baseline and 12 Months by Baseline Diagnosis
Table 1. Characteristics of 401 Elderly Participants in the Alzheimer's Disease Neuroimaging Initiative at Baseline and 12 Months by Baseline Diagnosis
Table 2. Proportions of Abnormality Between Biomarkers by Clinical Groupa
Table 2. Proportions of Abnormality Between Biomarkers by Clinical Groupa
1.
Dubois B, Feldman HH, Jacova C,  et al.  Revising the definition of Alzheimer's disease: a new lexicon.  Lancet Neurol. 2010;9(11):1118-112720934914PubMedGoogle ScholarCrossref
2.
Jack CR Jr, Albert MS, Knopman DS,  et al.  Introduction to the recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease.  Alzheimers Dement. 2011;7(3):257-26221514247PubMedGoogle ScholarCrossref
3.
McKhann GM, Knopman DS, Chertkow H,  et al.  The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease.  Alzheimers Dement. 2011;7(3):263-26921514250PubMedGoogle ScholarCrossref
4.
Sperling RA, Aisen PS, Beckett LA,  et al.  Toward defining the preclinical stages of Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease.  Alzheimers Dement. 2011;7(3):280-29221514248PubMedGoogle ScholarCrossref
5.
Albert MS, Dekosky ST, Dickson D,  et al.  The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease.  Alzheimers Dement. 2011;7(3):270-27921514249PubMedGoogle ScholarCrossref
6.
Jack CR Jr, Petersen RC, Xu YC,  et al.  Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment.  Neurology. 1999;52(7):1397-140310227624PubMedGoogle ScholarCrossref
7.
Killiany RJ, Gomez-Isla T, Moss M,  et al.  Use of structural magnetic resonance imaging to predict who will get Alzheimer's disease.  Ann Neurol. 2000;47(4):430-43910762153PubMedGoogle ScholarCrossref
8.
Mattsson N, Zetterberg H, Hansson O,  et al.  CSF biomarkers and incipient Alzheimer disease in patients with mild cognitive impairment.  JAMA. 2009;302(4):385-39319622817PubMedGoogle ScholarCrossref
9.
Jagust WJ, Haan MN, Eberling JL, Wolfe N, Reed BR. Functional imaging predicts cognitive decline in Alzheimer's disease.  J Neuroimaging. 1996;6(3):156-1608704290PubMedGoogle Scholar
10.
Visser PJ, Verhey F, Knol DL,  et al.  Prevalence and prognostic value of CSF markers of Alzheimer's disease pathology in patients with subjective cognitive impairment or mild cognitive impairment in the DESCRIPA study: a prospective cohort study.  Lancet Neurol. 2009;8(7):619-62719523877PubMedGoogle ScholarCrossref
11.
Okello A, Koivunen J, Edison P,  et al.  Conversion of amyloid positive and negative MCI to AD over 3 years: an 11C-PIB PET study.  Neurology. 2009;73(10):754-76019587325PubMedGoogle ScholarCrossref
12.
Dickerson BC, Goncharova I, Sullivan MP,  et al.  MRI-derived entorhinal and hippocampal atrophy in incipient and very mild Alzheimer's disease.  Neurobiol Aging. 2001;22(5):747-75411705634PubMedGoogle ScholarCrossref
13.
McEvoy LK, Fennema-Notestine C, Roddey JC,  et al; Alzheimer's Disease Neuroimaging Initiative.  Alzheimer disease: quantitative structural neuroimaging for detection and prediction of clinical and structural changes in mild cognitive impairment.  Radiology. 2009;251(1):195-20519201945PubMedGoogle ScholarCrossref
14.
Snider BJ, Fagan AM, Roe C,  et al.  Cerebrospinal fluid biomarkers and rate of cognitive decline in very mild dementia of the Alzheimer type.  Arch Neurol. 2009;66(5):638-64519433664PubMedGoogle ScholarCrossref
15.
Wallin AK, Blennow K, Zetterberg H, Londos E, Minthon L, Hansson O. CSF biomarkers predict a more malignant outcome in Alzheimer disease.  Neurology. 2010;74(19):1531-153720458070PubMedGoogle ScholarCrossref
16.
Hampel H, Frank R, Broich K,  et al.  Biomarkers for Alzheimer's disease: academic, industry and regulatory perspectives.  Nat Rev Drug Discov. 2010;9(7):560-57420592748PubMedGoogle ScholarCrossref
17.
Rinne JO, Brooks DJ, Rossor MN,  et al.  11C-PiB PET assessment of change in fibrillar amyloid-beta load in patients with Alzheimer's disease treated with bapineuzumab: a phase 2, double-blind, placebo-controlled, ascending-dose study.  Lancet Neurol. 2010;9(4):363-37220189881PubMedGoogle ScholarCrossref
18.
Blennow K. Biomarkers in Alzheimer's disease drug development.  Nat Med. 2010;16(11):1218-122221052077PubMedGoogle ScholarCrossref
19.
Blennow K, Zetterberg H. Is it time for biomarker-based diagnostic criteria for prodromal Alzheimer's disease?  Alzheimers Res Ther. 2010;2(2):820441609PubMedGoogle ScholarCrossref
20.
Clark CM, Xie S, Chittams J,  et al.  Cerebrospinal fluid tau and beta-amyloid: how well do these biomarkers reflect autopsy-confirmed dementia diagnoses?  Arch Neurol. 2003;60(12):1696-170214676043PubMedGoogle ScholarCrossref
21.
Arai H, Terajima M, Miura M,  et al.  Tau in cerebrospinal fluid: a potential diagnostic marker in Alzheimer's disease.  Ann Neurol. 1995;38(4):649-6527574462PubMedGoogle ScholarCrossref
22.
Strozyk D, Blennow K, White LR, Launer LJ. CSF Abeta 42 levels correlate with amyloid-neuropathology in a population-based autopsy study.  Neurology. 2003;60(4):652-65612601108PubMedGoogle ScholarCrossref
23.
Schoonenboom NS, van der Flier WM, Blankenstein MA,  et al.  CSF and MRI markers independently contribute to the diagnosis of Alzheimer's disease.  Neurobiol Aging. 2008;29(5):669-67517208336PubMedGoogle ScholarCrossref
24.
Fagan AM, Mintun MA, Mach RH,  et al.  Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Abeta42 in humans.  Ann Neurol. 2006;59(3):512-51916372280PubMedGoogle ScholarCrossref
25.
Jagust WJ, Landau SM, Shaw LM,  et al; Alzheimer's Disease Neuroimaging Initiative.  Relationships between biomarkers in aging and dementia.  Neurology. 2009;73(15):1193-119919822868PubMedGoogle ScholarCrossref
26.
Grimmer T, Riemenschneider M, Förstl H,  et al.  Beta amyloid in Alzheimer's disease: increased deposition in brain is reflected in reduced concentration in cerebrospinal fluid.  Biol Psychiatry. 2009;65(11):927-93419268916PubMedGoogle ScholarCrossref
27.
Tolboom N, van der Flier WM, Yaqub M,  et al.  Relationship of cerebrospinal fluid markers to 11C-PiB and 18F-FDDNP binding.  J Nucl Med. 2009;50(9):1464-147019690025PubMedGoogle ScholarCrossref
28.
Klunk WE, Engler H, Nordberg A,  et al.  Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound-B.  Ann Neurol. 2004;55(3):306-31914991808PubMedGoogle ScholarCrossref
29.
Rabinovici GD, Jagust WJ. Amyloid imaging in aging and dementia: testing the amyloid hypothesis in vivo.  Behav Neurol. 2009;21(1):117-12819847050PubMedGoogle Scholar
30.
Degerman Gunnarsson M, Lindau M, Wall A,  et al.  Pittsburgh compound-B and Alzheimer's disease biomarkers in CSF, plasma and urine: an exploratory study.  Dement Geriatr Cogn Disord. 2010;29(3):204-21220332638PubMedGoogle ScholarCrossref
31.
Buerger K, Ewers M, Pirttilä T,  et al.  CSF phosphorylated tau protein correlates with neocortical neurofibrillary pathology in Alzheimer's disease.  Brain. 2006;129(pt 11):3035-304117012293PubMedGoogle ScholarCrossref
32.
Shaw LM, Vanderstichele H, Knapik-Czajka M,  et al; Alzheimer's Disease Neuroimaging Initiative.  Cerebrospinal fluid biomarker signature in Alzheimer's disease neuroimaging initiative subjects.  Ann Neurol. 2009;65(4):403-41319296504PubMedGoogle ScholarCrossref
33.
Tapiola T, Overmyer M, Lehtovirta M,  et al.  The level of cerebrospinal fluid tau correlates with neurofibrillary tangles in Alzheimer's disease.  Neuroreport. 1997;8(18):3961-39639462474PubMedGoogle ScholarCrossref
34.
Jagust W, Reed B, Mungas D, Ellis W, Decarli C. What does fluorodeoxyglucose PET imaging add to a clinical diagnosis of dementia?  Neurology. 2007;69(9):871-87717724289PubMedGoogle ScholarCrossref
35.
Minoshima S, Giordani B, Berent S, Frey KA, Foster NL, Kuhl DE. Metabolic reduction in the posterior cingulate cortex in very early Alzheimer's disease.  Ann Neurol. 1997;42(1):85-949225689PubMedGoogle ScholarCrossref
36.
Hoffman JM, Welsh-Bohmer KA, Hanson M,  et al.  FDG PET imaging in patients with pathologically verified dementia.  J Nucl Med. 2000;41(11):1920-192811079505PubMedGoogle Scholar
37.
Jack CR Jr, Petersen RC, O’Brien PC, Tangalos EG. MR-based hippocampal volumetry in the diagnosis of Alzheimer's disease.  Neurology. 1992;42(1):183-1881734300PubMedGoogle ScholarCrossref
38.
Killiany RJ, Moss MB, Albert MS, Sandor T, Tieman J, Jolesz F. Temporal lobe regions on magnetic resonance imaging identify patients with early Alzheimer's disease.  Arch Neurol. 1993;50(9):949-9548363449PubMedGoogle ScholarCrossref
39.
Vemuri P, Whitwell JL, Kantarci K,  et al.  Antemortem MRI based STructural Abnormality iNDex (STAND)-scores correlate with postmortem Braak neurofibrillary tangle stage.  Neuroimage. 2008;42(2):559-56718572417PubMedGoogle ScholarCrossref
40.
Desikan RS, Cabral HJ, Hess CP,  et al; Alzheimer's Disease Neuroimaging Initiative.  Automated MRI measures identify individuals with mild cognitive impairment and Alzheimer's disease.  Brain. 2009;132(Pt 8):2048-205719460794PubMedGoogle ScholarCrossref
41.
Silbert LC, Quinn JF, Moore MM,  et al.  Changes in premorbid brain volume predict Alzheimer's disease pathology.  Neurology. 2003;61(4):487-49212939422PubMedGoogle ScholarCrossref
42.
Whitwell JL, Josephs KA, Murray ME,  et al.  MRI correlates of neurofibrillary tangle pathology at autopsy: a voxel-based morphometry study.  Neurology. 2008;71(10):743-74918765650PubMedGoogle ScholarCrossref
43.
Frisoni GB, Fox NC, Jack CR Jr, Scheltens P, Thompson PM. The clinical use of structural MRI in Alzheimer disease.  Nat Rev Neurol. 2010;6(2):67-7720139996PubMedGoogle ScholarCrossref
44.
Jack CR Jr, Knopman DS, Jagust WJ,  et al.  Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade.  Lancet Neurol. 2010;9(1):119-12820083042PubMedGoogle ScholarCrossref
45.
Jack CR Jr, Lowe VJ, Weigand SD,  et al; Alzheimer's Disease Neuroimaging Initiative.  Serial PIB and MRI in normal, mild cognitive impairment and Alzheimer's disease: implications for sequence of pathological events in Alzheimer's disease.  Brain. 2009;132(pt 5):1355-136519339253PubMedGoogle ScholarCrossref
46.
Caroli A, Frisoni GB.Alzheimer's Disease Neuroimaging Initiative.  The dynamics of Alzheimer's disease biomarkers in the Alzheimer's Disease Neuroimaging Initiative cohort.  Neurobiol Aging. 2010;31(8):1263-127420538373PubMedGoogle ScholarCrossref
47.
Vanderstichele H, De Meyer G, Shapiro F,  et al.  From concept to clinical utility. In: Galimberti D, Scarpini E, eds. Biomarkers for Early Diagnosis Of Alzheimer's Disease. Hauppauge, NY: Nova Science Publishers Inc; 2008:81-122
48.
Jack CR Jr, Bernstein MA, Fox NC,  et al.  The Alzheimer's Disease Neuroimaging Initiative (ADNI): MRI methods.  J Magn Reson Imaging. 2008;27(4):685-69118302232PubMedGoogle ScholarCrossref
49.
Jovicich J, Czanner S, Greve D,  et al.  Reliability in multi-site structural MRI studies: effects of gradient non-linearity correction on phantom and human data.  Neuroimage. 2006;30(2):436-44316300968PubMedGoogle ScholarCrossref
50.
Sled JG, Zijdenbos AP, Evans AC. A nonparametric method for automatic correction of intensity nonuniformity in MRI data.  IEEE Trans Med Imaging. 1998;17(1):87-979617910PubMedGoogle ScholarCrossref
51.
Fischl B, Salat DH, Busa E,  et al.  Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain.  Neuron. 2002;33(3):341-35511832223PubMedGoogle ScholarCrossref
52.
Jack CR Jr, Twomey CK, Zinsmeister AR, Sharbrough FW, Petersen RC, Cascino GD. Anterior temporal lobes and hippocampal formations: normative volumetric measurements from MR images in young adults.  Radiology. 1989;172(2):549-5542748838PubMedGoogle Scholar
53.
De Meyer G, Shapiro F, Vanderstichele H,  et al; Alzheimer's Disease Neuroimaging Initiative.  Diagnosis-independent Alzheimer disease biomarker signature in cognitively normal elderly people.  Arch Neurol. 2010;67(8):949-95620697045PubMedGoogle ScholarCrossref
54.
Ingelsson M, Fukumoto H, Newell KL,  et al.  Early Abeta accumulation and progressive synaptic loss, gliosis, and tangle formation in AD brain.  Neurology. 2004;62(6):925-93115037694PubMedGoogle ScholarCrossref
55.
Perrin RJ, Fagan AM, Holtzman DM. Multimodal techniques for diagnosis and prognosis of Alzheimer's disease.  Nature. 2009;461(7266):916-92219829371PubMedGoogle ScholarCrossref
56.
Fagan AM, Roe CM, Xiong C, Mintun MA, Morris JC, Holtzman DM. Cerebrospinal fluid tau/beta-amyloid(42) ratio as a prediction of cognitive decline in nondemented older adults.  Arch Neurol. 2007;64(3):343-34917210801PubMedGoogle ScholarCrossref
57.
Vemuri P, Wiste HJ, Weigand SD,  et al; Alzheimer's Disease Neuroimaging Initiative.  MRI and CSF biomarkers in normal, MCI, and AD subjects: diagnostic discrimination and cognitive correlations.  Neurology. 2009;73(4):287-29319636048PubMedGoogle ScholarCrossref
58.
Vemuri P, Wiste HJ, Weigand SD,  et al; Alzheimer's Disease Neuroimaging Initiative.  Serial MRI and CSF biomarkers in normal aging, MCI, and AD.  Neurology. 2010;75(2):143-15120625167PubMedGoogle ScholarCrossref
59.
Peskind ER, Li G, Shofer J,  et al.  Age and apolipoprotein E*4 allele effects on cerebrospinal fluid beta-amyloid 42 in adults with normal cognition.  Arch Neurol. 2006;63(7):936-93916831961PubMedGoogle ScholarCrossref
60.
Scheinin NM, Aalto S, Koikkalainen J,  et al.  Follow-up of [11C]PIB uptake and brain volume in patients with Alzheimer disease and controls.  Neurology. 2009;73(15):1186-119219726751PubMedGoogle ScholarCrossref
61.
Fox NC, Crum WR, Scahill RI, Stevens JM, Janssen JC, Rossor MN. Imaging of onset and progression of Alzheimer's disease with voxel-compression mapping of serial magnetic resonance images.  Lancet. 2001;358(9277):201-20511476837PubMedGoogle ScholarCrossref
62.
Carlson NE, Moore MM, Dame A,  et al.  Trajectories of brain loss in aging and the development of cognitive impairment.  Neurology. 2008;70(11):828-83318046010PubMedGoogle ScholarCrossref
63.
Sperling RA, Laviolette PS, O’Keefe K,  et al.  Amyloid deposition is associated with impaired default network function in older persons without dementia.  Neuron. 2009;63(2):178-18819640477PubMedGoogle ScholarCrossref
64.
Hedden T, Van Dijk KR, Becker JA,  et al.  Disruption of functional connectivity in clinically normal older adults harboring amyloid burden.  J Neurosci. 2009;29(40):12686-1269419812343PubMedGoogle ScholarCrossref
65.
Mormino EC, Kluth JT, Madison CM,  et al; Alzheimer's Disease Neuroimaging Initiative.  Episodic memory loss is related to hippocampal-mediated beta-amyloid deposition in elderly subjects.  Brain. 2009;132(pt 5):1310-132319042931PubMedGoogle ScholarCrossref
66.
DeKosky ST, Scheff SW. Synapse loss in frontal cortex biopsies in Alzheimer's disease: correlation with cognitive severity.  Ann Neurol. 1990;27(5):457-4642360787PubMedGoogle ScholarCrossref
67.
Savva GM, Wharton SB, Ince PG, Forster G, Matthews FE, Brayne C.Medical Research Council Cognitive Function and Ageing Study.  Age, neuropathology, and dementia.  N Engl J Med. 2009;360(22):2302-230919474427PubMedGoogle ScholarCrossref
68.
Terry RD, Masliah E, Salmon DP,  et al.  Physical basis of cognitive alterations in Alzheimer's disease: synapse loss is the major correlate of cognitive impairment.  Ann Neurol. 1991;30(4):572-5801789684PubMedGoogle ScholarCrossref
69.
Bennett DA, Schneider JA, Wilson RS, Bienias JL, Berry-Kravis E, Arnold SE. Amyloid mediates the association of apolipoprotein E e4 allele to cognitive function in older people.  J Neurol Neurosurg Psychiatry. 2005;76(9):1194-119916107349PubMedGoogle ScholarCrossref
70.
Rowe CC, Ellis KA, Rimajova M,  et al.  Amyloid imaging results from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging.  Neurobiol Aging. 2010;31(8):1275-128320472326PubMedGoogle ScholarCrossref
71.
Pike KE, Ellis KA, Villemagne VL,  et al.  Cognition and beta-amyloid in preclinical Alzheimer's disease: data from the AIBL study [published online ahead of print April 16, 2011].  Neuropsychologiadoi:10.1016/j.neuropsychologia.2011.04.01221529702PubMedGoogle Scholar
72.
Villemagne VL, Pike KE, Chételat G,  et al.  Longitudinal assessment of Aβ and cognition in aging and Alzheimer disease.  Ann Neurol. 2011;69(1):181-19221280088PubMedGoogle ScholarCrossref
73.
Jicha GA, Parisi JE, Dickson DW,  et al.  Neuropathologic outcome of mild cognitive impairment following progression to clinical dementia.  Arch Neurol. 2006;63(5):674-68116682537PubMedGoogle ScholarCrossref
74.
Bennett DA, Schneider JA, Bienias JL, Evans DA, Wilson RS. Mild cognitive impairment is related to Alzheimer disease pathology and cerebral infarctions.  Neurology. 2005;64(5):834-84115753419PubMedGoogle ScholarCrossref
75.
Schneider JA, Arvanitakis Z, Leurgans SE, Bennett DA. The neuropathology of probable Alzheimer disease and mild cognitive impairment.  Ann Neurol. 2009;66(2):200-20819743450PubMedGoogle ScholarCrossref
76.
Schneider JA, Aggarwal NT, Barnes L, Boyle P, Bennett DA. The neuropathology of older persons with and without dementia from community versus clinic cohorts.  J Alzheimers Dis. 2009;18(3):691-70119749406PubMedGoogle Scholar
77.
Markesbery WR, Schmitt FA, Kryscio RJ, Davis DG, Smith CD, Wekstein DR. Neuropathologic substrate of mild cognitive impairment.  Arch Neurol. 2006;63(1):38-4616401735PubMedGoogle ScholarCrossref
78.
White L, Small BJ, Petrovitch H,  et al.  Recent clinical-pathologic research on the causes of dementia in late life: update from the Honolulu-Asia Aging Study.  J Geriatr Psychiatry Neurol. 2005;18(4):224-22716306244PubMedGoogle ScholarCrossref
79.
Jack CR Jr, Dickson DW, Parisi JE,  et al.  Antemortem MRI findings correlate with hippocampal neuropathology in typical aging and dementia.  Neurology. 2002;58(5):750-75711889239PubMedGoogle ScholarCrossref
80.
Schott JM, Bartlett JW, Fox NC, Barnes J.Alzheimer's Disease Neuroimaging Initiative Investigators.  Increased brain atrophy rates in cognitively normal older adults with low cerebrospinal fluid Aβ1-42.  Ann Neurol. 2010;68(6):825-83421181717PubMedGoogle ScholarCrossref
81.
Fagan AM, Head D, Shah AR,  et al.  Decreased cerebrospinal fluid Abeta(42) correlates with brain atrophy in cognitively normal elderly.  Ann Neurol. 2009;65(2):176-18319260027PubMedGoogle ScholarCrossref
82.
Morris JC, Roe CM, Grant EA,  et al.  Pittsburgh compound B imaging and prediction of progression from cognitive normality to symptomatic Alzheimer disease.  Arch Neurol. 2009;66(12):1469-147520008650PubMedGoogle ScholarCrossref
83.
Rabinovici GD, Furst AJ, O’Neil JP,  et al.  11C-PIB PET imaging in Alzheimer disease and frontotemporal lobar degeneration.  Neurology. 2007;68(15):1205-121217420404PubMedGoogle ScholarCrossref
84.
Becker JA, Hedden T, Carmasin J,  et al.  Amyloid-β associated cortical thinning in clinically normal elderly [published online ahead of print November 17, 2010].  Ann Neurol21437929PubMedGoogle Scholar
85.
Dickerson BC, Bakkour A, Salat DH,  et al.  The cortical signature of Alzheimer's disease: regionally specific cortical thinning relates to symptom severity in very mild to mild AD dementia and is detectable in asymptomatic amyloid-positive individuals.  Cereb Cortex. 2009;19(3):497-51018632739PubMedGoogle ScholarCrossref
86.
Dickerson BC, Stoub TR, Shah RC,  et al.  Alzheimer-signature MRI biomarker predicts AD dementia in cognitively normal adults.  Neurology. 2011;76(16):1395-140221490323PubMedGoogle ScholarCrossref
Original Contributions
Dec 2011

Evidence for Ordering of Alzheimer Disease Biomarkers

Author Affiliations

Author Affiliations: Department of Radiology (Drs Jack, Vemuri, and Bernstein), Division of Biomedical Statistics and Informatics (Ms Wiste and Mr Weigand), and Department of Neurology (Drs Petersen and Knopman), Mayo Clinic and Mayo Foundation for Medical Education and Research, Rochester, Minnesota; Department of Neurosciences, University of California–San Diego, La Jolla (Dr Aisen), and Center for Imaging of Neurodegenerative Diseases, San Francisco Veterans Affairs Medical Center, and Department of Radiology and Biomedical Imaging, University of California, San Francisco (Dr Weiner); and Department of Pathology and Laboratory Medicine and Institute on Aging, University of Pennsylvania School of Medicine, Philadelphia (Drs Trojanowski and Shaw).

Arch Neurol. 2011;68(12):1526-1535. doi:10.1001/archneurol.2011.183
Abstract

Objective To empirically assess the concept that Alzheimer disease (AD) biomarkers significantly depart from normality in a temporally ordered manner.

Design Validation sample.

Setting Multisite, referral centers.

Participants A total of 401 elderly participants in the Alzheimer's Disease Neuroimaging Initiative who were cognitively normal, who had mild cognitive impairment, or who had AD dementia. We compared the proportions of 3 AD biomarker values (the Aβ42 level in cerebrospinal fluid [CSF], the total tau level in CSF, and the hippocampal volume adjusted for intracranial volume [hereafter referred to as the adjusted hippocampal volume]) that were abnormal as cognitive impairment worsened. Cut points demarcating normal vs abnormal for each biomarker were established by maximizing diagnostic accuracy in independent autopsy samples.

Main Outcome Measures Three AD biomarkers (ie, the CSF Aβ42 level, the CSF total tau level, and the adjusted hippocampal volume).

Results Within each clinical group of the entire sample (n = 401), the CSF Aβ42 level was abnormal more often than was the CSF total tau level or the adjusted hippocampal volume. Among the 298 participants with both baseline and 12-month data, the proportion of participants with an abnormal Aβ42 level did not change from baseline to 12 months in any group. The proportion of participants with an abnormal total tau level increased from baseline to 12 months in cognitively normal participants (P = .05) but not in participants with mild cognitive impairment or AD dementia. For 209 participants with an abnormal CSF Aβ42 level at baseline, the percentage with an abnormal adjusted hippocampal volume but normal CSF total tau level increased from baseline to 12 months in participants with mild cognitive impairment. No change in the percentage of MCI participants with an abnormal total tau level was seen between baseline and 12 months.

Conclusions A reduction in the CSF Aβ42 level denotes a pathophysiological process that significantly departs from normality (ie, becomes dynamic) early, whereas the CSF total tau level and the adjusted hippocampal volume are biomarkers of downstream pathophysiological processes. The CSF total tau level becomes dynamic before the adjusted hippocampal volume, but the hippocampal volume is more dynamic in the clinically symptomatic mild cognitive impairment and AD dementia phases of the disease than is the CSF total tau level.

Biomarkers of Alzheimer disease (AD) occupy an essential place in recently formulated diagnostic criteria for AD,1-5 in which their role is to identify the pathophysiological processes underlying cognitive impairment or to help predict time to dementia.6-15 These biomarkers are also increasingly used in clinical trials as both inclusion criteria and outcome measures.

At present, 5 AD biomarkers are sufficiently validated to be used in therapeutic trials, in large observational research studies, and, on occasion, for clinical diagnostic purposes.16-19 The major biomarkers of brain Aβ deposition are a low level of Aβ42 in cerebrospinal fluid (CSF) and a positive finding using positron emission tomographic amyloid imaging.20-30 Biomarkers of neuronal injury or neurodegeneration are elevated levels of total tau (t-tau) and phosphorylated tau in CSF,31-33 decreased fludeoxyglucose F 18 uptake in the temporoparietal cortex determined using positron emission tomography,34-36 and atrophy in medial, basal, and lateral temporal lobes and in the medial parietal isocortex determined by using structural magnetic resonance imaging (MRI).37-43

Some of us recently proposed a hypothetical model of AD pathophysiology44,45 describing the temporal evolution of these 5 biomarkers based on the assumption that they do not change suddenly or simultaneously but rather over many years in an ordered, more sequential manner and that, likewise, they approach a pathological level in an ordered manner. The model does not assume a start-stop sequence whereby 1 biomarker changes then stops, the next changes then stops, etc. Rather, the model assumes that the maximum rate of change moves from 1 class of biomarker to the next, and, as the disease progresses, all biomarkers become progressively more abnormal simultaneously, albeit at rates that change over time in an ordered manner. It was proposed as a hypothetical biomarker cascade with validation awaiting additional data.

Empirical testing of this hypothetical biomarker cascade model44,45 can be approached in various ways46; however, all testing methods require that different biomarkers be directly compared with each other in the same individuals. This can be conceptualized as plotting all biomarker values on a common graph with the vertical axis representing biomarker severity and the horizontal axis representing disease stage and/or time. Our present objective was to evaluate some aspects of the hypothetical biomarker cascade model by characterizing the prevalence of biomarker abnormalities at different disease stages defined by clinical cohort and by results of a Mini-Mental State Examination (MMSE). Comparing the proportions of participants with abnormal biomarker values allowed us to express significant biomarker deviations from normal in the same units for each biomarker. Cut points denoting abnormality for each biomarker were derived from independent autopsy cohorts, which limited our analysis to 3 of the 5 major AD biomarkers: the Aβ42 level in CSF, the t-tau level in CSF, and the hippocampal volume adjusted for intracranial volume (hereafter referred to as the adjusted hippocampal volume that was determined using structural MRI). Our objective was to test the hypothesis that the CSF Aβ42 level, CSF t-tau level, and adjusted hippocampal volume significantly depart from normality in a temporally ordered manner as disease progresses.

Methods
Participants

All Alzheimer's Disease Neuroimaging Initiative (ADNI) participants who had usable baseline data on CSF Aβ42 level, CSF t-tau level, and adjusted hippocampal volume were considered for our analysis. We also analyzed serial (baseline and 12-month) data if both CSF and structural MRI data were obtained at the 12-month visit. Written informed consent was obtained for participation in these studies, as approved by the institutional review board at each of the participating centers.

Csf methods

A standardized protocol was implemented in ADNI to quantify biomarker concentrations in each of the CSF baseline aliquots using a multiplex xMAP Luminex platform (Luminex Corp, Austin, Texas) with INNO-BIA AlzBio3 (Innogenetics, Ghent, Belgium) immunoassay kit–based reagents that was validated in Vanderstichele et al47 and Shaw et al.32 Details can be found at http://www.adni-info.org.

Mri methods

All participants were scanned at 1.5 T with a 3-dimensional magnetization-prepared rapid-acquisition gradient-echo imaging sequence.48 All images were corrected for image distortion due to gradient nonlinearity using GradWarp,49 for B1 nonuniformity as necessary,48 and for residual inhomogeneity using N350 with a software pipeline running at the Mayo Clinic Rochester in Minnesota. Hippocampal and intracranial volumes for both the autopsy sample and the main ADNI analysis sample were measured at Mayo Clinic using FreeSurfer software version 4.5.0.51 Each participant's raw hippocampal volume was adjusted by his or her total intracranial volume (adjusted hippocampal volume).52

Method of defining cut points

To create a common analytic framework to compare different biomarkers, we elected to define each biomarker measure as either normal or abnormal. This requires that a cut point be established in the continuous distribution of values for each biomarker. Arguably the least biased and most valid approach to establishing biomarker cut points is to use an independent cohort in which ground truth is established by autopsy. Cut points for CSF Aβ42 and t-tau levels were established by Shaw et al32,53 using an ADNI-independent autopsy cohort of participants who were observed at the University of Pennsylvania Alzheimer's Disease Core Center and who were diagnosed by use of National Institute on Aging (NIA)–Reagan criteria.20 The cut points were chosen to maximize accuracy in separating high-probability from low-probability autopsy-proven AD.

To our knowledge, however, cut points have not been established for hippocampal atrophy using an independent autopsy data set that employed imaging methods identical to those used in the ADNI. To obtain an adjusted hippocampal volume cut point, we used an independent sample of 53 participants at the Mayo Clinic who had an MRI performed within 3.5 years before death and an autopsy diagnosis of high or low probability of AD using NIA-Reagan criteria. These participants had been enrolled in the Mayo Alzheimer's Disease Patient Registry or the Mayo Alzheimer's Disease Research Center. Our cut point was based on first calculating an adjusted hippocampal volume using the formula AHV = HV – (2.546201 + 0.002139314 × intracranial volume), where AHV (as the adjusted hippocampal volume) is the residual value obtained after regressing HV (as the hippocampal volume) vs intracranial volume. Next, we performed a receiver operating characteristic curve analysis and chose a cut point in order to maximize accuracy in separating high-probability from low-probability autopsy-proven AD. That is, we chose the cut point to maximize sensitivity – (1 – specificity).

Statistical methods

Each participant had 3 binary outcomes for his or her baseline visit defined as normal (y = 0) or abnormal (y = 1) for each of the 3 biomarkers. Because these can be considered repeated-measures data having a binary outcome, we used generalized estimating equations with the logit link and an exchangeable working correlation matrix to estimate and compare the proportion of participants having an abnormal biomarker. Our predictors were clinical group (cognitively normal [CN] participants vs participants with mild cognitive impairment [MCI] vs participants with AD dementia), biomarker, and their interaction. We used likelihood ratio tests to perform a global test of biomarker differences, after including the clinical group in the model, and to test for an interaction between clinical group and biomarker. We used Wald tests to perform pairwise comparisons of abnormality of a biomarker separately within each clinical group. This analysis was then repeated, replacing clinical group with the MMSE, modeled as a restricted cubic spline with knots at the 10th, 50th, and 90th percentiles of the MMSE distribution. We also performed a subset analysis among those with an abnormal baseline CSF Aβ42 level and examined the CSF t-tau levels and adjusted hippocampal volumes within groups.

Among those participants who also had a 12-month visit, we used baseline and 12-month data and fit a generalized estimating equations model that included group, visit, and biomarker along with all interactions. From this model, we estimated separate rates of biomarker abnormality by group, time point, and biomarker. We also performed a subset analysis among those participants with abnormal baseline CSF Aβ42 levels and examined within-group change in CSF t-tau levels and adjusted hippocampal volumes from baseline to 12 months.

Results
Biomarker cut-point values

The cut point for defining abnormal hippocampal volume was based on a sample of 43 participants from Mayo Clinic who had a structural MRI performed before they died and an autopsy diagnosis of high-probability AD (24 [56%] of whom were women, with a median age at death of 85 years) and 10 participants from Mayo Clinic who had a structural MRI performed before they died and an autopsy diagnosis of low probability AD (6 [60%] of whom were women, with a median age at death of 85 years). This Mayo Clinic autopsy cohort was older than the ADNI cohort (median [interquartile range {IQR}], 83 [76-88] years vs 75 [71-80] years; P < .001), had a higher percentage of women (57% vs 40%; P = .03), and had more severe cognitive impairment as measured using the MMSE (median [IQR], 20 [13-26] points vs 27 [25-29] points; P < .001) (eTable 1). The optimal adjusted hippocampal volume ratio cut-point value in the autopsy cohort was 0.48 (eFigure 1). With this cut point, participants with low-probability AD (based on NIA-Reagan criteria) in the MRI training sample were separated from participants with high-probability AD with a classification accuracy of 79%, a sensitivity of 74%, and a specificity of 100%. Overall discrimination was high with an area under the receiver operating characteristic curve of 0.90. Previously established cut-point values for the CSF Aβ42 level and the CSF t-tau level were 192 and 92 pg/mL, respectively, and they were used to define abnormal studies.32

Main analysis

The main analysis included 401 participants in the ADNI (ie, 116 CN participants, 196 participants with MCI, and 89 participants with AD dementia) with baseline data. In total, 298 participants had baseline and 12-month data. The baseline age distributions varied somewhat among the 3 groups of participants (analysis of variance; P = .03), and there were differences in the percentage of women that ranged from 33% of women with MCI to 49% of CN women (Table 1). The MMSE score and the percentage of APOE ε4 carriers varied by clinical group in the expected manner.

For each of the 3 biomarkers evaluated, the median baseline group values became more abnormal (P < .001, linear trend test) (Table 1, Figure 1), and the percentage of participants with abnormal biomarker findings (Table 1, Figure 2A) increased in an ordered manner in the CN, MCI, and AD groups. The same pattern held at 12 months. The percentage of participants with abnormal biomarker findings increased monotonically for each biomarker with decreasing MMSE score (Figure 2B). A supplement to Figure 2 (eFigure 2) shows plots of individual patient trajectories for each biomarker within the clinical diagnosis groups.

Among all 401 participants at baseline, the CSF Aβ42 level was abnormal more often than was the CSF t-tau level or the adjusted hippocampal volume in each clinical group (P < .001 across all pairwise tests) (Table 2). The percentage of participants with an abnormal CSF t-tau level was greater than the percentage of participants with an abnormal adjusted hippocampal volume among CN participants (21% vs 8%; P = .003) but did not differ among participants with MCI or AD dementia (Table 2).

We performed a subanalysis of baseline CSF t-tau levels and adjusted hippocampal volumes among only those participants (47 CN participants, 145 participants with MCI, and 82 participants with AD) who had an abnormal CSF Aβ42 level at baseline. These participants were similar to the participants who had a CSF Aβ42 level in the normal range by age (median [IQR], 76 [72-80] years vs 75 [71-80] years; P = .78) and sex (39% vs 40% of participants were women; P = .97), but they had more severe cognitive impairment as measured using the MMSE (median [IQR], 26 [25-29] points vs 29 [27-29] points; P < .001) (eTable 2). The percentage of these participants who had and abnormal CSF Aβ42 level along with an abnormal CSF t-tau level and an abnormal adjusted hippocampal volume increased monotonically by clinical group in the following order: CN participants, participants with MCI, and participants with AD dementia (Figure 2C), and increased monotonically with decreasing MMSE score (Figure 2D). In this subanalysis, the CSF t-tau level was abnormal more often than was the adjusted hippocampal volume in CN participants. There was a trend of more abnormal CSF t-tau levels than abnormal hippocampal volumes in participants with MCI but no difference in participants with AD dementia (Table 2).

Among the 298 participants with both baseline and 12-month data, the proportion of participants with an abnormal CSF Aβ42 level did not change from baseline to 12 months in any diagnosis group (P = .15 for the CN group, P = .15 for the MCI group, and P = .33 for the AD group) (Figure 3A). The proportion of participants with an abnormal CSF t-tau level increased from baseline to 12 months in CN participants (P = .05) but not in participants with MCI (P = .40) or AD dementia (P > .99), although the absolute levels of t-tau in the CN group were far lower than in the MCI group. There was no difference in the proportion of participants with an abnormal adjusted hippocampal volume between the CN group (P > .99) and the AD group (P = .16), from baseline to 12 months, but there was a significant increase in the proportion of participants with an abnormal hippocampal volume in the MCI group.

The preceding paragraph describes the proportion of participants by group with abnormal biomarker values at baseline and 12 months. The change in biomarker values in native measurement units is seen in Figure 1. On average, the CSF Aβ42 levels did not change from baseline to 12 months in any group (P = .52, P = .13, P = .51 for the CN, MCI, and AD groups, respectively). On average, the CSF t-tau levels increased in the CN group (P = .002) but not in the MCI group (P = .12) or the AD group (P = .36). On average, the adjusted hippocampal volumes decreased in all groups (P < .001).

We also performed a subanalysis among only those participants (n = 209) who had an abnormal CSF Aβ42 level at baseline and who also had both baseline and 12-month data (Figure 3B). Neither the proportion of participants with an abnormal CSF Aβ42 level nor the proportion of participants with an abnormal CSF t-tau level changed from baseline to 12 months in any diagnosis group. The proportion of participants with an abnormal adjusted hippocampal volume increased from baseline to 12 months for the MCI group (P < .001) but did not differ for the CN group (P = .32) or the AD group (P = .16).

Comment

Our overall objective was to test for evidence of temporal ordering of the CSF Aβ42 level, the CSF t-tau level, and the adjusted hippocampal volume.54,55 We were limited to evaluating these 3 AD biomarkers for which independent autopsy cohorts were available to select normal or abnormal cut points in an unbiased manner. A biomarker value for an individual participant at a given point in time (and, by extension, the percentage of abnormal values across a group at a given disease stage) is a function of 2 phenomena: (1) the elapsed time from the initial deviation of the biomarker away from normality to the present and (2) the average rate of change of the biomarker over this period of time. An analogy to motion would be distance traveled from abnormality, average rate of change, and elapsed time. Our data consisted of measures of each biomarker value at a fixed point or points in time in participants who entered the study at different stages of the disease. We observed whether a participant had reached a certain distance from normality but cannot individually identify the contributions from average rate of change and elapsed time. We can, however, draw valid inferences from our data about the combined effect of time elapsed from onset and average rate of change, and we refer to this as the relative dynamic ordering of biomarkers.

The data presented herein support several key principles in our recently proposed hypothetical biomarker cascade model.44,45 These include the following: (1) All biomarkers become progressively more abnormal as participants' symptoms worsen clinically. (2) Reduction in the CSF Aβ42 level denotes an upstream pathophysiological process that significantly departs from normality (ie, is dynamic) early in the pathophysiological cascade, while participants are clinically asymptomatic, but does not change greatly during the clinically symptomatic MCI and dementia phases of the disease. (3) The CSF t-tau level and the adjusted hippocampal volume are biomarkers of the downstream neurodegenerative pathophysiological process that are dynamic later as the participant approaches and moves through the clinically symptomatic phases of the disease.56-64 (4) Cognitive decline is more closely related to biomarkers of neuronal injury than to biomarkers of brain Aβ load.65-72 (5) The CSF t-tau level is more dynamic earlier in the disease phase than is the adjusted hippocampal volume, but the proportions of the 2 biomarkers that are abnormal are similar in symptomatic participants such that the adjusted hippocampal volume “catches up” to the CSF t-tau level as symptoms worsen. This is supported visually by the steeper slope of the adjusted hippocampal volume vs the CSF t-tau level in Figure 2.

The hypothetical model represents an idealized trajectory of an individual who progresses owing to pathologically pure AD dementia. Our sample, however, almost certainly consists of a mixture of participants, many of whom are on the AD pathway and many of whom are not (particularly those in the CN and MCI groups).73-78 The fact that both an elevated CSF t-tau level and hippocampal atrophy can occur in other conditions that lead to dementia,79 such as cerebrovascular disease, has led to the belief that, of the 3 biomarkers we examined, the CSF Aβ42 level should have the greatest specificity for AD.80 Consequently, we performed a subanalysis of participants with an abnormal CSF Aβ42 level at baseline in order to isolate those participants who we were somewhat more confident were in the AD pathophysiological pathway.56,81-86 Our results concerning evidence for biomarker ordering led to similar conclusions in the “all-participants” sample and in the sample of participants with an abnormal CSF Aβ42 level.

Using the percent-abnormal metric might not seem to be an obvious first choice for comparing biomarkers. Other options, however, have proven to be untenable. For example, using biomarker values in native measurement units precludes direct comparisons of biomarkers because they are not on a common scale; z scores or percentiles are also not tenable because, by construction, half the participants in the sample must be above average for each biomarker, and half must be below average. This constraint would make it impossible to test our major question: is 1 biomarker abnormal more often than another at different stages of the disease? The obvious advantage of comparing biomarkers on a percent-abnormal basis is that the scoring method is standardized for all biomarkers over the entire cognitive continuum. A limitation is that the results are highly sensitive to the cut-point values, and hence the validity of the analysis depends on selecting valid cut points for each biomarker. We used cut-point values for each biomarker that were based on an independent autopsy-verified sample, and we used the same pathological criteria for all biomarkers (ie, high or low probability of AD using the NIA-Reagan criteria). Although using cut points based on diagnostic sensitivity, rather than accuracy, in the autopsy reference standard might seem a better approach, we found that that is not the case. Imagine a biomarker with identical distributions in autopsy-proven high- vs low-probability AD. Fixing a cut point at a sensitivity of 90% in autopsy-proven high-probability AD would lead to the conclusion that 90% of cases of autopsy-proven low-probability AD had abnormal biomarker values and that the biomarker in question comes “early” in the pathophysiological cascade. This would clearly be erroneous. Thus, our choice of selecting cut points in a manner that is constrained by both sensitivity and specificity, as is done for all clinically applied diagnostic tests, seems prudent in our study.

Our hypothetical model44,45 was intended to represent an idealized trajectory that an individual follows from a time prior to the appearance of any AD pathophysiology in the brain through end-stage AD dementia, when all biomarkers have become maximally abnormal. The optimal way to test this model would be to follow the trajectory of multiple biomarkers over several decades in a large group of participants who enter a study prior to the first appearance of any AD pathophysiology and are followed up through the symptomatic stages of the disease to autopsy. Given that the total course of the disease may span 30 years or more, it will take many years to accumulate the necessary data to construct a temporally accurate disease model. While the data are being accumulated, perhaps the only realistic approach to empirical analysis is to attempt to build models of disease in a piecewise fashion from individual participants who are at various stages in the disease course, as we have done here.

Back to top
Article Information

Correspondence: Clifford R. Jack Jr, MD, Department of Radiology, Mayo Clinic and Mayo Foundation for Medical Education and Research, 200 First St, SW, Rochester, MN 55905 (jack.clifford@mayo.edu).

Accepted for Publication: June 1, 2011.

Published Online: August 8, 2011. doi:10.1001/archneurol.2011.183

Author Contributions: All authors had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. Study concept and design: Jack, Trojanowski, Bernstein, and Weiner. Acquisition of data: Jack, Wiste, Trojanowski, Shaw, Bernstein, and Weiner. Analysis and interpretation of data: Jack, Vemuri, Wiste, Weigand, Aisen, Trojanowski, Petersen, and Knopman. Drafting of the manuscript: Jack and Trojanowski. Critical revision of the manuscript for important intellectual content: Jack, Vemuri, Wiste, Weigand, Aisen, Trojanowski, Shaw, Bernstein, Petersen, Weiner, and Knopman. Statistical analysis: Vemuri, Wiste, Weigand, and Trojanowski. Obtained funding: Jack, Trojanowski, and Weiner. Administrative, technical, and material support: Jack, Trojanowski, Shaw, and Weiner. Study supervision: Jack, Aisen, Trojanowski, and Bernstein.

Financial Disclosure: Dr Aisen serves on a scientific advisory board for NeuroPhage; serves as a consultant to Elan Corporation, Wyeth, Eisai Inc, Bristol-Myers Squibb, Eli Lilly and Company, NeuroPhage, Merck, Roche, Amgen, Abbott, Pfizer, Novartis, Bayer, Astellas, Dainippon, Biomarin, Solvay, Otsuka, Daiichi, AstraZeneca, Janssen, and Medivation Inc; receives research support from Pfizer and Baxter International Inc; and has received stock options from Medivation Inc and NeuroPhage. Dr Petersen reports serving as a consultant for Elan Pharmaceuticals and GE Healthcare and serving on data monitoring committees for Pfizer and Janssen Alzheimer Immunotherapy. Dr Weiner reports serving on the advisory boards of Elan/Wyeth, Novartis, Banner, Lilly, VACO, Biogen Idec, Araclon, and Pfizer. He serves as a consultant to Elan/Wyeth, Novartis, Forest, Ipsen, Daiichi Sankyo Inc, AstraZeneca, Araclon, Pfizer, TauRx Therapeutics, Bayer, Biogen Idec, Exonhit Therapeutics, Servier, and Synarc. He has received honoraria from the American Academy of Neurology, Ipsen, NeuroVigil Inc, and the Institut Català de Neurociències Aplicades. He receives research funding from Merck and Avid. He owns stock in Synarc and Elan. He serves on the editorial advisory board for Alzheimer's & Dementia and the Journal of Magnetic Resonance Imaging. Dr Knopman reports that he serves on a Data Safety Monitoring Board for Lilly Pharmaceuticals and is an investigator for clinical trials sponsored by Elan Pharmaceuticals, Forest Pharmaceuticals, and Baxter Healthcare. He is deputy editor of Neurology and receives compensation for editorial services.

Funding/Support: This work was support by the National Institutes of Health (grant AG11378) and the ADNI.

Additional Information: Data used in the preparation of this article were obtained from the ADNI database (http://adni.loni.ucla.edu). As such, the investigators within the ADNI contributed to the design and implementation of the ADNI and/or provided data but did not participate in the analysis or writing of this report. A complete listing of ADNI investigators can be found at http://adni.loni.ucla.edu/wp-content/uploads/how_to_apply/ADNI_Authorship_List.pdf.

Additional Contributions: We thank Samantha Wille, BA, for preparing the manuscript.

References
1.
Dubois B, Feldman HH, Jacova C,  et al.  Revising the definition of Alzheimer's disease: a new lexicon.  Lancet Neurol. 2010;9(11):1118-112720934914PubMedGoogle ScholarCrossref
2.
Jack CR Jr, Albert MS, Knopman DS,  et al.  Introduction to the recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease.  Alzheimers Dement. 2011;7(3):257-26221514247PubMedGoogle ScholarCrossref
3.
McKhann GM, Knopman DS, Chertkow H,  et al.  The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease.  Alzheimers Dement. 2011;7(3):263-26921514250PubMedGoogle ScholarCrossref
4.
Sperling RA, Aisen PS, Beckett LA,  et al.  Toward defining the preclinical stages of Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease.  Alzheimers Dement. 2011;7(3):280-29221514248PubMedGoogle ScholarCrossref
5.
Albert MS, Dekosky ST, Dickson D,  et al.  The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease.  Alzheimers Dement. 2011;7(3):270-27921514249PubMedGoogle ScholarCrossref
6.
Jack CR Jr, Petersen RC, Xu YC,  et al.  Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment.  Neurology. 1999;52(7):1397-140310227624PubMedGoogle ScholarCrossref
7.
Killiany RJ, Gomez-Isla T, Moss M,  et al.  Use of structural magnetic resonance imaging to predict who will get Alzheimer's disease.  Ann Neurol. 2000;47(4):430-43910762153PubMedGoogle ScholarCrossref
8.
Mattsson N, Zetterberg H, Hansson O,  et al.  CSF biomarkers and incipient Alzheimer disease in patients with mild cognitive impairment.  JAMA. 2009;302(4):385-39319622817PubMedGoogle ScholarCrossref
9.
Jagust WJ, Haan MN, Eberling JL, Wolfe N, Reed BR. Functional imaging predicts cognitive decline in Alzheimer's disease.  J Neuroimaging. 1996;6(3):156-1608704290PubMedGoogle Scholar
10.
Visser PJ, Verhey F, Knol DL,  et al.  Prevalence and prognostic value of CSF markers of Alzheimer's disease pathology in patients with subjective cognitive impairment or mild cognitive impairment in the DESCRIPA study: a prospective cohort study.  Lancet Neurol. 2009;8(7):619-62719523877PubMedGoogle ScholarCrossref
11.
Okello A, Koivunen J, Edison P,  et al.  Conversion of amyloid positive and negative MCI to AD over 3 years: an 11C-PIB PET study.  Neurology. 2009;73(10):754-76019587325PubMedGoogle ScholarCrossref
12.
Dickerson BC, Goncharova I, Sullivan MP,  et al.  MRI-derived entorhinal and hippocampal atrophy in incipient and very mild Alzheimer's disease.  Neurobiol Aging. 2001;22(5):747-75411705634PubMedGoogle ScholarCrossref
13.
McEvoy LK, Fennema-Notestine C, Roddey JC,  et al; Alzheimer's Disease Neuroimaging Initiative.  Alzheimer disease: quantitative structural neuroimaging for detection and prediction of clinical and structural changes in mild cognitive impairment.  Radiology. 2009;251(1):195-20519201945PubMedGoogle ScholarCrossref
14.
Snider BJ, Fagan AM, Roe C,  et al.  Cerebrospinal fluid biomarkers and rate of cognitive decline in very mild dementia of the Alzheimer type.  Arch Neurol. 2009;66(5):638-64519433664PubMedGoogle ScholarCrossref
15.
Wallin AK, Blennow K, Zetterberg H, Londos E, Minthon L, Hansson O. CSF biomarkers predict a more malignant outcome in Alzheimer disease.  Neurology. 2010;74(19):1531-153720458070PubMedGoogle ScholarCrossref
16.
Hampel H, Frank R, Broich K,  et al.  Biomarkers for Alzheimer's disease: academic, industry and regulatory perspectives.  Nat Rev Drug Discov. 2010;9(7):560-57420592748PubMedGoogle ScholarCrossref
17.
Rinne JO, Brooks DJ, Rossor MN,  et al.  11C-PiB PET assessment of change in fibrillar amyloid-beta load in patients with Alzheimer's disease treated with bapineuzumab: a phase 2, double-blind, placebo-controlled, ascending-dose study.  Lancet Neurol. 2010;9(4):363-37220189881PubMedGoogle ScholarCrossref
18.
Blennow K. Biomarkers in Alzheimer's disease drug development.  Nat Med. 2010;16(11):1218-122221052077PubMedGoogle ScholarCrossref
19.
Blennow K, Zetterberg H. Is it time for biomarker-based diagnostic criteria for prodromal Alzheimer's disease?  Alzheimers Res Ther. 2010;2(2):820441609PubMedGoogle ScholarCrossref
20.
Clark CM, Xie S, Chittams J,  et al.  Cerebrospinal fluid tau and beta-amyloid: how well do these biomarkers reflect autopsy-confirmed dementia diagnoses?  Arch Neurol. 2003;60(12):1696-170214676043PubMedGoogle ScholarCrossref
21.
Arai H, Terajima M, Miura M,  et al.  Tau in cerebrospinal fluid: a potential diagnostic marker in Alzheimer's disease.  Ann Neurol. 1995;38(4):649-6527574462PubMedGoogle ScholarCrossref
22.
Strozyk D, Blennow K, White LR, Launer LJ. CSF Abeta 42 levels correlate with amyloid-neuropathology in a population-based autopsy study.  Neurology. 2003;60(4):652-65612601108PubMedGoogle ScholarCrossref
23.
Schoonenboom NS, van der Flier WM, Blankenstein MA,  et al.  CSF and MRI markers independently contribute to the diagnosis of Alzheimer's disease.  Neurobiol Aging. 2008;29(5):669-67517208336PubMedGoogle ScholarCrossref
24.
Fagan AM, Mintun MA, Mach RH,  et al.  Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Abeta42 in humans.  Ann Neurol. 2006;59(3):512-51916372280PubMedGoogle ScholarCrossref
25.
Jagust WJ, Landau SM, Shaw LM,  et al; Alzheimer's Disease Neuroimaging Initiative.  Relationships between biomarkers in aging and dementia.  Neurology. 2009;73(15):1193-119919822868PubMedGoogle ScholarCrossref
26.
Grimmer T, Riemenschneider M, Förstl H,  et al.  Beta amyloid in Alzheimer's disease: increased deposition in brain is reflected in reduced concentration in cerebrospinal fluid.  Biol Psychiatry. 2009;65(11):927-93419268916PubMedGoogle ScholarCrossref
27.
Tolboom N, van der Flier WM, Yaqub M,  et al.  Relationship of cerebrospinal fluid markers to 11C-PiB and 18F-FDDNP binding.  J Nucl Med. 2009;50(9):1464-147019690025PubMedGoogle ScholarCrossref
28.
Klunk WE, Engler H, Nordberg A,  et al.  Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound-B.  Ann Neurol. 2004;55(3):306-31914991808PubMedGoogle ScholarCrossref
29.
Rabinovici GD, Jagust WJ. Amyloid imaging in aging and dementia: testing the amyloid hypothesis in vivo.  Behav Neurol. 2009;21(1):117-12819847050PubMedGoogle Scholar
30.
Degerman Gunnarsson M, Lindau M, Wall A,  et al.  Pittsburgh compound-B and Alzheimer's disease biomarkers in CSF, plasma and urine: an exploratory study.  Dement Geriatr Cogn Disord. 2010;29(3):204-21220332638PubMedGoogle ScholarCrossref
31.
Buerger K, Ewers M, Pirttilä T,  et al.  CSF phosphorylated tau protein correlates with neocortical neurofibrillary pathology in Alzheimer's disease.  Brain. 2006;129(pt 11):3035-304117012293PubMedGoogle ScholarCrossref
32.
Shaw LM, Vanderstichele H, Knapik-Czajka M,  et al; Alzheimer's Disease Neuroimaging Initiative.  Cerebrospinal fluid biomarker signature in Alzheimer's disease neuroimaging initiative subjects.  Ann Neurol. 2009;65(4):403-41319296504PubMedGoogle ScholarCrossref
33.
Tapiola T, Overmyer M, Lehtovirta M,  et al.  The level of cerebrospinal fluid tau correlates with neurofibrillary tangles in Alzheimer's disease.  Neuroreport. 1997;8(18):3961-39639462474PubMedGoogle ScholarCrossref
34.
Jagust W, Reed B, Mungas D, Ellis W, Decarli C. What does fluorodeoxyglucose PET imaging add to a clinical diagnosis of dementia?  Neurology. 2007;69(9):871-87717724289PubMedGoogle ScholarCrossref
35.
Minoshima S, Giordani B, Berent S, Frey KA, Foster NL, Kuhl DE. Metabolic reduction in the posterior cingulate cortex in very early Alzheimer's disease.  Ann Neurol. 1997;42(1):85-949225689PubMedGoogle ScholarCrossref
36.
Hoffman JM, Welsh-Bohmer KA, Hanson M,  et al.  FDG PET imaging in patients with pathologically verified dementia.  J Nucl Med. 2000;41(11):1920-192811079505PubMedGoogle Scholar
37.
Jack CR Jr, Petersen RC, O’Brien PC, Tangalos EG. MR-based hippocampal volumetry in the diagnosis of Alzheimer's disease.  Neurology. 1992;42(1):183-1881734300PubMedGoogle ScholarCrossref
38.
Killiany RJ, Moss MB, Albert MS, Sandor T, Tieman J, Jolesz F. Temporal lobe regions on magnetic resonance imaging identify patients with early Alzheimer's disease.  Arch Neurol. 1993;50(9):949-9548363449PubMedGoogle ScholarCrossref
39.
Vemuri P, Whitwell JL, Kantarci K,  et al.  Antemortem MRI based STructural Abnormality iNDex (STAND)-scores correlate with postmortem Braak neurofibrillary tangle stage.  Neuroimage. 2008;42(2):559-56718572417PubMedGoogle ScholarCrossref
40.
Desikan RS, Cabral HJ, Hess CP,  et al; Alzheimer's Disease Neuroimaging Initiative.  Automated MRI measures identify individuals with mild cognitive impairment and Alzheimer's disease.  Brain. 2009;132(Pt 8):2048-205719460794PubMedGoogle ScholarCrossref
41.
Silbert LC, Quinn JF, Moore MM,  et al.  Changes in premorbid brain volume predict Alzheimer's disease pathology.  Neurology. 2003;61(4):487-49212939422PubMedGoogle ScholarCrossref
42.
Whitwell JL, Josephs KA, Murray ME,  et al.  MRI correlates of neurofibrillary tangle pathology at autopsy: a voxel-based morphometry study.  Neurology. 2008;71(10):743-74918765650PubMedGoogle ScholarCrossref
43.
Frisoni GB, Fox NC, Jack CR Jr, Scheltens P, Thompson PM. The clinical use of structural MRI in Alzheimer disease.  Nat Rev Neurol. 2010;6(2):67-7720139996PubMedGoogle ScholarCrossref
44.
Jack CR Jr, Knopman DS, Jagust WJ,  et al.  Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade.  Lancet Neurol. 2010;9(1):119-12820083042PubMedGoogle ScholarCrossref
45.
Jack CR Jr, Lowe VJ, Weigand SD,  et al; Alzheimer's Disease Neuroimaging Initiative.  Serial PIB and MRI in normal, mild cognitive impairment and Alzheimer's disease: implications for sequence of pathological events in Alzheimer's disease.  Brain. 2009;132(pt 5):1355-136519339253PubMedGoogle ScholarCrossref
46.
Caroli A, Frisoni GB.Alzheimer's Disease Neuroimaging Initiative.  The dynamics of Alzheimer's disease biomarkers in the Alzheimer's Disease Neuroimaging Initiative cohort.  Neurobiol Aging. 2010;31(8):1263-127420538373PubMedGoogle ScholarCrossref
47.
Vanderstichele H, De Meyer G, Shapiro F,  et al.  From concept to clinical utility. In: Galimberti D, Scarpini E, eds. Biomarkers for Early Diagnosis Of Alzheimer's Disease. Hauppauge, NY: Nova Science Publishers Inc; 2008:81-122
48.
Jack CR Jr, Bernstein MA, Fox NC,  et al.  The Alzheimer's Disease Neuroimaging Initiative (ADNI): MRI methods.  J Magn Reson Imaging. 2008;27(4):685-69118302232PubMedGoogle ScholarCrossref
49.
Jovicich J, Czanner S, Greve D,  et al.  Reliability in multi-site structural MRI studies: effects of gradient non-linearity correction on phantom and human data.  Neuroimage. 2006;30(2):436-44316300968PubMedGoogle ScholarCrossref
50.
Sled JG, Zijdenbos AP, Evans AC. A nonparametric method for automatic correction of intensity nonuniformity in MRI data.  IEEE Trans Med Imaging. 1998;17(1):87-979617910PubMedGoogle ScholarCrossref
51.
Fischl B, Salat DH, Busa E,  et al.  Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain.  Neuron. 2002;33(3):341-35511832223PubMedGoogle ScholarCrossref
52.
Jack CR Jr, Twomey CK, Zinsmeister AR, Sharbrough FW, Petersen RC, Cascino GD. Anterior temporal lobes and hippocampal formations: normative volumetric measurements from MR images in young adults.  Radiology. 1989;172(2):549-5542748838PubMedGoogle Scholar
53.
De Meyer G, Shapiro F, Vanderstichele H,  et al; Alzheimer's Disease Neuroimaging Initiative.  Diagnosis-independent Alzheimer disease biomarker signature in cognitively normal elderly people.  Arch Neurol. 2010;67(8):949-95620697045PubMedGoogle ScholarCrossref
54.
Ingelsson M, Fukumoto H, Newell KL,  et al.  Early Abeta accumulation and progressive synaptic loss, gliosis, and tangle formation in AD brain.  Neurology. 2004;62(6):925-93115037694PubMedGoogle ScholarCrossref
55.
Perrin RJ, Fagan AM, Holtzman DM. Multimodal techniques for diagnosis and prognosis of Alzheimer's disease.  Nature. 2009;461(7266):916-92219829371PubMedGoogle ScholarCrossref
56.
Fagan AM, Roe CM, Xiong C, Mintun MA, Morris JC, Holtzman DM. Cerebrospinal fluid tau/beta-amyloid(42) ratio as a prediction of cognitive decline in nondemented older adults.  Arch Neurol. 2007;64(3):343-34917210801PubMedGoogle ScholarCrossref
57.
Vemuri P, Wiste HJ, Weigand SD,  et al; Alzheimer's Disease Neuroimaging Initiative.  MRI and CSF biomarkers in normal, MCI, and AD subjects: diagnostic discrimination and cognitive correlations.  Neurology. 2009;73(4):287-29319636048PubMedGoogle ScholarCrossref
58.
Vemuri P, Wiste HJ, Weigand SD,  et al; Alzheimer's Disease Neuroimaging Initiative.  Serial MRI and CSF biomarkers in normal aging, MCI, and AD.  Neurology. 2010;75(2):143-15120625167PubMedGoogle ScholarCrossref
59.
Peskind ER, Li G, Shofer J,  et al.  Age and apolipoprotein E*4 allele effects on cerebrospinal fluid beta-amyloid 42 in adults with normal cognition.  Arch Neurol. 2006;63(7):936-93916831961PubMedGoogle ScholarCrossref
60.
Scheinin NM, Aalto S, Koikkalainen J,  et al.  Follow-up of [11C]PIB uptake and brain volume in patients with Alzheimer disease and controls.  Neurology. 2009;73(15):1186-119219726751PubMedGoogle ScholarCrossref
61.
Fox NC, Crum WR, Scahill RI, Stevens JM, Janssen JC, Rossor MN. Imaging of onset and progression of Alzheimer's disease with voxel-compression mapping of serial magnetic resonance images.  Lancet. 2001;358(9277):201-20511476837PubMedGoogle ScholarCrossref
62.
Carlson NE, Moore MM, Dame A,  et al.  Trajectories of brain loss in aging and the development of cognitive impairment.  Neurology. 2008;70(11):828-83318046010PubMedGoogle ScholarCrossref
63.
Sperling RA, Laviolette PS, O’Keefe K,  et al.  Amyloid deposition is associated with impaired default network function in older persons without dementia.  Neuron. 2009;63(2):178-18819640477PubMedGoogle ScholarCrossref
64.
Hedden T, Van Dijk KR, Becker JA,  et al.  Disruption of functional connectivity in clinically normal older adults harboring amyloid burden.  J Neurosci. 2009;29(40):12686-1269419812343PubMedGoogle ScholarCrossref
65.
Mormino EC, Kluth JT, Madison CM,  et al; Alzheimer's Disease Neuroimaging Initiative.  Episodic memory loss is related to hippocampal-mediated beta-amyloid deposition in elderly subjects.  Brain. 2009;132(pt 5):1310-132319042931PubMedGoogle ScholarCrossref
66.
DeKosky ST, Scheff SW. Synapse loss in frontal cortex biopsies in Alzheimer's disease: correlation with cognitive severity.  Ann Neurol. 1990;27(5):457-4642360787PubMedGoogle ScholarCrossref
67.
Savva GM, Wharton SB, Ince PG, Forster G, Matthews FE, Brayne C.Medical Research Council Cognitive Function and Ageing Study.  Age, neuropathology, and dementia.  N Engl J Med. 2009;360(22):2302-230919474427PubMedGoogle ScholarCrossref
68.
Terry RD, Masliah E, Salmon DP,  et al.  Physical basis of cognitive alterations in Alzheimer's disease: synapse loss is the major correlate of cognitive impairment.  Ann Neurol. 1991;30(4):572-5801789684PubMedGoogle ScholarCrossref
69.
Bennett DA, Schneider JA, Wilson RS, Bienias JL, Berry-Kravis E, Arnold SE. Amyloid mediates the association of apolipoprotein E e4 allele to cognitive function in older people.  J Neurol Neurosurg Psychiatry. 2005;76(9):1194-119916107349PubMedGoogle ScholarCrossref
70.
Rowe CC, Ellis KA, Rimajova M,  et al.  Amyloid imaging results from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging.  Neurobiol Aging. 2010;31(8):1275-128320472326PubMedGoogle ScholarCrossref
71.
Pike KE, Ellis KA, Villemagne VL,  et al.  Cognition and beta-amyloid in preclinical Alzheimer's disease: data from the AIBL study [published online ahead of print April 16, 2011].  Neuropsychologiadoi:10.1016/j.neuropsychologia.2011.04.01221529702PubMedGoogle Scholar
72.
Villemagne VL, Pike KE, Chételat G,  et al.  Longitudinal assessment of Aβ and cognition in aging and Alzheimer disease.  Ann Neurol. 2011;69(1):181-19221280088PubMedGoogle ScholarCrossref
73.
Jicha GA, Parisi JE, Dickson DW,  et al.  Neuropathologic outcome of mild cognitive impairment following progression to clinical dementia.  Arch Neurol. 2006;63(5):674-68116682537PubMedGoogle ScholarCrossref
74.
Bennett DA, Schneider JA, Bienias JL, Evans DA, Wilson RS. Mild cognitive impairment is related to Alzheimer disease pathology and cerebral infarctions.  Neurology. 2005;64(5):834-84115753419PubMedGoogle ScholarCrossref
75.
Schneider JA, Arvanitakis Z, Leurgans SE, Bennett DA. The neuropathology of probable Alzheimer disease and mild cognitive impairment.  Ann Neurol. 2009;66(2):200-20819743450PubMedGoogle ScholarCrossref
76.
Schneider JA, Aggarwal NT, Barnes L, Boyle P, Bennett DA. The neuropathology of older persons with and without dementia from community versus clinic cohorts.  J Alzheimers Dis. 2009;18(3):691-70119749406PubMedGoogle Scholar
77.
Markesbery WR, Schmitt FA, Kryscio RJ, Davis DG, Smith CD, Wekstein DR. Neuropathologic substrate of mild cognitive impairment.  Arch Neurol. 2006;63(1):38-4616401735PubMedGoogle ScholarCrossref
78.
White L, Small BJ, Petrovitch H,  et al.  Recent clinical-pathologic research on the causes of dementia in late life: update from the Honolulu-Asia Aging Study.  J Geriatr Psychiatry Neurol. 2005;18(4):224-22716306244PubMedGoogle ScholarCrossref
79.
Jack CR Jr, Dickson DW, Parisi JE,  et al.  Antemortem MRI findings correlate with hippocampal neuropathology in typical aging and dementia.  Neurology. 2002;58(5):750-75711889239PubMedGoogle ScholarCrossref
80.
Schott JM, Bartlett JW, Fox NC, Barnes J.Alzheimer's Disease Neuroimaging Initiative Investigators.  Increased brain atrophy rates in cognitively normal older adults with low cerebrospinal fluid Aβ1-42.  Ann Neurol. 2010;68(6):825-83421181717PubMedGoogle ScholarCrossref
81.
Fagan AM, Head D, Shah AR,  et al.  Decreased cerebrospinal fluid Abeta(42) correlates with brain atrophy in cognitively normal elderly.  Ann Neurol. 2009;65(2):176-18319260027PubMedGoogle ScholarCrossref
82.
Morris JC, Roe CM, Grant EA,  et al.  Pittsburgh compound B imaging and prediction of progression from cognitive normality to symptomatic Alzheimer disease.  Arch Neurol. 2009;66(12):1469-147520008650PubMedGoogle ScholarCrossref
83.
Rabinovici GD, Furst AJ, O’Neil JP,  et al.  11C-PIB PET imaging in Alzheimer disease and frontotemporal lobar degeneration.  Neurology. 2007;68(15):1205-121217420404PubMedGoogle ScholarCrossref
84.
Becker JA, Hedden T, Carmasin J,  et al.  Amyloid-β associated cortical thinning in clinically normal elderly [published online ahead of print November 17, 2010].  Ann Neurol21437929PubMedGoogle Scholar
85.
Dickerson BC, Bakkour A, Salat DH,  et al.  The cortical signature of Alzheimer's disease: regionally specific cortical thinning relates to symptom severity in very mild to mild AD dementia and is detectable in asymptomatic amyloid-positive individuals.  Cereb Cortex. 2009;19(3):497-51018632739PubMedGoogle ScholarCrossref
86.
Dickerson BC, Stoub TR, Shah RC,  et al.  Alzheimer-signature MRI biomarker predicts AD dementia in cognitively normal adults.  Neurology. 2011;76(16):1395-140221490323PubMedGoogle ScholarCrossref
×