[Skip to Content]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 34.238.190.122. Please contact the publisher to request reinstatement.
[Skip to Content Landing]
1.
Cudkowicz ME, Katz J, Moore DH,  et al.  Toward more efficient clinical trials for amyotrophic lateral sclerosis.  Amyotroph Lateral Scler. 2010;11(3):259-26519961263PubMedGoogle ScholarCrossref
2.
Turner MR, Kiernan MC, Leigh PN, Talbot K. Biomarkers in amyotrophic lateral sclerosis.  Lancet Neurol. 2009;8(1):94-10919081518PubMedGoogle ScholarCrossref
3.
Turner MR. MRI as a frontrunner in the search for amyotrophic lateral sclerosis biomarkers?  Biomark Med. 2011;5(1):79-8121319968PubMedGoogle ScholarCrossref
4.
Ciccarelli O, Catani M, Johansen-Berg H, Clark C, Thompson A. Diffusion-based tractography in neurological disorders: concepts, applications, and future developments.  Lancet Neurol. 2008;7(8):715-72718635020PubMedGoogle ScholarCrossref
5.
Ellis CM, Simmons A, Jones DK,  et al.  Diffusion tensor MRI assesses corticospinal tract damage in ALS.  Neurology. 1999;53(5):1051-105810496265PubMedGoogle ScholarCrossref
6.
Filippini N, Douaud G, Mackay CE, Knight S, Talbot K, Turner MR. Corpus callosum involvement is a consistent feature of amyotrophic lateral sclerosis.  Neurology. 2010;75(18):1645-165221041787PubMedGoogle ScholarCrossref
7.
Rose S, Pannek K, Bell C,  et al.  Direct evidence of intra- and interhemispheric corticomotor network degeneration in amyotrophic lateral sclerosis: an automated MRI structural connectivity study.  Neuroimage. 2012;59(3):2661-266921893207PubMedGoogle ScholarCrossref
8.
Ciccarelli O, Behrens TE, Johansen-Berg H,  et al.  Investigation of white matter pathology in ALS and PLS using tract-based spatial statistics.  Hum Brain Mapp. 2009;30(2):615-62418172851PubMedGoogle ScholarCrossref
9.
Iwata NK, Kwan JY, Danielian LE,  et al.  White matter alterations differ in primary lateral sclerosis and amyotrophic lateral sclerosis.  Brain. 2011;134(pt 9):2642-265521798965PubMedGoogle ScholarCrossref
10.
Blain CR, Williams VC, Johnston C,  et al.  A longitudinal study of diffusion tensor MRI in ALS.  Amyotroph Lateral Scler. 2007;8(6):348-35517924235PubMedGoogle ScholarCrossref
11.
Sage CA, Peeters RR, Görner A, Robberecht W, Sunaert S. Quantitative diffusion tensor imaging in amyotrophic lateral sclerosis.  Neuroimage. 2007;34(2):486-49917097892PubMedGoogle ScholarCrossref
12.
van der Graaff MM, Sage CA, Caan MW,  et al.  Upper and extra-motoneuron involvement in early motoneuron disease: a diffusion tensor imaging study.  Brain. 2011;134(pt 4):1211-122821362631PubMedGoogle ScholarCrossref
13.
Zhang Y, Schuff N, Woolley SC,  et al.  Progression of white matter degeneration in amyotrophic lateral sclerosis: a diffusion tensor imaging study.  Amyotroph Lateral Scler. 2011;12(6):421-42921745124PubMedGoogle ScholarCrossref
14.
Agosta F, Pagani E, Petrolini M,  et al.  MRI predictors of long-term evolution in amyotrophic lateral sclerosis.  Eur J Neurosci. 2010;32(9):1490-149621044177PubMedGoogle ScholarCrossref
15.
Brooks BR. El Escorial World Federation of Neurology criteria for the diagnosis of amyotrophic lateral sclerosis: Subcommittee on Motor Neuron Diseases/Amyotrophic Lateral Sclerosis of the World Federation of Neurology Research Group on Neuromuscular Diseases and the El Escorial “Clinical limits of amyotrophic lateral sclerosis” workshop contributors.  J Neurol Sci. 1994;124:(suppl)  96-1077807156PubMedGoogle ScholarCrossref
16.
Gordon PH, Cheng B, Katz IB,  et al.  The natural history of primary lateral sclerosis.  Neurology. 2006;66(5):647-65316534101PubMedGoogle ScholarCrossref
17.
Cedarbaum JM, Stambler N, Malta E,  et al; BDNF ALS Study Group (Phase III).  The ALSFRS-R: a revised ALS functional rating scale that incorporates assessments of respiratory function.  J Neurol Sci. 1999;169(1-2):13-2110540002PubMedGoogle ScholarCrossref
18.
Smith SM, Jenkinson M, Woolrich MW,  et al.  Advances in functional and structural MR image analysis and implementation as FSL.  Neuroimage. 2004;23:(suppl 1)  S208-S21915501092PubMedGoogle ScholarCrossref
19.
Behrens TE, Woolrich MW, Jenkinson M,  et al.  Characterization and propagation of uncertainty in diffusion-weighted MR imaging.  Magn Reson Med. 2003;50(5):1077-108814587019PubMedGoogle ScholarCrossref
20.
Smith SM, Jenkinson M, Johansen-Berg H,  et al.  Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data.  Neuroimage. 2006;31(4):1487-150516624579PubMedGoogle ScholarCrossref
21.
Nichols TE, Holmes AP. Nonparametric permutation tests for functional neuroimaging: a primer with examples.  Hum Brain Mapp. 2002;15(1):1-2511747097PubMedGoogle ScholarCrossref
22.
Smith SM, Nichols TE. Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference.  Neuroimage. 2009;44(1):83-9818501637PubMedGoogle ScholarCrossref
23.
Kiernan MC, Vucic S, Cheah BC,  et al.  Amyotrophic lateral sclerosis.  Lancet. 2011;377(9769):942-95521296405PubMedGoogle ScholarCrossref
24.
Cosottini M, Giannelli M, Siciliano G,  et al.  Diffusion-tensor MR imaging of corticospinal tract in amyotrophic lateral sclerosis and progressive muscular atrophy.  Radiology. 2005;237(1):258-26416183935PubMedGoogle ScholarCrossref
25.
Wong JC, Concha L, Beaulieu C, Johnston W, Allen PS, Kalra S. Spatial profiling of the corticospinal tract in amyotrophic lateral sclerosis using diffusion tensor imaging.  J Neuroimaging. 2007;17(3):234-24017608909PubMedGoogle ScholarCrossref
26.
Wang S, Poptani H, Bilello M,  et al.  Diffusion tensor imaging in amyotrophic lateral sclerosis: volumetric analysis of the corticospinal tract.  AJNR Am J Neuroradiol. 2006;27(6):1234-123816775271PubMedGoogle Scholar
27.
Smith MC. Nerve fibre degeneration in the brain in amyotrophic lateral sclerosis.  J Neurol Neurosurg Psychiatry. 1960;23(4):269-28221610893PubMedGoogle ScholarCrossref
28.
Goodin DS, Rowley HA, Olney RK. Magnetic resonance imaging in amyotrophic lateral sclerosis.  Ann Neurol. 1988;23(4):418-4203382182PubMedGoogle ScholarCrossref
29.
Filippi M, Agosta F, Abrahams S,  et al; European Federation of Neurological Societies.  EFNS guidelines on the use of neuroimaging in the management of motor neuron diseases.  Eur J Neurol. 2010;17(4):526-e2020136647PubMedGoogle ScholarCrossref
30.
Ding XQ, Kollewe K, Blum K,  et al.  Value of quantitative analysis of routine clinical MRI sequences in ALS.  Amyotroph Lateral Scler. 2011;12(6):406-41321812629PubMedGoogle ScholarCrossref
31.
Zarei M, Johansen-Berg H, Jenkinson M, Ciccarelli O, Thompson AJ, Matthews PM. Two-dimensional population map of cortical connections in the human internal capsule.  J Magn Reson Imaging. 2007;25(1):48-5417152053PubMedGoogle ScholarCrossref
32.
Wang S, Poptani H, Woo JH,  et al.  Amyotrophic lateral sclerosis: diffusion-tensor and chemical shift MR imaging at 3.0 T.  Radiology. 2006;239(3):831-83816641339PubMedGoogle ScholarCrossref
33.
Schuff N, Rooney WD, Miller R,  et al.  Reanalysis of multislice (1)H MRSI in amyotrophic lateral sclerosis.  Magn Reson Med. 2001;45(3):513-51611241711PubMedGoogle ScholarCrossref
34.
Han J, Ma L. Study of the features of proton MR spectroscopy ((1)H-MRS) on amyotrophic lateral sclerosis.  J Magn Reson Imaging. 2010;31(2):305-30820099342PubMedGoogle ScholarCrossref
35.
Li J, Pan P, Song W, Huang R, Chen K, Shang H. A meta-analysis of diffusion tensor imaging studies in amyotrophic lateral sclerosis.  Neurobiol Aging. 2012;33(8):1833-183821621298PubMedGoogle ScholarCrossref
36.
Aoki S, Iwata NK, Masutani Y,  et al.  Quantitative evaluation of the pyramidal tract segmented by diffusion tensor tractography: feasibility study in patients with amyotrophic lateral sclerosis.  Radiat Med. 2005;23(3):195-19915940067PubMedGoogle Scholar
37.
Ng MC, Ho JT, Ho SL,  et al.  Abnormal diffusion tensor in nonsymptomatic familial amyotrophic lateral sclerosis with a causative superoxide dismutase 1 mutation.  J Magn Reson Imaging. 2008;27(1):8-1318022844PubMedGoogle ScholarCrossref
38.
Turner MR, Al-Chalabi A. No paradox. http://www.bmj.com/rapid-response/2011/10/29/no-paradox
39.
Turner MR, Wicks P, Brownstein CA,  et al.  Concordance between site of onset and limb dominance in amyotrophic lateral sclerosis.  J Neurol Neurosurg Psychiatry. 2011;82(8):853-85420562391PubMedGoogle ScholarCrossref
40.
Canu E, Agosta F, Riva N,  et al.  The topography of brain microstructural damage in amyotrophic lateral sclerosis assessed using diffusion tensor MR imaging.  AJNR Am J Neuroradiol. 2011;32(7):1307-131421680655PubMedGoogle ScholarCrossref
41.
Nathan PW, Smith MC, Deacon P. The corticospinal tracts in man: course and location of fibres at different segmental levels.  Brain. 1990;113(pt 2):303-3242328407PubMedGoogle ScholarCrossref
42.
Grosskreutz J, Kaufmann J, Frädrich J, Dengler R, Heinze HJ, Peschel T. Widespread sensorimotor and frontal cortical atrophy in amyotrophic lateral sclerosis.  BMC Neurol. 2006;6:1716638121PubMedGoogle ScholarCrossref
43.
Roccatagliata L, Bonzano L, Mancardi G, Canepa C, Caponnetto C. Detection of motor cortex thinning and corticospinal tract involvement by quantitative MRI in amyotrophic lateral sclerosis.  Amyotroph Lateral Scler. 2009;10(1):47-5218622772PubMedGoogle ScholarCrossref
44.
Turner MR, Parton MJ, Shaw CE, Leigh PN, Al-Chalabi A. Prolonged survival in motor neuron disease: a descriptive study of the King's database 1990-2002.  J Neurol Neurosurg Psychiatry. 2003;74(7):995-99712810805PubMedGoogle ScholarCrossref
45.
Chiò A, Calvo A, Moglia C, Mazzini L, Mora G.PARALS Study Group.  Phenotypic heterogeneity of amyotrophic lateral sclerosis: a population based study.  J Neurol Neurosurg Psychiatry. 2011;82(7):740-74621402743PubMedGoogle ScholarCrossref
46.
Douaud G, Filippini N, Knight S, Talbot K, Turner MR. Integration of structural and functional magnetic resonance imaging in amyotrophic lateral sclerosis.  Brain. 2011;134(pt 12):3470-347922075069PubMedGoogle ScholarCrossref
47.
Bowser R, Turner MR, Shefner J. Biomarkers in amyotrophic lateral sclerosis: opportunities and limitations.  Nat Rev Neurol. 2011;7(11):631-63821989244PubMedGoogle ScholarCrossref
48.
Turner MR, Grosskreutz J, Kassubek J,  et al; First Neuroimaging Symposium in ALS (NISALS).  Towards a neuroimaging biomarker for amyotrophic lateral sclerosis.  Lancet Neurol. 2011;10(5):400-40321511189PubMedGoogle ScholarCrossref
Original Contribution
Nov 2012

Fractional Anisotropy in the Posterior Limb of the Internal Capsule and Prognosis in Amyotrophic Lateral Sclerosis

Author Affiliations

Author Affiliations: Oxford Centre for Functional Magnetic Resonance of the Brain (Drs Menke, Filippini, and Turner and Mss Abraham and Thiel), Department of Psychiatry (Drs Menke and Filippini), Nuffield Department of Clinical Neurosciences (Ms Abraham and Drs Talbot and Turner), Oxford Centre for Clinical Magnetic Resonance Research (Drs Filippini and Turner and Mr Knight), Oxford University, Oxford, United Kingdom; and Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Germany (Ms Thiel).

Arch Neurol. 2012;69(11):1493-1498. doi:10.1001/archneurol.2012.1122
Abstract

Objective To explore the value of diffusion tensor imaging applied to those specific cerebral white matter tracts consistently involved pathologically in amyotrophic lateral sclerosis as a source of prognostic biomarkers.

Design Baseline clinical assessment and 3-T diffusion tensor imaging, repeated after approximately 6 months. Tract-based spatial statistics were used to assess voxelwise correlations of just the baseline diffusion tensor imaging indices with the progression rate (change in disability score/time interval) within the corticospinal tract and corpus callosum.

Patients The study involved 21 patients with amyotrophic lateral sclerosis and 3 patients with primary lateral sclerosis.

Results Correlation was observed between fractional anisotropy and progression rate for a region of the corticospinal tract spanning the posterior limb of the internal capsule, with a left hemisphere emphasis. Posterior limb of the internal capsule fractional anisotropy showed potential to distinguish those patients with rapid progression. Axial diffusivity significantly increased in this region in a paired t test analysis of baseline and follow-up diffusion tensor imaging, in keeping with axonal damage. No correlations were noted for the corpus callosum.

Conclusions Posterior limb of the internal capsule fractional anisotropy is a candidate prognostic marker in amyotrophic lateral sclerosis, with potential to identify incident cases with more rapid progression.

×