Aquaporin 4 IgG Serostatus and Outcome in Recurrent Longitudinally Extensive Transverse Myelitis | Medical Devices and Equipment | JAMA Neurology | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 18.207.108.182. Please contact the publisher to request reinstatement.
[Skip to Navigation Landing]
Original Investigation
January 2014

Aquaporin 4 IgG Serostatus and Outcome in Recurrent Longitudinally Extensive Transverse Myelitis

Author Affiliations
  • 1Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
  • 2Department of Neurology, Mayo Clinic, Rochester, Minnesota
  • 3Department of Immunology, Mayo Clinic, Rochester, Minnesota
  • 4Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
  • 5Department of Neurology, Mayo Clinic, Scottsdale, Arizona
  • 6Department of Neurology, Mayo Clinic, Jacksonville, Florida
JAMA Neurol. 2014;71(1):48-54. doi:10.1001/jamaneurol.2013.5055
Abstract

Importance  Studies focused on recurrent longitudinally extensive transverse myelitis (rLETM) are lacking.

Objectives  To determine the aquaporin 4 (AQP4) IgG detection rate using recombinant human APQ4-based assays in sequential serum specimens collected from patients with rLETM categorized as negative by first-generation tissue-based indirect immunofluorescence (IIF) assay and to define the clinical characteristics and motor disability outcomes in AQP4-IgG–positive rLETM.

Design, Setting, and Participants  A search of the Mayo Clinic computerized central diagnostic index (October 1, 2005, through November 30, 2011), cross-linked with the Neuroimmunology Laboratory database, identified 48 patients with rLETM, of whom 36 (75%) were positive and 12 (25%) negative for neuromyelitis optica (NMO) IgG (per IIF of serial serum specimens). Stored serum specimens from “seronegative” patients were retested with recombinant human AQP4-based assays, including enzyme-linked immunosorbent, transfected cell-based, and fluorescence-activated cell-sorting assays. Control patients included 140 AQP4-IgG–positive patients with NMO, of whom a subgroup of 20 initially presented with 2 attacks of transverse myelitis (rLETM-onset NMO).

Main Outcomes and Measures  AQP4-IgG serostatus, clinical characteristics, and Expanded Disability Status Scale score.

Results  Six patients with negative IIF results were reclassified as AQP4-IgG positive, yielding an overall AQP4-IgG seropositivity rate of 89%. Fluorescence-activated cell-sorting, cell-based, and enzyme-linked immunosorbent assays improved the detection rate to 89%, 85%, and 81%, respectively. The female to male ratio was 2:3 for AQP4-IgG–negative rLETM and 5:1 for AQP4-IgG–positive patients. The AQP4-IgG–positive patients with rLETM or rLETM-onset NMO were similar in age at onset, sex ratio, attack severity, relapse rate, and motor disability. From Kaplan-Meier analyses, 36% of AQP4-IgG–positive patients with rLETM are anticipated to need a cane to walk within 5 years after onset. For patients with rLETM-onset NMO, the median time from onset to first optic neuritis attack (54 months) was similar to the median disease duration for AQP4-IgG–positive patients with rLETM (59 months). The median number of attacks was 3 for AQP4-IgG–positive patients with rLETM (range, 2-22), and the first optic neuritis attack for those with rLETM-onset NMO followed a median of 3 myelitis attacks (range, 2-19). Immunosuppressant therapy reduced the relapse rate in both AQP4-IgG–positive and AQP4-IgG–negative patients with rLETM.

Conclusions and Relevance  Recombinant antigen–based assays significantly increase AQP4-IgG detection in patients with rLETM, and AQP4-IgG–negative adults with rLETM are rare. Evolution to NMO can be anticipated in AQP4-IgG–positive patients. Early initiation of immunotherapy may result in a more favorable motor outcome.

×