Population-Level Evidence for an Autoimmune Etiology of Epilepsy | Epilepsy and Seizures | JAMA Neurology | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address Please contact the publisher to request reinstatement.
Kwan  P, Brodie  MJ.  Early identification of refractory epilepsy.  N Engl J Med. 2000;342(5):314-319.PubMedGoogle ScholarCrossref
de Tisi  J, Bell  GS, Peacock  JL,  et al.  The long-term outcome of adult epilepsy surgery, patterns of seizure remission, and relapse: a cohort study.  Lancet. 2011;378(9800):1388-1395.PubMedGoogle ScholarCrossref
Wieser  HG, Ortega  M, Friedman  A, Yonekawa  Y.  Long-term seizure outcomes following amygdalohippocampectomy.  J Neurosurg. 2003;98(4):751-763.PubMedGoogle ScholarCrossref
Bergey  GK.  Autoantibodies in the patient with drug-resistant epilepsy: are we missing a treatable etiology?  Arch Neurol. 2012;69(5):565-566.PubMedGoogle ScholarCrossref
Palace  J, Lang  B.  Epilepsy: an autoimmune disease?  J Neurol Neurosurg Psychiatry. 2000;69(6):711-714.PubMedGoogle ScholarCrossref
McKnight  K, Jiang  Y, Hart  Y,  et al.  Serum antibodies in epilepsy and seizure-associated disorders.  Neurology. 2005;65(11):1730-1736.PubMedGoogle ScholarCrossref
Barajas  RF, Collins  DE, Cha  S, Geschwind  MD.  Adult-onset drug-refractory seizure disorder associated with anti-voltage–gated potassium-channel antibody.  Epilepsia. 2010;51(3):473-477.PubMedGoogle ScholarCrossref
Liimatainen  S, Peltola  M, Sabater  L,  et al.  Clinical significance of glutamic acid decarboxylase antibodies in patients with epilepsy.  Epilepsia. 2010;51(5):760-767.PubMedGoogle ScholarCrossref
Lin  JJ, Lin  KL, Hsia  SH, Wang  HS, Chou  IJ, Lin  YT; CHEESE Study Group.  Antiglutamic acid decarboxylase antibodies in children with encephalitis and status epilepticus.  Pediatr Neurol. 2012;47(4):252-258.PubMedGoogle ScholarCrossref
Dalmau  J, Gleichman  AJ, Hughes  EG,  et al.  Anti–NMDA-receptor encephalitis: case series and analysis of the effects of antibodies.  Lancet Neurol. 2008;7(12):1091-1098.PubMedGoogle ScholarCrossref
Hanly  JG, Urowitz  MB, Su  L,  et al.  Seizure disorders in systemic lupus erythematosus: results from an international, prospective, inception cohort study.  Ann Rheum Dis. 2012;71(9):1502-1509.PubMedGoogle ScholarCrossref
Appenzeller  S, Cendes  F, Costallat  LT.  Epileptic seizures in systemic lupus erythematosus.  Neurology. 2004;63(10):1808-1812.PubMedGoogle ScholarCrossref
Berger  I, Castiel  Y, Dor  T.  Paediatric Hashimoto encephalopathy, refractory epilepsy and immunoglobulin treatment—unusual case report and review of the literature.  Acta Paediatr. 2010;99(12):1903-1905.PubMedGoogle ScholarCrossref
Arain  A, Abou-Khalil  B, Moses  H.  Hashimoto’s encephalopathy: documentation of mesial temporal seizure origin by ictal EEG.  Seizure. 2001;10(6):438-441.PubMedGoogle Scholar
Quek  AM, Britton  JW, McKeon  A,  et al.  Autoimmune epilepsy: clinical characteristics and response to immunotherapy.  Arch Neurol. 2012;69(5):582-593.PubMedGoogle ScholarCrossref
Reid  AY, St Germaine-Smith  C, Liu  M,  et al.  Development and validation of a case definition for epilepsy for use with administrative health data.  Epilepsy Res. 2012;102(3):173-179.PubMedGoogle ScholarCrossref
Andrade  RM, Alarcón  GS, González  LA,  et al; LUMINA Study Group.  Seizures in patients with systemic lupus erythematosus: data from LUMINA, a multiethnic cohort (LUMINA LIV).  Ann Rheum Dis. 2008;67(6):829-834.PubMedGoogle ScholarCrossref
Shoenfeld  Y, Lev  S, Blatt  I,  et al.  Features associated with epilepsy in the antiphospholipid syndrome.  J Rheumatol. 2004;31(7):1344-1348.PubMedGoogle Scholar
Cervera  R, Piette  JC, Font  J,  et al; Euro-Phospholipid Project Group.  Antiphospholipid syndrome: clinical and immunologic manifestations and patterns of disease expression in a cohort of 1,000 patients.  Arthritis Rheum. 2002;46(4):1019-1027.PubMedGoogle ScholarCrossref
Carreño  L, López-Longo  FJ, Monteagudo  I,  et al.  Immunological and clinical differences between juvenile and adult onset of systemic lupus erythematosus.  Lupus. 1999;8(4):287-292.PubMedGoogle ScholarCrossref
Barron  KS, Silverman  ED, Gonzales  J, Reveille  JD.  Clinical, serologic, and immunogenetic studies in childhood-onset systemic lupus erythematosus.  Arthritis Rheum. 1993;36(3):348-354.PubMedGoogle ScholarCrossref
Descloux  E, Durieu  I, Cochat  P,  et al.  Influence of age at disease onset in the outcome of paediatric systemic lupus erythematosus.  Rheumatology (Oxford). 2009;48(7):779-784.PubMedGoogle ScholarCrossref
Pigneur  B, Seksik  P, Viola  S,  et al.  Natural history of Crohn’s disease: comparison between childhood- and adult-onset disease.  Inflamm Bowel Dis. 2010;16(6):953-961.PubMedGoogle ScholarCrossref
Bianchi  M, Rossoni  G, Sacerdote  P, Panerai  AE, Berti  F.  Carbamazepine exerts anti-inflammatory effects in the rat.  Eur J Pharmacol. 1995;294(1):71-74.PubMedGoogle ScholarCrossref
Pelizza  L, De Luca  P, La Pesa  M, Minervino  A.  Drug-induced systemic lupus erythematosus after 7 years of treatment with carbamazepine.  Acta Biomed. 2006;77(1):17-19.PubMedGoogle Scholar
Jain  KK.  Systemic lupus erythematosus (SLE)–like syndromes associated with carbamazepine therapy.  Drug Saf. 1991;6(5):350-360.PubMedGoogle ScholarCrossref
Sternthal  MB, Murphy  SJ, George  J, Kornbluth  A, Lichtiger  S, Present  DH.  Adverse events associated with the use of cyclosporine in patients with inflammatory bowel disease.  Am J Gastroenterol. 2008;103(4):937-943.PubMedGoogle ScholarCrossref
Roberts  AJ, Keith  LD.  Corticosteroids enhance convulsion susceptibility via central mineralocorticoid receptors.  Psychoneuroendocrinology. 1995;20(8):891-902.PubMedGoogle ScholarCrossref
Sánchez-Hernandez  MC, Delgado  J, Navarro  AM, Orta  JC, Hernandez  M, Conde  J.  Seizures induced by NSAID.  Allergy. 1999;54(1):90-91.PubMedGoogle ScholarCrossref
Buzatu  M, Bulteau  C, Altuzarra  C, Dulac  O, Van Bogaert  P.  Corticosteroids as treatment of epileptic syndromes with continuous spike-waves during slow-wave sleep.  Epilepsia. 2009;50(suppl 7):68-72.PubMedGoogle ScholarCrossref
Jung  S, Yang  H, Kim  BS, Chu  K, Lee  SK, Jeon  D.  The immunosuppressant cyclosporin A inhibits recurrent seizures in an experimental model of temporal lobe epilepsy.  Neurosci Lett. 2012;529(2):133-138.PubMedGoogle ScholarCrossref
Wallenstein  MC.  Attenuation of epileptogenesis by nonsteroidal anti-inflammatory drugs in the rat.  Neuropharmacology. 1991;30(6):657-663.PubMedGoogle ScholarCrossref
Hughes  EGL, Peng  X, Gleichman  AJ,  et al.  Cellular and synaptic mechanisms of anti-NMDA receptor encephalitis.  J Neurosci. 2010;10(1):63-74.PubMedGoogle Scholar
Manto  M, Dalmau  J, Didelot  A, Rogemond  V, Honnorat  J.  In vivo effects of antibodies from patients with anti-NMDA receptor encephalitis: further evidence of synaptic glutamatergic dysfunction.  Orphanet J Rare Dis. 2010;5:31. doi:10.1186/1750-1172-5-31.PubMedGoogle ScholarCrossref
Dalmau  J, Lancaster  E, Martinez-Hernandez  E, Rosenfeld  MR, Balice-Gordon  R.  Clinical experience and laboratory investigations in patients with anti-NMDAR encephalitis.  Lancet Neurol. 2011;10(1):63-74.PubMedGoogle ScholarCrossref
Irani  SR, Bera  K, Waters  P,  et al.  N-methyl-d-aspartate antibody encephalitis: temporal progression of clinical and paraclinical observations in a predominantly non-paraneoplastic disorder of both sexes.  Brain. 2010;133(pt 6):1655-1667.PubMedGoogle ScholarCrossref
Ravizza  T, Gagliardi  B, Noé  F, Boer  K, Aronica  E, Vezzani  A.  Innate and adaptive immunity during epileptogenesis and spontaneous seizures: evidence from experimental models and human temporal lobe epilepsy.  Neurobiol Dis. 2008;29(1):142-160.PubMedGoogle ScholarCrossref
Aronica  E, Crino  PB.  Inflammation in epilepsy: clinical observations.  Epilepsia. 2011;52(suppl 3):26-32.PubMedGoogle ScholarCrossref
Crespel  A, Coubes  P, Rousset  MC,  et al.  Inflammatory reactions in human medial temporal lobe epilepsy with hippocampal sclerosis.  Brain Res. 2002;952(2):159-169.PubMedGoogle ScholarCrossref
Verhelst  H, Boon  P, Buyse  G,  et al.  Steroids in intractable childhood epilepsy: clinical experience and review of the literature.  Seizure. 2005;14(6):412-421.PubMedGoogle ScholarCrossref
Marchi  N, Granata  T, Freri  E,  et al.  Efficacy of anti-inflammatory therapy in a model of acute seizures and in a population of pediatric drug resistant epileptics.  PLoS One. 2011;6(3):e18200. doi:10.1371/journal.pone.0018200.PubMedGoogle ScholarCrossref
Ichiyama  T, Okada  K, Lipton  JM, Matsubara  T, Hayashi  T, Furukawa  S.  Sodium valproate inhibits production of TNF-α and IL-6 and activation of NF-κB.  Brain Res. 2000;857(1-2):246-251.PubMedGoogle ScholarCrossref
Matoth  I, Pinto  F, Sicsic  C, Brenner  T.  Inhibitory effect of carbamazepine on inflammatory mediators produced by stimulated glial cells.  Neurosci Res. 2000;38(2):209-212.PubMedGoogle ScholarCrossref
Jetté  N, Reid  AY, Quan  H, Hill  MD, Wiebe  S.  How accurate is ICD coding for epilepsy?  Epilepsia. 2010;51(1):62-69.PubMedGoogle ScholarCrossref
St Germaine-Smith  C, Metcalfe  A, Pringsheim  T,  et al.  Recommendations for optimal ICD codes to study neurologic conditions: a systematic review.  Neurology. 2012;79(10):1049-1055.PubMedGoogle ScholarCrossref
Original Investigation
May 2014

Population-Level Evidence for an Autoimmune Etiology of Epilepsy

Author Affiliations
  • 1Australian Institute of Health Innovation, University of New South Wales, Sydney, Australia
  • 2Children’s Hospital Informatics Program at Harvard–Massachusetts Institute of Technology Health Sciences and Technology, Boston Children’s Hospital, Boston, Massachusetts
  • 3Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts
  • 4Department of Biostatics, Harvard School of Public Health, Boston, Massachusetts
  • 5Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts
JAMA Neurol. 2014;71(5):569-574. doi:10.1001/jamaneurol.2014.188

Importance  Epilepsy is a debilitating condition, often with neither a known etiology nor an effective treatment. Autoimmune mechanisms have been increasingly identified.

Objective  To conduct a population-level study investigating the relationship between epilepsy and several common autoimmune diseases.

Design, Setting, and Participants  A retrospective population-based study using claims from a nationwide employer-provided health insurance plan in the United States. Participants were beneficiaries enrolled between 1999 and 2006 (N = 2 518 034).

Main Outcomes and Measures  We examined the relationship between epilepsy and 12 autoimmune diseases: type 1 diabetes mellitus, psoriasis, rheumatoid arthritis, Graves disease, Hashimoto thyroiditis, Crohn disease, ulcerative colitis, systemic lupus erythematosus, antiphospholipid syndrome, Sjögren syndrome, myasthenia gravis, and celiac disease.

Results  The risk of epilepsy was significantly heightened among patients with autoimmune diseases (odds ratio, 3.8; 95% CI, 3.6-4.0; P < .001) and was especially pronounced in children (5.2; 4.1-6.5; P < .001). Elevated risk was consistently observed across all 12 autoimmune diseases.

Conclusions and Relevance  Epilepsy and autoimmune disease frequently co-occur; patients with either condition should undergo surveillance for the other. The potential role of autoimmunity must be given due consideration in epilepsy so that we are not overlooking a treatable cause.