Predicting Aggressive Decline in Mild Cognitive Impairment: The Importance of White Matter Hyperintensities | Dementia and Cognitive Impairment | JAMA Neurology | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 34.204.185.54. Please contact the publisher to request reinstatement.
1.
Jack  CR  Jr, Knopman  DS, Jagust  WJ,  et al.  Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers.  Lancet Neurol. 2013;12(2):207-216.PubMedGoogle ScholarCrossref
2.
Luchsinger  JA, Brickman  AM, Reitz  C,  et al.  Subclinical cerebrovascular disease in mild cognitive impairment.  Neurology. 2009;73(6):450-456.PubMedGoogle ScholarCrossref
3.
Brickman  AM, Provenzano  FA, Muraskin  J,  et al.  Regional white matter hyperintensity volume, not hippocampal atrophy, predicts incident Alzheimer disease in the community.  Arch Neurol. 2012;69(12):1621-1627.PubMedGoogle ScholarCrossref
4.
Provenzano  FA, Muraskin  J, Tosto  G,  et al; Alzheimer’s Disease Neuroimaging Initiative.  White matter hyperintensities and cerebral amyloidosis: necessary and sufficient for clinical expression of Alzheimer disease?  JAMA Neurol. 2013;70(4):455-461.PubMedGoogle ScholarCrossref
5.
Albert  MS, DeKosky  ST, Dickson  D,  et al.  The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease.  Alzheimers Dement. 2011;7(3):270-279.PubMedGoogle ScholarCrossref
6.
Manly  JJ, Tang  MX, Schupf  N, Stern  Y, Vonsattel  JP, Mayeux  R.  Frequency and course of mild cognitive impairment in a multiethnic community.  Ann Neurol. 2008;63(4):494-506.PubMedGoogle ScholarCrossref
7.
McKhann  GM, Knopman  DS, Chertkow  H,  et al.  The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease.  Alzheimers Dement.2011;7(3):263-269. PubMedGoogle ScholarCrossref
8.
Folstein  MF, Folstein  SE, McHugh  PR.  “Mini-Mental State:” a practical method for grading the cognitive state of patients for the clinician.  J Psychiatr Res. 1975;12(3):189-198.PubMedGoogle ScholarCrossref
9.
Carcaillon  L, Pérès  K, Péré  JJ, Helmer  C, Orgogozo  JM, Dartigues  JF.  Fast cognitive decline at the time of dementia diagnosis: a major prognostic factor for survival in the community.  Dement Geriatr Cogn Disord. 2007;23(6):439-445.PubMedGoogle ScholarCrossref
10.
Ballard  C, O’Brien  J, Morris  CM,  et al.  The progression of cognitive impairment in dementia with Lewy bodies, vascular dementia and Alzheimer’s disease.  Int J Geriatr Psychiatry. 2001;16(5):499-503.PubMedGoogle ScholarCrossref
11.
Soto  ME, Andrieu  S, Cantet  C,  et al; REAL.FR group.  Predictive value of rapid decline in mini mental state examination in clinical practice for prognosis in Alzheimer’s disease.  Dement Geriatr Cogn Disord. 2008;26(2):109-116.PubMedGoogle ScholarCrossref
12.
Buccione  I, Perri  R, Carlesimo  GA,  et al.  Cognitive and behavioural predictors of progression rates in Alzheimer's disease.  Eur J Neurol.2007;14(4):440-446. PubMedGoogle ScholarCrossref
13.
Bhargava  D, Weiner  MF, Hynan  LS, Diaz-Arrastia  R, Lipton  AM.  Vascular disease and risk factors, rate of progression, and survival in Alzheimer’s disease.  J Geriatr Psychiatry Neurol. 2006;19(2):78-82.PubMedGoogle ScholarCrossref
14.
Josephs  KA, Ahlskog  JE, Parisi  JE,  et al.  Rapidly progressive neurodegenerative dementias.  Arch Neurol. 2009;66(2):201-207.PubMedGoogle ScholarCrossref
15.
Schmidt  C, Wolff  M, Weitz  M, Bartlau  T, Korth  C, Zerr  I.  Rapidly progressive Alzheimer disease.  Arch Neurol. 2011;68(9):1124-1130.PubMedGoogle ScholarCrossref
16.
Jack  CR  Jr, Knopman  DS, Jagust  WJ,  et al.  Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade.  Lancet Neurol. 2010;9(1):119-128.PubMedGoogle ScholarCrossref
17.
Hachinski  VC, Iliff  LD, Zilhka  E,  et al.  Cerebral blood flow in dementia.  Arch Neurol. 1975;32(9):632-637.PubMedGoogle ScholarCrossref
18.
Yesavage  JA, Brink  TL, Rose  TL,  et al.  Development and validation of a geriatric depression screening scale: a preliminary report.  J Psychiatr Res. 1982-1983;17(1):37-49.PubMedGoogle ScholarCrossref
19.
Petersen  RC, Aisen  PS, Beckett  LA,  et al.  Alzheimer’s Disease Neuroimaging Initiative (ADNI): clinical characterization.  Neurology. 2010;74(3):201-209.PubMedGoogle ScholarCrossref
20.
Jack  CR  Jr, Bernstein  MA, Fox  NC,  et al.  The Alzheimer’s Disease Neuroimaging Initiative (ADNI): MRI methods.  J Magn Reson Imaging. 2008;27(4):685-691.PubMedGoogle ScholarCrossref
21.
Carmichael  O, Xie  J, Fletcher  E, Singh  B, DeCarli  C; Alzheimer’s Disease Neuroimaging Initiative.  Localized hippocampus measures are associated with Alzheimer pathology and cognition independent of total hippocampal volume.  Neurobiol Aging.2012;33(6):1124.e31-41. PubMedGoogle Scholar
22.
Schwarz  C, Fletcher  E, DeCarli  C, Carmichael  O.  Fully-automated white matter hyperintensity detection with anatomical prior knowledge and without FLAIR.  Inf Process Med Imaging. 2009;21:239-251.PubMedGoogle Scholar
23.
Rueckert  D, Sonoda  LI, Hayes  C, Hill  DL, Leach  MO, Hawkes  DJ.  Nonrigid registration using free-form deformations: application to breast MR images.  IEEE Trans Med Imaging. 1999;18(8):712-721.PubMedGoogle ScholarCrossref
24.
Wolz  R, Julkunen  V, Koikkalainen  J,  et al; Alzheimer’s Disease Neuroimaging Initiative.  Multi-method analysis of MRI images in early diagnostics of Alzheimer’s disease.  PLoS One. 2011;6(10):e25446.PubMedGoogle ScholarCrossref
25.
DeCarli  C, Murphy  DG, Teichberg  D, Campbell  G, Sobering  GS.  Local histogram correction of MRI spatially dependent image pixel intensity nonuniformity.  J Magn Reson Imaging. 1996;6(3):519-528.PubMedGoogle ScholarCrossref
26.
Wyman  BT, Harvey  DJ, Crawford  K,  et al; Alzheimer’s Disease Neuroimaging Initiative.  Standardization of analysis sets for reporting results from ADNI MRI data.  Alzheimers Dement. 2013;9(3):332-337.PubMedGoogle ScholarCrossref
27.
Albert  MS, DeKosky  ST, Dickson  D,  et al.  The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease.  Alzheimers Dement.2011;7(3):270-279. PubMedGoogle ScholarCrossref
28.
Doody  RS, Massman  P, Dunn  JK.  A method for estimating progression rates in Alzheimer disease.  Arch Neurol. 2001;58(3):449-454.PubMedGoogle Scholar
29.
Franco-Marina  F, Garcia-Gonzalez  JJ, Wagner-Echeagaray  F,  et al.  The Mini-Mental State Examination revisited: ceiling and floor effects after score adjustment for educational level in an aging Mexican population.  Int Psychogeriatr.2010;22(1):72-81. PubMedGoogle ScholarCrossref
30.
Meier  IB, Manly  JJ, Provenzano  FA,  et al.  White matter predictors of cognitive functioning in older adults.  J Int Neuropsychol Soc. 2012;18(3):414-427.PubMedGoogle ScholarCrossref
31.
Brickman  AM, Honig  LS, Scarmeas  N,  et al.  Measuring cerebral atrophy and white matter hyperintensity burden to predict the rate of cognitive decline in Alzheimer disease.  Arch Neurol. 2008;65(9):1202-1208.PubMedGoogle ScholarCrossref
32.
Guzman  VA, Carmichael  OT, Schwarz  C, Tosto  G, Zimmerman  ME, Brickman  AM; Alzheimer’s Disease Neuroimaging Initiative.  White matter hyperintensities and amyloid are independently associated with entorhinal cortex volume among individuals with mild cognitive impairment.  Alzheimers Dement. 2013;9(5)(suppl):S124-S131.PubMedGoogle ScholarCrossref
Original Investigation
July 2014

Predicting Aggressive Decline in Mild Cognitive Impairment: The Importance of White Matter Hyperintensities

Author Affiliations
  • 1Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, New York
  • 2The Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, New York, New York
  • 3Department of Neurology, University of California–Davis
JAMA Neurol. 2014;71(7):872-877. doi:10.1001/jamaneurol.2014.667
Abstract

Importance  Although white matter hyperintensities (WMHs) are associated with the risk for Alzheimer disease, it is unknown whether they represent an independent source of impairment or interact with known markers of disease.

Objective  To examine the degree to which WMHs predict aggressive cognitive decline among individuals with mild cognitive impairment, either independently or by modifying the effects of entorhinal cortex volume (ECV), a marker of Alzheimer disease–related neurodegeneration.

Design, Setting, and Participants  The Alzheimer’s Disease Neuroimaging Initiative is a longitudinal study with 6-month follow-up visits. Three hundred thirty-two participants (mean [SD] age, 74.6 [7.4] years; 118 women) of a total of 374 participants diagnosed as having mild cognitive impairment were included. Participants were excluded if they did not have longitudinal data, apolipoprotein E genotype data, or had evidence of supratentorial infarct.

Main Outcomes and Measures  A decline in Mini-Mental State Examination score of 3 points over 6 months or 6 points over 1 year between consecutive visits was defined as aggressive decline. White matter hyperintensity volume and ECV were entered as predictors in Cox proportional hazards models and Wilcoxon-Breslow tests to examine their impact on this outcome, adjusting for sex, age, education, and apolipoprotein E status.

Results  Greater WMH volume at baseline, apolipoprotein E ε4 status, and smaller ECV at baseline were associated with an increased risk for aggressive decline (hazard ratio [HR], 1.23; 95% CI, 1.05-1.43; P = .01 for WMH volume; HR, 1.49; 95% CI, 1.09-2.05; P = .04 for apolipoprotein E ε4 status; HR, 0.66; 95% CI, 0.55-0.79; P < .001 for ECV). White matter hyperintensity volume modified the effect of ECV on aggressive decline risk: individuals with high ECV and low WMH were at particularly low likelihood of decline (χ2 = 15, P = .001). Participants with Mini-Mental State Examination scores that declined by 3 or more points over 6 months or 6 or more points over 12 months were more likely to have converted to Alzheimer disease by the end of the follow-up period (χ2 = 82, P < .001).

Conclusions and Relevance  White matter hyperintensity burden and ECV predict rapid cognitive decline among individuals with mild cognitive impairment both additively and multiplicatively.

×