Diagnostic Value of Somatosensory Evoked Potential Changes During Carotid Endarterectomy: A Systematic Review and Meta-analysis | Cerebrovascular Disease | JAMA Neurology | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 34.239.150.57. Please contact the publisher to request reinstatement.
1.
Malcharek  MJ, Ulkatan  S, Marinò  V,  et al.  Intraoperative monitoring of carotid endarterectomy by transcranial motor evoked potential: a multicenter study of 600 patients.  Clin Neurophysiol. 2013;124(5):1025-1030.PubMedGoogle ScholarCrossref
2.
Pennekamp  CW, Moll  FL, de Borst  GJ.  The potential benefits and the role of cerebral monitoring in carotid endarterectomy.  Curr Opin Anaesthesiol. 2011;24(6):693-697.PubMedGoogle ScholarCrossref
3.
Pulli  R, Dorigo  W, Barbanti  E,  et al.  Carotid endarterectomy with contralateral carotid artery occlusion: is this a higher risk subgroup?  Eur J Vasc Endovasc Surg. 2002;24(1):63-68.PubMedGoogle ScholarCrossref
4.
Reinert  M, Mono  ML, Kuhlen  D,  et al.  Restenosis after microsurgical non-patch carotid endarterectomy in 586 patients.  Acta Neurochir (Wien). 2012;154(3):423-431, discussion 431.PubMedGoogle ScholarCrossref
5.
Akhmedov  AD, Usachev  DIu, Lukchin  VA, Shmigel’skiĭ  AV, Beliaev  AIu, Sosnin  AD.  Carotid endarterectomy in patients with high surgical risk [in Russian].  Zh Vopr Neirokhir Im N N Burdenko. 2013;77(4):36-41, discussion 41-42.PubMedGoogle Scholar
6.
Baton  O, Szym  P, Hoffmann  JJ, Borne  M, Diraison  Y, Baranger  B.  Cerebral monitoring of somatosensory evoked potentials during carotid surgery: a review of 100 cases.  Ann Vasc Surg. 2007;21(1):30-33.PubMedGoogle ScholarCrossref
7.
Floriani  M, Giulini  SM, Muiesan  P,  et al.  Influence of contralateral carotid artery on neurologic outcome after carotid endarterectomy.  Ital J Surg Sci. 1989;19(4):381-386.PubMedGoogle Scholar
8.
Hartmann  A, Hupp  T, Koch  HC,  et al.  Prospective study on the complication rate of carotid surgery.  Cerebrovasc Dis. 1999;9(3):152-156.PubMedGoogle ScholarCrossref
9.
Kang  J, Conrad  MF, Patel  VI,  et al.  Clinical and anatomic outcomes after carotid endarterectomy.  J Vasc Surg. 2014;59(4):944-949.PubMedGoogle ScholarCrossref
10.
Rowed  DW, Houlden  DA, Burkholder  LM, Taylor  AB.  Comparison of monitoring techniques for intraoperative cerebral ischemia.  Can J Neurol Sci. 2004;31(3):347-356.PubMedGoogle ScholarCrossref
11.
Schwartz  ML, Panetta  TF, Kaplan  BJ,  et al.  Somatosensory evoked potential monitoring during carotid surgery.  Cardiovasc Surg. 1996;4(1):77-80.PubMedGoogle ScholarCrossref
12.
Stejskal  L, Kramár  F, Ostrý  S, Benes  V, Mohapl  M, Limberk  B.  Experience of 500 cases of neurophysiological monitoring in carotid endarterectomy.  Acta Neurochir (Wien). 2007;149(7):681-688, discussion 689.PubMedGoogle ScholarCrossref
13.
Guérit  JM, Witdoeckt  C, de Tourtchaninoff  M,  et al.  Somatosensory evoked potential monitoring in carotid surgery I: relationships between qualitative SEP alterations and intraoperative events.  Electroencephalogr Clin Neurophysiol. 1997;104(6):459-469.PubMedGoogle ScholarCrossref
14.
Pistolese  GR, Ippoliti  A, Appolloni  A, Ronchey  S, Faraglia  V.  Cerebral haemodynamics during carotid cross-clamping.  Eur J Vasc Surg. 1993;7(suppl A):33-38.PubMedGoogle ScholarCrossref
15.
Haupt  WF, Horsch  S.  Evoked potential monitoring in carotid surgery: a review of 994 cases.  Neurology. 1992;42(4):835-838.PubMedGoogle ScholarCrossref
16.
Schweiger  H, Kamp  HD, Dinkel  M.  Somatosensory-evoked potentials during carotid artery surgery: experience in 400 operations.  Surgery. 1991;109(5):602-609.PubMedGoogle Scholar
17.
Beese  U, Langer  H, Lang  W, Dinkel  M.  Comparison of near-infrared spectroscopy and somatosensory evoked potentials for the detection of cerebral ischemia during carotid endarterectomy.  Stroke. 1998;29(10):2032-2037.PubMedGoogle ScholarCrossref
18.
Uno  M, Suzue  A, Nishi  K, Nagahiro  S.  Hemodynamic cerebral ischemia during carotid endarterectomy evaluated by intraoperative monitoring and post-operative diffusion-weighted imaging.  Neurol Res. 2007;29(1):70-77.PubMedGoogle ScholarCrossref
19.
Hill  MD, Brooks  W, Mackey  A,  et al; CREST Investigators.  Stroke after carotid stenting and endarterectomy in the Carotid Revascularization Endarterectomy versus Stenting Trial (CREST).  Circulation. 2012;126(25):3054-3061.PubMedGoogle ScholarCrossref
20.
Astarci  P, Guerit  JM, Robert  A,  et al.  Stump pressure and somatosensory evoked potentials for predicting the use of shunt during carotid surgery.  Ann Vasc Surg. 2007;21(3):312-317.PubMedGoogle ScholarCrossref
21.
Friedell  ML, Clark  JM, Graham  DA, Isley  MR, Zhang  XF.  Cerebral oximetry does not correlate with electroencephalography and somatosensory evoked potentials in determining the need for shunting during carotid endarterectomy.  J Vasc Surg. 2008;48(3):601-606.PubMedGoogle ScholarCrossref
22.
Uno  M, Nishi  K, Shinno  K, Nagahiro  S.  Carotid endarterectomy with external shunt: a new device and indication for use: technical note.  Neurosurgery. 2001;48(5):1174-1177.PubMedGoogle ScholarCrossref
23.
De Vleeschauwer  P, Horsch  S, Matamoros  R.  Monitoring of somatosensory evoked potentials in carotid surgery: results, usefulness and limitations of the method.  Ann Vasc Surg. 1988;2(1):63-68.PubMedGoogle ScholarCrossref
24.
Linstedt  U, Maier  C, Petry  A.  Intraoperative monitoring with somatosensory evoked potentials in carotid artery surgery: less reliable in patients with preoperative neurologic deficiency?  Acta Anaesthesiol Scand. 1998;42(1):13-16.PubMedGoogle ScholarCrossref
25.
Manninen  P, Sarjeant  R, Joshi  M.  Posterior tibial nerve and median nerve somatosensory evoked potential monitoring during carotid endarterectomy.  Can J Anaesth. 2004;51(9):937-941.PubMedGoogle ScholarCrossref
26.
Manninen  PH, Tan  TK, Sarjeant  RM.  Somatosensory evoked potential monitoring during carotid endarterectomy in patients with a stroke.  Anesth Analg. 2001;93(1):39-44.PubMedGoogle ScholarCrossref
27.
Prokop  A, Meyer  GP, Walter  M, Erasmi  H.  Validity of SEP monitoring in carotid surgery: review and own results.  J Cardiovasc Surg (Torino). 1996;37(4):337-342.PubMedGoogle Scholar
28.
Dinkel  M, Schweiger  H, Goerlitz  P.  Monitoring during carotid surgery: somatosensory evoked potentials vs carotid stump pressure.  J Neurosurg Anesthesiol. 1992;4(3):167-175.PubMedGoogle ScholarCrossref
29.
Fava  E, Bortolani  E, Ducati  A, Schieppati  M.  Role of SEP in identifying patients requiring temporary shunt during carotid endarterectomy.  Electroencephalogr Clin Neurophysiol. 1992;84(5):426-432.PubMedGoogle ScholarCrossref
30.
Fried  SJ, Smith  DM, Legatt  AD.  Median nerve somatosensory evoked potential monitoring during carotid endarterectomy: does reference choice matter?  J Clin Neurophysiol. 2014;31(1):55-57.PubMedGoogle ScholarCrossref
31.
Horsch  S, De Vleeschauwer  P, Ktenidis  K.  Intraoperative assessment of cerebral ischemia during carotid surgery.  J Cardiovasc Surg (Torino). 1990;31(5):599-602.PubMedGoogle Scholar
32.
Lacroix  H, Beyens  G, Van Hemelrijck  J, Nevelsteen  A, Verhaeghe  R, Suy  R.  Is transcranial Doppler useful in the detection of internal carotid artery cross-clamp intolerance?  Cardiovasc Surg. 1999;7(2):203-207.PubMedGoogle ScholarCrossref
33.
Pedrini  L, Tarantini  S, Cirelli  MR, Ballester  A, Cifiello  BI, D’Addato  M.  Intraoperative assessment of cerebral ischaemia during carotid surgery.  Int Angiol. 1998;17(1):10-14.PubMedGoogle Scholar
34.
Witdoeckt  C, Ghariani  S, Guérit  JM.  Somatosensory evoked potential monitoring in carotid surgery, II: comparison between qualitative and quantitative scoring systems.  Electroencephalogr Clin Neurophysiol. 1997;104(4):328-332.PubMedGoogle ScholarCrossref
35.
Bonati  LH, Jongen  LM, Haller  S,  et al; ICSS-MRI study group.  New ischaemic brain lesions on MRI after stenting or endarterectomy for symptomatic carotid stenosis: a substudy of the International Carotid Stenting Study (ICSS).  Lancet Neurol. 2010;9(4):353-362.PubMedGoogle ScholarCrossref
36.
Reitsma  JB, Glas  AS, Rutjes  AW, Scholten  RJ, Bossuyt  PM, Zwinderman  AH.  Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews.  J Clin Epidemiol. 2005;58(10):982-990.PubMedGoogle ScholarCrossref
37.
van Enst  WA, Ochodo  E, Scholten  RJ, Hooft  L, Leeflang  MM.  Investigation of publication bias in meta-analyses of diagnostic test accuracy: a meta-epidemiological study.  BMC Med Res Methodol. 2014;14(1):70.PubMedGoogle ScholarCrossref
38.
Deeks  JJ, Macaskill  P, Irwig  L.  The performance of tests of publication bias and other sample size effects in systematic reviews of diagnostic test accuracy was assessed.  J Clin Epidemiol. 2005;58(9):882-893.PubMedGoogle ScholarCrossref
39.
Whiting  PF, Rutjes  AW, Westwood  ME,  et al; QUADAS-2 Group.  QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies.  Ann Intern Med. 2011;155(8):529-536.PubMedGoogle ScholarCrossref
40.
Doebler  P. Mada: Meta-Analysis of Diagnostic Accuracy (Mada). R package version 0.5.5. http://www.r-project.org/. Accessed July 14, 2014.
41.
Astrup  J, Symon  L, Branston  NM, Lassen  NA.  Cortical evoked potential and extracellular K+ and H+ at critical levels of brain ischemia.  Stroke. 1977;8(1):51-57.PubMedGoogle ScholarCrossref
42.
Branston  NM, Symon  L, Crockard  HA, Pasztor  E.  Relationship between the cortical evoked potential and local cortical blood flow following acute middle cerebral artery occlusion in the baboon.  Exp Neurol. 1974;45(2):195-208.PubMedGoogle ScholarCrossref
43.
Astrup  J, Blennow  G, Nilsson  B.  Effects of reduced cerebral blood flow upon EEG pattern, cerebral extracellular potassium, and energy metabolism in the rat cortex during bicuculline-induced seizures.  Brain Res. 1979;177(1):115-126.PubMedGoogle ScholarCrossref
44.
Symon  L.  The relationship between CBF, evoked potentials and the clinical features in cerebral ischaemia.  Acta Neurol Scand Suppl. 1980;78:175-190.PubMedGoogle Scholar
45.
Branston  NM, Symon  L, Strong  AJ.  Reversibility of ischaemically induced changes in extracellular potassium in primate cortex.  J Neurol Sci. 1978;37(1-2):37-49.PubMedGoogle ScholarCrossref
Original Investigation
January 2015

Diagnostic Value of Somatosensory Evoked Potential Changes During Carotid Endarterectomy: A Systematic Review and Meta-analysis

Author Affiliations
  • 1Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
  • 2Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
JAMA Neurol. 2015;72(1):73-80. doi:10.1001/jamaneurol.2014.3071
Abstract

Importance  Perioperative stroke is a persistent complication of carotid endarterectomy (CEA) for patients with symptomatic carotid stenosis (CS).

Objective  To evaluate whether changes in somatosensory evoked potential (SSEP) during CEA are diagnostic of perioperative stroke in patients with symptomatic CS.

Design, Setting, and Participants  We searched PubMed and the World Science Database for reference lists of retrieved studies and/or experiments on SSEP use in postoperative outcomes following CEA in patients with symptomatic CS from January 1, 1950, through January 1, 2013. We independently screened all titles and abstracts to identify studies that met the inclusion criteria and extracted relevant articles in a uniform manner. Inclusion criteria included randomized clinical trials, prospective studies, or retrospective cohort reviews; population of symptomatic CS; use of intraoperative SSEP monitoring during CEA; immediate postoperative assessment and/or as long as a 3-month follow-up; a total sample size of 50 or more patients; studies with adult humans 18 years or older; and studies published in English.

Main Outcome and Measure  Whether intraoperative SSEP changes were diagnostic of perioperative stroke indicated by postoperative neurological examination.

Results  Four-hundred sixty-four articles were retrieved, and 15 prospective and retrospective cohort studies were included in the data analysis. A 4557-patient cohort composed the total sample population for all the studies, 3899 of whom had symptomatic CS. A change in SSEP exhibited a strong pooled mean specificity of 91% (95% CI, 86-94) but a weaker pooled mean sensitivity of 58% (95% CI, 49-68). A pooled diagnostic odds ratio for individual studies of patients with neurological deficit with changes in SSEPs was 14.39 (95% CI, 8.34-24.82), indicating that the odds of observing an SSEP change among those with neurologic deficits were 14 times higher than in individuals without neurologic deficit.

Conclusions and Relevance  Intraoperative SSEP is a highly specific test in predicting neurological outcome following CEA. Patients with perioperative neurological deficits are 14 times more likely to have had changes in SSEPs during the procedure. The use of SSEPs to design prevention strategies is valuable in reducing perioperative cerebral infarctions during CEA.

×