Neuropathologic Associations of Learning and Memory in Primary Progressive Aphasia | Dementia and Cognitive Impairment | JAMA Neurology | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address Please contact the publisher to request reinstatement.
Mesulam  MM.  Primary progressive aphasia.  Ann Neurol. 2001;49(4):425-432.PubMedGoogle ScholarCrossref
Gorno-Tempini  ML, Hillis  AE, Weintraub  S,  et al.  Classification of primary progressive aphasia and its variants.  Neurology. 2011;76(11):1006-1014.PubMedGoogle ScholarCrossref
Mesulam  M, Weintraub  S. Primary progressive aphasia and kindred disorders. In: Duyckaerts  C, Litvan  I, eds.  Handbook of Clinical Neurology. New York, NY: Elsevier; 2008:573-587.
Mesulam  M, Wicklund  A, Johnson  N,  et al.  Alzheimer and frontotemporal pathology in subsets of primary progressive aphasia.  Ann Neurol. 2008;63(6):709-719.PubMedGoogle ScholarCrossref
Mesulam  MM, Weintraub  S, Rogalski  EJ, Wieneke  C, Geula  C, Bigio  EH.  Asymmetry and heterogeneity of Alzheimer’s and frontotemporal pathology in primary progressive aphasia.  Brain. 2014;137(pt 4):1176-1192.PubMedGoogle ScholarCrossref
Alladi  S, Xuereb  J, Bak  T,  et al.  Focal cortical presentations of Alzheimer’s disease.  Brain. 2007;130(pt 10):2636-2645.PubMedGoogle ScholarCrossref
Harris  JM, Gall  C, Thompson  JC,  et al.  Classification and pathology of primary progressive aphasia.  Neurology. 2013;81(21):1832-1839.PubMedGoogle ScholarCrossref
Mesulam  M, Wieneke  C, Rogalski  E, Cobia  D, Thompson  C, Weintraub  S.  Quantitative template for subtyping primary progressive aphasia.  Arch Neurol. 2009;66(12):1545-1551.PubMedGoogle ScholarCrossref
Mesulam  MM, Rogalski  EJ, Wieneke  C,  et al.  Primary progressive aphasia and the evolving neurology of the language network.  Nat Rev Neurol. 2014;10(10):554-569.PubMedGoogle ScholarCrossref
Mesulam  MM, Thompson  CK, Weintraub  S, Rogalski  EJ.  The Wernicke conundrum and the anatomy of language comprehension in primary progressive aphasia.  Brain. 2015;138(pt 8):2423-2437.PubMedGoogle ScholarCrossref
Weintraub  S, Peavy  GM, O’Connor  M,  et al.  Three Words Three Shapes: a clinical test of memory.  J Clin Exp Neuropsychol. 2000;22(2):267-278.PubMedGoogle ScholarCrossref
Weintraub  S, Rogalski  E, Shaw  E,  et al.  Verbal and nonverbal memory in primary progressive aphasia: the Three Words-Three Shapes Test.  Behav Neurol. 2013;26(1-2):67-76.PubMedGoogle ScholarCrossref
Gefen  T, Gasho  K, Rademaker  A,  et al.  Clinically concordant variations of Alzheimer pathology in aphasic versus amnestic dementia.  Brain. 2012;135(pt 5):1554-1565.PubMedGoogle ScholarCrossref
McKhann  GM, Knopman  DS, Chertkow  H,  et al.  The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease.  Alzheimers Dement. 2011;7(3):263-269.PubMedGoogle ScholarCrossref
Bigio  EH.  Making the diagnosis of frontotemporal lobar degeneration.  Arch Pathol Lab Med. 2013;137(3):314-325.PubMedGoogle ScholarCrossref
Montine  TJ, Phelps  CH, Beach  TG,  et al; National Institute on Aging; Alzheimer’s Association.  National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease: a practical approach.  Acta Neuropathol. 2012;123(1):1-11.PubMedGoogle ScholarCrossref
Braak  H, Braak  E.  Neuropathological stageing of Alzheimer-related changes.  Acta Neuropathol. 1991;82(4):239-259.PubMedGoogle ScholarCrossref
Mirra  SS, Heyman  A, McKeel  D,  et al.  The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD): part II. standardization of the neuropathologic assessment of Alzheimer’s disease.  Neurology. 1991;41(4):479-486.PubMedGoogle ScholarCrossref
Miller  GA.  The magical number seven plus or minus two: some limits on our capacity for processing information.  Psychol Rev. 1956;63(2):81-97.PubMedGoogle ScholarCrossref
Foxe  DG, Irish  M, Hodges  JR, Piguet  O.  Verbal and visuospatial span in logopenic progressive aphasia and Alzheimer’s disease.  J Int Neuropsychol Soc. 2013;19(3):247-253.PubMedGoogle ScholarCrossref
Meyer  AM, Snider  SF, Campbell  RE, Friedman  RB.  Phonological short-term memory in logopenic variant primary progressive aphasia and mild Alzheimer’s disease.  Cortex. 2015;71:183-189.PubMedGoogle ScholarCrossref
Tree  J, Kay  J.  Longitudinal assessment of short-term memory deterioration in a logopenic variant primary progressive aphasia with post-mortem confirmed Alzheimer’s disease pathology.  J Neuropsychol. 2015;9(2):184-202.PubMedGoogle ScholarCrossref
Weintraub  S, Mesulam  M-M. Mental state assessment of young and elderly adults in behavioral neurology. In: Mesulam  M-M, ed.  Principles of Behavioral Neurology. Philadelphia, PA: F. A. Davis; 1985:71-123.
Johnson  N, Barion  A, Rademaker  A, Rehkemper  G, Weintraub  S.  The Activities of Daily Living Questionnaire: a validation study in patients with dementia.  Alzheimer Dis Assoc Disord. 2004;18(4):223-230.PubMedGoogle Scholar
Osher  JE, Wicklund  AH, Rademaker  A, Johnson  N, Weintraub  S.  The mini-mental state examination in behavioral variant frontotemporal dementia and primary progressive aphasia.  Am J Alzheimers Dis Other Demen. 2007;22(6):468-473.PubMedGoogle ScholarCrossref
Kaplan  E, Goodglass  H, Weintraub  S.  The Boston Naming Test. Philadelphia, PA: Lea and Febiger; 1983.
Fastenau  PS, Denburg  NL, Mauer  BA.  Parallel short forms for the Boston Naming Test: psychometric properties and norms for older adults.  J Clin Exp Neuropsychol. 1998;20(6):828-834.PubMedGoogle ScholarCrossref
Zakzanis  KK.  The neuropsychological signature of primary progressive aphasia.  Brain Lang. 1999;70(1):70-85.PubMedGoogle ScholarCrossref
Bigio  EH, Mishra  M, Hatanpaa  KJ,  et al.  TDP-43 pathology in primary progressive aphasia and frontotemporal dementia with pathologic Alzheimer disease.  Acta Neuropathol. 2010;120(1):43-54.PubMedGoogle ScholarCrossref
Markowitsch  HJ. Memory and amnesia. In: Mesulam  M-M, ed.  Principles of Behavioral Neurology. 2nd ed. New York, NY: Oxford University Press; 2000:257-283.
Original Investigation
July 2016

Neuropathologic Associations of Learning and Memory in Primary Progressive Aphasia

Author Affiliations
  • 1Cognitive Neurology and Alzheimer’s Disease Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
  • 2Division of Clinical Psychology, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois
  • 3Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
  • 4Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
  • 5Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
JAMA Neurol. 2016;73(7):846-852. doi:10.1001/jamaneurol.2016.0880

Importance  The dementia syndrome of primary progressive aphasia (PPA) can be caused by 1 of several neuropathologic entities, including forms of frontotemporal lobar degeneration (FTLD) or Alzheimer disease (AD). Although episodic memory is initially spared in this syndrome, the subtle learning and memory features of PPA and their neuropathologic associations have not been characterized.

Objective  To detect subtle memory differences on the basis of autopsy-confirmed neuropathologic diagnoses in PPA.

Design, Setting, and Participants  Retrospective analysis was conducted at the Northwestern Cognitive Neurology and Alzheimer’s Disease Center in August 2015 using clinical and postmortem autopsy data that had been collected between August 1983 and June 2012. Thirteen patients who had the primary clinical diagnosis of PPA and an autopsy-confirmed diagnosis of either AD (PPA-AD) or a tau variant of FTLD (PPA-FTLD) and 6 patients who had the clinical diagnosis of amnestic dementia and autopsy-confirmed AD (AMN-AD) were included.

Main Outcomes and Measures  Scores on the effortless learning, delayed retrieval, and retention conditions of the Three Words Three Shapes test, a specialized measure of verbal and nonverbal episodic memory.

Results  The PPA-FTLD (n = 6), PPA-AD (n = 7), and AMN-AD (n = 6) groups did not differ by demographic composition (all P > .05). The sample mean (SD) age was 64.1 (10.3) years at symptom onset and 67.9 (9.9) years at Three Words Three Shapes test administration. The PPA-FTLD group had normal (ie, near-ceiling) scores on all verbal and nonverbal test conditions. Both the PPA-AD and AMN-AD groups had deficits in verbal effortless learning (mean [SD] number of errors, 9.9 [4.6] and 14.2 [2.0], respectively) and verbal delayed retrieval (mean [SD] number of errors, 6.1 [5.9] and 12.0 [4.4], respectively). The AMN-AD group had additional deficits in nonverbal effortless learning (mean [SD] number of errors, 10.3 [4.0]) and verbal retention (mean [SD] number of errors, 8.33 [5.2]), which were not observed in the PPA-FTLD or PPA-AD groups (all P < .005).

Conclusions and Relevance  This study identified neuropathologic associations of learning and memory in autopsy-confirmed cases of PPA. Among patients with clinical PPA syndrome, AD neuropathology appeared to interfere with effortless learning and delayed retrieval of verbal information, whereas FTLD-tau pathology did not. The results provide directions for future research on the interactions between limbic and language networks.