Female- and Male-Specific Risk Factors for Stroke: A Systematic Review and Meta-analysis | Cerebrovascular Disease | JAMA Neurology | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 34.239.150.57. Please contact the publisher to request reinstatement.
1.
Appelros  P, Stegmayr  B, Terént  A.  Sex differences in stroke epidemiology: a systematic review.  Stroke. 2009;40(4):1082-1090.PubMedGoogle ScholarCrossref
2.
Löfmark  U, Hammarström  A.  Evidence for age-dependent education-related differences in men and women with first-ever stroke: results from a community-based incidence study in northern Sweden.  Neuroepidemiology. 2007;28(3):135-141.PubMedGoogle ScholarCrossref
3.
Rothwell  PM, Coull  AJ, Silver  LE,  et al; Oxford Vascular Study.  Population-based study of event-rate, incidence, case fatality, and mortality for all acute vascular events in all arterial territories (Oxford Vascular Study).  Lancet. 2005;366(9499):1773-1783.PubMedGoogle ScholarCrossref
4.
Plu-Bureau  G, Hugon-Rodin  J, Maitrot-Mantelet  L, Canonico  M.  Hormonal contraceptives and arterial disease: an epidemiological update.  Best Pract Res Clin Endocrinol Metab. 2013;27(1):35-45.PubMedGoogle ScholarCrossref
5.
Algra  AM, Klijn  CJ, Helmerhorst  FM, Algra  A, Rinkel  GJ.  Female risk factors for subarachnoid hemorrhage: a systematic review.  Neurology. 2012;79(12):1230-1236.PubMedGoogle ScholarCrossref
6.
Main  C, Knight  B, Moxham  T,  et al.  Hormone therapy for preventing cardiovascular disease in post-menopausal women.  Cochrane Database Syst Rev. 2013;4(4):CD002229.PubMedGoogle Scholar
7.
Moher  D, Liberati  A, Tetzlaff  J, Altman  DG; PRISMA Group.  Preferred Reporting Items for Systematic Reviews and Meta-analyses: the PRISMA statement.  PLoS Med. 2009;6(7):e1000097. doi:10.1371/journal.pmed.1000097PubMedGoogle ScholarCrossref
8.
Stroup  DF, Berlin  JA, Morton  SC,  et al.  Meta-analysis of Observational Studies in Epidemiology: a proposal for reporting: Meta-analysis of Observational Studies in Epidemiology (MOOSE) group.  JAMA. 2000;283(15):2008-2012.PubMedGoogle ScholarCrossref
9.
Alonso de Leciñana  M, Egido  JA, Fernández  C,  et al; PIVE Study Investigators of the Stroke Project of the Spanish Cerebrovascular Diseases Study Group.  Risk of ischemic stroke and lifetime estrogen exposure.  Neurology. 2007;68(1):33-38.PubMedGoogle ScholarCrossref
10.
Parikh  NI, Cnattingius  S, Dickman  PW, Mittleman  MA, Ludvigsson  JF, Ingelsson  E.  Parity and risk of later-life maternal cardiovascular disease.  Am Heart J. 2010;159(2):215-221.e6. doi:10.1016/j.ahj.2009.11.017PubMedGoogle ScholarCrossref
11.
Iribarren  C, Go  AS, Tolstykh  I, Sidney  S, Johnston  SC, Spring  DB.  Breast vascular calcification and risk of coronary heart disease, stroke, and heart failure.  J Womens Health (Larchmt). 2004;13(4):381-389.PubMedGoogle ScholarCrossref
12.
Park  JK, Kim  HJ, Chang  SJ, Koh  SB, Koh  SY.  Risk factors for hemorrhagic stroke in Wonju, Korea.  Yonsei Med J. 1998;39(3):229-235.PubMedGoogle ScholarCrossref
13.
Zhang  X, Shu  XO, Gao  YT, Yang  G, Li  H, Zheng  W.  Pregnancy, childrearing, and risk of stroke in Chinese women.  Stroke. 2009;40(8):2680-2684.PubMedGoogle ScholarCrossref
14.
Vigen  R, O’Donnell  CI, Barón  AE,  et al.  Association of testosterone therapy with mortality, myocardial infarction, and stroke in men with low testosterone levels.  JAMA. 2013;310(17):1829-1836.PubMedGoogle ScholarCrossref
15.
Yeap  BB, Hyde  Z, Almeida  OP,  et al.  Lower testosterone levels predict incident stroke and transient ischemic attack in older men.  J Clin Endocrinol Metab. 2009;94(7):2353-2359.PubMedGoogle ScholarCrossref
16.
Schooling  CM.  Androgen activity, ischaemic heart disease and risk factors among men in NHANES III.  Eur J Clin Invest. 2013;43(12):1273-1281.PubMedGoogle ScholarCrossref
17.
Brown  MC, Best  KE, Pearce  MS, Waugh  J, Robson  SC, Bell  R.  Cardiovascular disease risk in women with pre-eclampsia: systematic review and meta-analysis.  Eur J Epidemiol. 2013;28(1):1-19.PubMedGoogle ScholarCrossref
18.
Romundstad  PR, Magnussen  EB, Smith  GD, Vatten  LJ.  Hypertension in pregnancy and later cardiovascular risk: common antecedents?  Circulation. 2010;122(6):579-584.PubMedGoogle ScholarCrossref
19.
 Report of the National High Blood Pressure Education Program Working Group on High Blood Pressure in Pregnancy.  Am J Obstet Gynecol. 2000;183(1):S1-S22.PubMedGoogle ScholarCrossref
20.
Heida  KY, Velthuis  BK, Oudijk  MA,  et al; Dutch Guideline Development Group on Cardiovascular Risk Management After Reproductive Disorders.  Cardiovascular disease risk in women with a history of spontaneous preterm delivery: a systematic review and meta-analysis.  Eur J Prev Cardiol. 2015;23(3):253-263.PubMedGoogle ScholarCrossref
21.
Oliver-Williams  CT, Heydon  EE, Smith  GC, Wood  AM.  Miscarriage and future maternal cardiovascular disease: a systematic review and meta-analysis.  Heart. 2013;99(22):1636-1644.PubMedGoogle ScholarCrossref
22.
Charalampopoulos  D, McLoughlin  A, Elks  CE, Ong  KK.  Age at menarche and risks of all-cause and cardiovascular death: a systematic review and meta-analysis.  Am J Epidemiol. 2014;180(1):29-40.PubMedGoogle ScholarCrossref
23.
Prentice  P, Viner  RM.  Pubertal timing and adult obesity and cardiometabolic risk in women and men: a systematic review and meta-analysis.  Int J Obes (Lond). 2013;37(8):1036-1043.PubMedGoogle ScholarCrossref
24.
Roeters van Lennep  JE, Heida  KY, Bots  ML, Hoek  A; Collaborators of the Dutch Multidisciplinary Guideline Development Group on Cardiovascular Risk Management After Reproductive Disorders.  Cardiovascular disease risk in women with premature ovarian insufficiency: a systematic review and meta-analysis.  Eur J Prev Cardiol. 2016;23(2):178-186.PubMedGoogle ScholarCrossref
25.
Ingelsson  E, Lundholm  C, Johansson  AL, Altman  D.  Hysterectomy and risk of cardiovascular disease: a population-based cohort study.  Eur Heart J. 2011;32(6):745-750.PubMedGoogle ScholarCrossref
26.
Finkle  WD, Greenland  S, Ridgeway  GK,  et al.  Increased risk of non-fatal myocardial infarction following testosterone therapy prescription in men.  PLoS One. 2014;9(1):e85805. doi:10.1371/journal.pone.0085805PubMedGoogle ScholarCrossref
27.
Morgentaler  A, Miner  MM, Caliber  M, Guay  AT, Khera  M, Traish  AM.  Testosterone therapy and cardiovascular risk: advances and controversies.  Mayo Clin Proc. 2015;90(2):224-251.PubMedGoogle ScholarCrossref
28.
Azoulay  L, Yin  H, Benayoun  S, Renoux  C, Boivin  JF, Suissa  S.  Androgen-deprivation therapy and the risk of stroke in patients with prostate cancer.  Eur Urol. 2011;60(6):1244-1250.PubMedGoogle ScholarCrossref
29.
Wu  FC, Tajar  A, Pye  SR,  et al; European Male Aging Study Group.  Hypothalamic-pituitary-testicular axis disruptions in older men are differentially linked to age and modifiable risk factors: the European Male Aging Study.  J Clin Endocrinol Metab. 2008;93(7):2737-2745.PubMedGoogle ScholarCrossref
30.
Harman  SM, Metter  EJ, Tobin  JD, Pearson  J, Blackman  MR; Baltimore Longitudinal Study of Aging.  Longitudinal effects of aging on serum total and free testosterone levels in healthy men.  J Clin Endocrinol Metab. 2001;86(2):724-731.PubMedGoogle ScholarCrossref
31.
Travison  TG, Araujo  AB, Kupelian  V, O’Donnell  AB, McKinlay  JB.  The relative contributions of aging, health, and lifestyle factors to serum testosterone decline in men.  J Clin Endocrinol Metab. 2007;92(2):549-555.PubMedGoogle ScholarCrossref
32.
Morley  JE, Kaiser  FE, Perry  HM  III,  et al.  Longitudinal changes in testosterone, luteinizing hormone, and follicle-stimulating hormone in healthy older men.  Metabolism. 1997;46(4):410-413.PubMedGoogle ScholarCrossref
33.
Feldman  HA, Longcope  C, Derby  CA,  et al.  Age trends in the level of serum testosterone and other hormones in middle-aged men: longitudinal results from the Massachusetts Male Aging Study.  J Clin Endocrinol Metab. 2002;87(2):589-598.PubMedGoogle ScholarCrossref
34.
Soisson  V, Brailly-Tabard  S, Helmer  C,  et al.  A J-shaped association between plasma testosterone and risk of ischemic arterial event in elderly men: the French 3C cohort study.  Maturitas. 2013;75(3):282-288.PubMedGoogle ScholarCrossref
35.
Shores  MM, Arnold  AM, Biggs  ML,  et al.  Testosterone and dihydrotestosterone and incident ischaemic stroke in men in the Cardiovascular Health Study.  Clin Endocrinol (Oxf). 2014;81(5):746-753.PubMedGoogle ScholarCrossref
36.
Yeap  BB, Alfonso  H, Chubb  SA,  et al.  In older men, higher plasma testosterone or dihydrotestosterone is an independent predictor for reduced incidence of stroke but not myocardial infarction.  J Clin Endocrinol Metab. 2014;99(12):4565-4573.PubMedGoogle ScholarCrossref
37.
Ponholzer  A, Temml  C, Mock  K, Marszalek  M, Obermayr  R, Madersbacher  S.  Prevalence and risk factors for erectile dysfunction in 2869 men using a validated questionnaire.  Eur Urol. 2005;47(1):80-85.PubMedGoogle ScholarCrossref
38.
de Groot  PC, Dekkers  OM, Romijn  JA, Dieben  SW, Helmerhorst  FM.  PCOS, coronary heart disease, stroke and the influence of obesity: a systematic review and meta-analysis.  Hum Reprod Update. 2011;17(4):495-500.PubMedGoogle ScholarCrossref
39.
Bushnell  C, McCullough  LD, Awad  IA,  et al; American Heart Association Stroke Council; Council on Cardiovascular and Stroke Nursing; Council on Clinical Cardiology; Council on Epidemiology and Prevention; Council for High Blood Pressure Research.  Guidelines for the prevention of stroke in women: a statement for healthcare professionals from the American Heart Association/American Stroke Association [published corrections appear in Stroke. 2014;45(5):e95 and 2014;45(10):e214].  Stroke. 2014;45(5):1545-1588.PubMedGoogle ScholarCrossref
Original Investigation
January 2017

Female- and Male-Specific Risk Factors for Stroke: A Systematic Review and Meta-analysis

Author Affiliations
  • 1Brain Center Rudolf Magnus, Department of Neurology and Neurosurgery, University Medical Center Utrecht, Utrecht, the Netherlands
  • 2Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
  • 3Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Department of Neurology, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
JAMA Neurol. 2017;74(1):75-81. doi:10.1001/jamaneurol.2016.3482
Key Points

Question  What are sex-specific characteristics that influence the risk of ischemic stroke, hemorrhagic stroke, any stroke, or stroke mortality?

Findings  In this systematic review and meta-analysis, female-specific characteristics associated with increased stroke risk included hypertensive disorders of pregnancy for ischemic stroke, late menopause and gestational hypertension for hemorrhagic stroke, and oophorectomy and various pregnancy complications for any stroke; hysterectomy might be a protective factor against any stroke. Male-specific risk factors were low induced testosterone levels for ischemic stroke and any stroke and erectile dysfunction for any stroke.

Meaning  The accuracy of risk assessment of stroke can be improved by adding female- and male-specific protective or risk factors to risk scores.

Abstract

Importance  The incidence of stroke is higher in men than in women. The influence of sex-specific risk factors on stroke incidence and mortality is largely unknown.

Objective  To conduct a systematic review and meta-analysis of female- and male-specific risk factors for stroke.

Data Sources  PubMed, EMBASE, and the bibliographies of articles were searched for studies published between January 1, 1985, and January 26, 2015, reporting on the association between female- and male-specific characteristics and stroke.

Study Selection  Observational studies reporting associations between sex-specific risk factors and stroke were selected.

Data Extraction and Synthesis  Two authors performed data extraction independently. Estimates were pooled with a generic variance-based, random-effects method. We followed the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) recommendations. In addition, our study adhered to the Meta-analysis of Observational Studies in Epidemiology (MOOSE) guidelines.

Main Outcomes and Measures  Ischemic stroke, hemorrhagic stroke, any stroke, and stroke mortality.

Results  This systematic review and meta-analysis included 78 studies (70 longitudinal and 8 case-control) comprising 10 187 540 persons. In women, the pooled relative risks of ischemic stroke were 1.80 (95% CI, 1.49-2.18) after any hypertensive disorder in pregnancy (HDP) (gestational hypertension [GH], preeclampsia, or eclampsia) and 1.81 (95% CI, 1.44-2.27) after GH vs no HDP. The pooled relative risks of hemorrhagic stroke were 2.24 (95% CI, 1.19-4.21) in women with menopause at the age of at least 55 years vs 50 to 54 years and 5.08 (95% CI, 1.80-14.34) after GH vs no GH. The pooled relative risks of any stroke were 1.42 (95% CI, 1.34-1.50) after oophorectomy vs no oophorectomy, 0.88 (95% CI, 0.85-0.90) after hysterectomy vs no hysterectomy, 1.63 (95% CI, 1.52-1.75) after any vs no HDP, 1.54 (95% CI, 1.39-1.70) after preeclampsia or eclampsia, 1.51 (95% CI, 1.27-1.80) after GH vs no HDP, 1.62 (95% CI, 1.46-1.79) after preterm delivery, and 1.86 (95% CI, 1.15-3.02) after stillbirth vs no pregnancy complications. The pooled relative risk of stroke mortality was 1.57 (95% CI, 1.04-2.39) after GH vs no GH. In men, the pooled relative risks of ischemic stroke were 1.19 (95% CI, 1.05-1.34) after androgen deprivation therapy (ADT) vs no ADT and 1.21 (95% CI, 1.00-1.46) after orchiectomy vs no orchiectomy. The pooled relative risks of any stroke were 1.21 (95% CI, 1.06-1.37) for ADT vs no ADT and 1.35 (95% CI, 1.18-1.53) for erectile dysfunction vs no dysfunction.

Conclusions and Relevance  Female-specific characteristics increasing stroke risk include HDP for ischemic stroke, late menopause and gestational hypertension for hemorrhagic stroke, and oophorectomy, HDP, preterm delivery, and stillbirth for any stroke. Hysterectomy is possibly protective against any stroke. Male-specific characteristics increasing stroke risk include medical androgen deprivation therapy for ischemic and any stroke and erectile dysfunction for any stroke. Consideration of sex-specific risk factors can improve individualized stroke risk assessment.

×