Association of Polygenic Risk Score With Cognitive Decline and Motor Progression in Parkinson Disease | Dementia and Cognitive Impairment | JAMA Neurology | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address Please contact the publisher to request reinstatement.
Chaudhuri  KR, Healy  DG, Schapira  AH; National Institute for Clinical Excellence.  Non-motor symptoms of Parkinson’s disease: diagnosis and management.  Lancet Neurol. 2006;5(3):235-245. doi:10.1016/s1474-4422(06)70373-8PubMedGoogle ScholarCrossref
Martinez-Martin  P, Rodriguez-Blazquez  C, Kurtis  MM, Chaudhuri  KR; NMSS Validation Group.  The impact of non-motor symptoms on health-related quality of life of patients with Parkinson’s disease.  Mov Disord. 2011;26(3):399-406. doi:10.1002/mds.23462PubMedGoogle ScholarCrossref
Santos-García  D, de la Fuente-Fernández  R.  Impact of non-motor symptoms on health-related and perceived quality of life in Parkinson’s disease.  J Neurol Sci. 2013;332(1-2):136-140. doi:10.1016/j.jns.2013.07.005PubMedGoogle ScholarCrossref
Do  CB, Tung  JY, Dorfman  E,  et al.  Web-based genome-wide association study identifies two novel loci and a substantial genetic component for Parkinson’s disease.  PLoS Genet. 2011;7(6):e1002141. doi:10.1371/journal.pgen.1002141PubMedGoogle ScholarCrossref
Nalls  MA, Pankratz  N, Lill  CM,  et al; International Parkinson’s Disease Genomics Consortium (IPDGC); Parkinson’s Study Group (PSG) Parkinson’s Research: The Organized GENetics Initiative (PROGENI); 23andMe; GenePD; NeuroGenetics Research Consortium (NGRC); Hussman Institute of Human Genomics (HIHG); Ashkenazi Jewish Dataset Investigator; Cohorts for Health and Aging Research in Genetic Epidemiology (CHARGE); North American Brain Expression Consortium (NABEC); United Kingdom Brain Expression Consortium (UKBEC); Greek Parkinson’s Disease Consortium; Alzheimer Genetic Analysis Group.  Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease.  Nat Genet. 2014;46(9):989-993. doi:10.1038/ng.3043PubMedGoogle ScholarCrossref
Nalls  MA, Escott-Price  V, Williams  NM,  et al; International Parkinson’s Disease Genomics Consortium (IPDGC).  Genetic risk and age in Parkinson’s disease: continuum not stratum.  Mov Disord. 2015;30(6):850-854. doi:10.1002/mds.26192PubMedGoogle ScholarCrossref
Lill  CM, Hansen  J, Olsen  JH, Binder  H, Ritz  B, Bertram  L.  Impact of Parkinson’s disease risk loci on age at onset.  Mov Disord. 2015;30(6):847-850. doi:10.1002/mds.26237PubMedGoogle ScholarCrossref
Davis  AA, Andruska  KM, Benitez  BA, Racette  BA, Perlmutter  JS, Cruchaga  C.  Variants in GBA, SNCA, and MAPT influence Parkinson disease risk, age at onset, and progression.  Neurobiol Aging. 2016;37:209.e1-209.e7. doi:10.1016/j.neurobiolaging.2015.09.014PubMedGoogle ScholarCrossref
Pihlstrøm  L, Morset  KR, Grimstad  E, Vitelli  V, Toft  M.  A cumulative genetic risk score predicts progression in Parkinson’s disease.  Mov Disord. 2016;31(4):487-490. doi:10.1002/mds.26505PubMedGoogle ScholarCrossref
Hoehn  MM, Yahr  MD.  Parkinsonism: onset, progression and mortality.  Neurology. 1967;17(5):427-442. doi:10.1212/WNL.17.5.427PubMedGoogle ScholarCrossref
Costello  S, Cockburn  M, Bronstein  J, Zhang  X, Ritz  B.  Parkinson’s disease and residential exposure to maneb and paraquat from agricultural applications in the Central Valley of California.  Am J Epidemiol. 2009;169(8):919-926. doi:10.1093/aje/kwp006PubMedGoogle ScholarCrossref
Gatto  NM, Rhodes  SL, Manthripragada  AD,  et al.  α-Synuclein gene may interact with environmental factors in increasing risk of Parkinson’s disease.  Neuroepidemiology. 2010;35(3):191-195. doi:10.1159/000315157PubMedGoogle ScholarCrossref
Kang  GA, Bronstein  JM, Masterman  DL, Redelings  M, Crum  JA, Ritz  B.  Clinical characteristics in early Parkinson’s disease in a central California population-based study.  Mov Disord. 2005;20(9):1133-1142. doi:10.1002/mds.20513PubMedGoogle ScholarCrossref
Ritz  B, Rhodes  SL, Bordelon  Y, Bronstein  J.  α-Synuclein genetic variants predict faster motor symptom progression in idiopathic Parkinson disease.  PLoS One. 2012;7(5):e36199. doi:10.1371/journal.pone.0036199PubMedGoogle ScholarCrossref
Hughes  AJ, Daniel  SE, Kilford  L, Lees  AJ.  Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases.  J Neurol Neurosurg Psychiatry. 1992;55(3):181-184. doi:10.1136/jnnp.55.3.181PubMedGoogle ScholarCrossref
Fahn  S, Elton  R; Members of the UPDRS Development Committee. In: Fahn S, Marsden CD, Calne DB, Goldstein M, eds. Recent Developments in Parkinson’s Disease, Vol 2. Florham Park, NJ: Macmillan Health Care Information; 1987: 153-163, 293-304.
Folstein  MF, Folstein  SE, McHugh  PR.  “Mini-mental state”: a practical method for grading the cognitive state of patients for the clinician.  J Psychiatr Res. 1975;12(3):189-198.PubMedGoogle ScholarCrossref
Hensel  A, Angermeyer  MC, Riedel-Heller  SG.  Measuring cognitive change in older adults: reliable change indices for the Mini-Mental State Examination.  J Neurol Neurosurg Psychiatry. 2007;78(12):1298-1303. doi:10.1136/jnnp.2006.109074PubMedGoogle ScholarCrossref
Tombaugh  TN.  Test-retest reliable coefficients and 5-year change scores for the MMSE and 3MS.  Arch Clin Neuropsychol. 2005;20(4):485-503. doi:10.1016/j.acn.2004.11.004PubMedGoogle ScholarCrossref
Shulman  LM, Gruber-Baldini  AL, Anderson  KE, Fishman  PS, Reich  SG, Weiner  WJ.  The clinically important difference on the Unified Parkinson’s Disease Rating Scale.  Arch Neurol. 2010;67(1):64-70.PubMedGoogle ScholarCrossref
Purcell  SM, Wray  NR, Stone  JL,  et al; International Schizophrenia Consortium.  Common polygenic variation contributes to risk of schizophrenia and bipolar disorder.  Nature. 2009;460(7256):748-752. doi:10.1038/nature08185PubMedGoogle Scholar
Hernán  M, Robins J. Causal inference. Published March 5, 2017. Accessed June 9, 2017.
Aarsland  D, Kurz  MW.  The epidemiology of dementia associated with Parkinson’s disease.  Brain Pathol. 2010;20(3):633-639. doi:10.1111/j.1750-3639.2009.00369.xPubMedGoogle ScholarCrossref
Crosiers  D, Verstraeten  A, Wauters  E,  et al.  Mutations in glucocerebrosidase are a major genetic risk factor for Parkinson’s disease and increase susceptibility to dementia in a Flanders-Belgian cohort.  Neurosci Lett. 2016;629:160-164.PubMedGoogle ScholarCrossref
Mata  IF, Johnson  CO, Leverenz  JB,  et al.  Large-scale exploratory genetic analysis of cognitive impairment in Parkinson’s disease.  Neurobiol Aging. 2017;56:211.e1-211.e7.PubMedGoogle ScholarCrossref
Winder-Rhodes  SE, Evans  JR, Ban  M,  et al.  Glucocerebrosidase mutations influence the natural history of Parkinson’s disease in a community-based incident cohort.  Brain. 2013;136(pt 2):392-399. doi:10.1093/brain/aws318PubMedGoogle ScholarCrossref
Srivatsal  S, Cholerton  B, Leverenz  JB,  et al.  Cognitive profile of LRRK2-related Parkinson’s disease.  Mov Disord. 2015;30(5):728-733. doi:10.1002/mds.26161PubMedGoogle ScholarCrossref
Thaler  A, Mirelman  A, Gurevich  T,  et al; LRRK2 Ashkenazi Jewish Consortium.  Lower cognitive performance in healthy G2019S LRRK2 mutation carriers.  Neurology. 2012;79(10):1027-1032. doi:10.1212/WNL.0b013e3182684646PubMedGoogle ScholarCrossref
Zhu  XC, Cao  L, Tan  MS,  et al.  Association of Parkinson’s disease GWAS-linked loci with Alzheimer’s disease in Han Chinese.  Mol Neurobiol. 2017;54(1):308-318. doi:10.1007/s12035-015-9649-5PubMedGoogle ScholarCrossref
Goris  A, Williams-Gray  CH, Clark  GR,  et al.  Tau and α-synuclein in susceptibility to, and dementia in, Parkinson’s disease.  Ann Neurol. 2007;62(2):145-153. doi:10.1002/ana.21192PubMedGoogle ScholarCrossref
Morley  JF, Xie  SX, Hurtig  HI,  et al.  Genetic influences on cognitive decline in Parkinson’s disease.  Mov Disord. 2012;27(4):512-518. doi:10.1002/mds.24946PubMedGoogle ScholarCrossref
Poulopoulos  M, Levy  OA, Alcalay  RN.  The neuropathology of genetic Parkinson’s disease.  Mov Disord. 2012;27(7):831-842. doi:10.1002/mds.24962PubMedGoogle ScholarCrossref
Guella  I, Evans  DM, Szu-Tu  C,  et al; SNCA Cognition Study Group.  α-Synuclein genetic variability: a biomarker for dementia in Parkinson disease.  Ann Neurol. 2016;79(6):991-999. doi:10.1002/ana.24664PubMedGoogle ScholarCrossref
O’Bryant  SE, Humphreys  JD, Smith  GE,  et al.  Detecting dementia with the Mini-Mental State Examination in highly educated individuals.  Arch Neurol. 2008;65(7):963-967. doi:10.1001/archneur.65.7.963PubMedGoogle ScholarCrossref
Woodford  HJ, George  J.  Cognitive assessment in the elderly: a review of clinical methods.  QJM. 2007;100(8):469-484. doi:10.1093/qjmed/hcm051PubMedGoogle ScholarCrossref
Iverson  GL.  Interpretation of Mini-Mental State Examination scores in community-dwelling elderly and geriatric neuropsychiatry patients.  Int J Geriatr Psychiatry. 1998;13(10):661-666. doi:10.1002/(SICI)1099-1166(1998100)13:10<661:AID-GPS838>3.0.CO;2-0PubMedGoogle ScholarCrossref
Neumann  J, Bras  J, Deas  E,  et al.  Glucocerebrosidase mutations in clinical and pathologically proven Parkinson’s disease.  Brain. 2009;132(pt 7):1783-1794. doi:10.1093/brain/awp044PubMedGoogle ScholarCrossref
Brockmann  K, Srulijes  K, Hauser  AK,  et al.  GBA-associated PD presents with nonmotor characteristics.  Neurology. 2011;77(3):276-280. doi:10.1212/WNL.0b013e318225ab77PubMedGoogle ScholarCrossref
Goker-Alpan  O, Lopez  G, Vithayathil  J, Davis  J, Hallett  M, Sidransky  E.  The spectrum of parkinsonian manifestations associated with glucocerebrosidase mutations.  Arch Neurol. 2008;65(10):1353-1357. doi:10.1001/archneur.65.10.1353PubMedGoogle ScholarCrossref
Oeda  T, Umemura  A, Mori  Y,  et al.  Impact of glucocerebrosidase mutations on motor and nonmotor complications in Parkinson’s disease.  Neurobiol Aging. 2015;36(12):3306-3313. doi:10.1016/j.neurobiolaging.2015.08.027PubMedGoogle ScholarCrossref
Setó-Salvia  N, Pagonabarraga  J, Houlden  H,  et al.  Glucocerebrosidase mutations confer a greater risk of dementia during Parkinson’s disease course.  Mov Disord. 2012;27(3):393-399. doi:10.1002/mds.24045PubMedGoogle ScholarCrossref
Mata  IF, Leverenz  JB, Weintraub  D,  et al.  GBA variants are associated with a distinct pattern of cognitive deficits in Parkinson’s disease.  Mov Disord. 2016;31(1):95-102. doi:10.1002/mds.26359PubMedGoogle ScholarCrossref
Original Investigation
March 2018

Association of Polygenic Risk Score With Cognitive Decline and Motor Progression in Parkinson Disease

Author Affiliations
  • 1Department of Epidemiology, UCLA (University of California, Los Angeles) Fielding School of Public Health
  • 2Genetic and Molecular Epidemiology Group, Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
  • 3Department of Neurology, UCLA David Geffen School of Medicine
JAMA Neurol. 2018;75(3):360-366. doi:10.1001/jamaneurol.2017.4206
Key Points

Question  Do genome-wide association study–identified susceptibility risk loci for Parkinson disease modify cognitive and motor symptom progression?

Findings  In this population-based study of 285 patients with Parkinson disease, a higher polygenic risk score based on 23 Parkinson disease genome-wide association study–identified single-nucleotide polymorphisms was associated with faster cognitive decline and progression of motor symptoms. Results did not change after removing GBA loci from the risk score.

Meaning  Susceptibility risk alleles had a cumulative association with cognitive and motor decline in Parkinson disease; these alleles may influence not only Parkinson disease susceptibility but also disease progression in multiple domains.


Importance  Genetic factors have a well-known influence on Parkinson disease (PD) susceptibility. The largest genome-wide association study (GWAS) identified 26 independent single-nucleotide polymorphisms (SNPs) associated with PD risk. Among patients, the course and severity of symptom progression is variable, and little is known about the potential association of genetic factors with phenotypic variance.

Objective  To assess whether GWAS-identified PD risk SNPs also have a cumulative association with the progression of cognitive and motor symptoms in patients with PD.

Design, Setting, and Participants  This longitudinal population-based cohort study of 285 patients of European ancestry with incident PD genotyped 23 GWAS SNPs. One hundred ninety-nine patients were followed up for a mean (SD) of 5.3 (2.1) years for progression (baseline: June 1, 2001, through November 31, 2007; follow-up: June 1, 2007, through August 31, 2013, with mortality surveillance through December 31, 2016); 57 patients had died or were too ill for follow-up, and 29 withdrew or could not be contacted. Movement disorder specialists repeatedly assessed PD symptom progression.

Main Outcomes Measures  The combined association of PD risk loci, after creating a weighted polygenic risk score (PRS), with cognitive decline, motor progression, and survival, relying on Cox proportional hazards regression models and inverse probability weights to account for censoring.

Results  Of the 285 patients undergoing genotyping, 160 were men (56.1%) and 125 were women (43.9%); the mean (SD) age at diagnosis was 69.1 (10.4) years. The weighted PRS was associated with significantly faster cognitive decline, measured by change in the Mini-Mental State Examination (hazard ratio [HR] per 1 SD, 1.44; 95% CI, 1.00-2.07). The PRS was also associated with faster motor decline, measured by time to Hoehn & Yahr Scale stage 3 (HR, 1.34; 95% CI, 1.00-1.79) and change in Unified Parkinson’s Disease Rating Scale part III score (HR, 1.42; 95% CI, 1.00-2.01).

Conclusions and Relevance  Susceptibility SNPs for PD combined with a cumulative PRS were associated with faster motor and cognitive decline in patients. Thus, these genetic markers may be associated with not only PD susceptibility but also disease progression in multiple domains.