Association of Sleep-Disordered Breathing With Alzheimer Disease Biomarkers in Community-Dwelling Older Adults: A Secondary Analysis of a Randomized Clinical Trial | Dementia and Cognitive Impairment | JAMA Neurology | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address Please contact the publisher to request reinstatement.
Berry  RB, Brooks  R, Gamaldo  C,  et al.  AASM scoring manual updates for 2017 (version 2.4).   J Clin Sleep Med. 2017;13(5):665-666. doi:10.5664/jcsm.6576 PubMedGoogle ScholarCrossref
Malhotra  A, White  DP.  Obstructive sleep apnoea.   Lancet. 2002;360(9328):237-245. doi:10.1016/S0140-6736(02)09464-3 PubMedGoogle ScholarCrossref
Ancoli-Israel  S, Kripke  DF, Mason  W, Messin  S.  Comparisons of home sleep recordings and polysomnograms in older adults with sleep disorders.   Sleep. 1981;4(3):283-291. doi:10.1093/sleep/4.3.283 PubMedGoogle ScholarCrossref
Senaratna  CV, Perret  JL, Lodge  CJ,  et al.  Prevalence of obstructive sleep apnea in the general population: a systematic review.   Sleep Med Rev. 2017;34:70-81. doi:10.1016/j.smrv.2016.07.002 PubMedGoogle ScholarCrossref
Emamian  F, Khazaie  H, Tahmasian  M,  et al.  The association between obstructive sleep apnea and Alzheimer’s disease: a meta-analysis perspective.   Front Aging Neurosci. 2016;8:78. doi:10.3389/fnagi.2016.00078 PubMedGoogle ScholarCrossref
Yaffe  K, Laffan  AM, Harrison  SL,  et al.  Sleep-disordered breathing, hypoxia, and risk of mild cognitive impairment and dementia in older women.   JAMA. 2011;306(6):613-619. doi:10.1001/jama.2011.1115 PubMedGoogle ScholarCrossref
Leng  Y, McEvoy  CT, Allen  IE, Yaffe  K.  Association of sleep-disordered breathing with cognitive function and risk of cognitive impairment: a systematic review and meta-analysis.   JAMA Neurol. 2017;74(10):1237-1245. doi:10.1001/jamaneurol.2017.2180 PubMedGoogle ScholarCrossref
Osorio  RS, Gumb  T, Pirraglia  E,  et al; Alzheimer’s Disease Neuroimaging Initiative.  Sleep-disordered breathing advances cognitive decline in the elderly.   Neurology. 2015;84(19):1964-1971. doi:10.1212/WNL.0000000000001566 PubMedGoogle ScholarCrossref
Huang  X, Tang  S, Lyu  X, Yang  C, Chen  X.  Structural and functional brain alterations in obstructive sleep apnea: a multimodal meta-analysis.   Sleep Med. 2019;54:195-204. doi:10.1016/j.sleep.2018.09.025 PubMedGoogle ScholarCrossref
Shi  Y, Chen  L, Chen  T,  et al.  A meta-analysis of voxel-based brain morphometry studies in obstructive sleep apnea.   Sci Rep. 2017;7(1):10095. doi:10.1038/s41598-017-09319-6 PubMedGoogle ScholarCrossref
Tahmasian  M, Rosenzweig  I, Eickhoff  SB,  et al.  Structural and functional neural adaptations in obstructive sleep apnea: an activation likelihood estimation meta-analysis.   Neurosci Biobehav Rev. 2016;65:142-156. doi:10.1016/j.neubiorev.2016.03.026 PubMedGoogle ScholarCrossref
Baril  A-A, Gagnon  K, Brayet  P,  et al.  Gray Matter hypertrophy and thickening with obstructive sleep apnea in middle-aged and older adults.   Am J Respir Crit Care Med. 2017;195(11):1509-1518. doi:10.1164/rccm.201606-1271OC PubMedGoogle ScholarCrossref
Rosenzweig  I, Kempton  MJ, Crum  WR,  et al.  Hippocampal hypertrophy and sleep apnea: a role for the ischemic preconditioning?   PLoS One. 2013;8(12):e83173. doi:10.1371/journal.pone.0083173PubMedGoogle Scholar
Innes  CRH, Kelly  PT, Hlavac  M, Melzer  TR, Jones  RD.  Decreased regional cerebral perfusion in moderate-severe obstructive sleep apnoea during wakefulness.   Sleep. 2015;38(5):699-706. doi:10.5665/sleep.4658 PubMedGoogle ScholarCrossref
Baril  A-A, Gagnon  K, Arbour  C,  et al.  Regional cerebral blood flow during wakeful rest in older subjects with mild to severe obstructive sleep apnea.   Sleep. 2015;38(9):1439-1449. doi:10.5665/sleep.4986 PubMedGoogle ScholarCrossref
Kim  JS, Seo  JH, Kang  M-R,  et al.  Effect of continuous positive airway pressure on regional cerebral blood flow in patients with severe obstructive sleep apnea syndrome.   Sleep Med. 2017;32:122-128. doi:10.1016/j.sleep.2016.03.010 PubMedGoogle ScholarCrossref
Nie  S, Peng  D-C, Gong  H-H, Li  H-J, Chen  L-T, Ye  C-L.  Resting cerebral blood flow alteration in severe obstructive sleep apnoea: an arterial spin labelling perfusion fMRI study.   Sleep Breath. 2017;21(2):487-495. doi:10.1007/s11325-017-1474-9 PubMedGoogle ScholarCrossref
Bu  X-L, Liu  Y-H, Wang  Q-H,  et al.  Serum amyloid-beta levels are increased in patients with obstructive sleep apnea syndrome.   Sci Rep. 2015;5(1):13917. doi:10.1038/srep13917 PubMedGoogle ScholarCrossref
Bubu  OM, Pirraglia  E, Andrade  AG,  et al; Alzheimer’s Disease Neuroimaging Initiative.  Obstructive sleep apnea and longitudinal Alzheimer’s disease biomarker changes.   Sleep. 2019;42(6):zsz048. doi:10.1093/sleep/zsz048 PubMedGoogle Scholar
Liguori  C, Mercuri  NB, Izzi  F,  et al.  Obstructive sleep apnea is associated with early but possibly modifiable Alzheimer’s disease biomarkers changes.   Sleep. 2017;40(5). doi:10.1093/sleep/zsx011 PubMedGoogle Scholar
Sharma  RA, Varga  AW, Bubu  OM,  et al.  Obstructive sleep apnea severity affects amyloid burden in cognitively normal elderly: a longitudinal study.   Am J Respir Crit Care Med. 2018;197(7):933-943. doi:10.1164/rccm.201704-0704OC PubMedGoogle ScholarCrossref
Elias  A, Cummins  T, Tyrrell  R,  et al.  Risk of Alzheimer’s disease in obstructive sleep apnea syndrome: amyloid-β and tau imaging.   J Alzheimers Dis. 2018;66(2):733-741. doi:10.3233/JAD-180640 PubMedGoogle ScholarCrossref
Yun  C-H, Lee  H-Y, Lee  SK,  et al.  Amyloid burden in obstructive sleep apnea.   J Alzheimers Dis. 2017;59(1):21-29. doi:10.3233/JAD-161047 PubMedGoogle ScholarCrossref
Spira  AP, Yager  C, Brandt  J,  et al.  Objectively measured sleep and β-amyloid burden in older adults: a pilot study.   SAGE Open Med. 2014;2. doi:10.1177/2050312114546520 PubMedGoogle Scholar
Poisnel  G, Arenaza-Urquijo  E, Collette  F,  et al; Medit-Ageing Research Group.  The Age-Well randomized controlled trial of the Medit-Ageing European Project: effect of meditation or foreign language training on brain and mental health in older adults.   Alzheimers Dement (N Y). 2018;4:714-723. doi:10.1016/j.trci.2018.10.011 PubMedGoogle Scholar
McNair  DM, Kahn  RJ, Crook  T, Ferris  S, Bartus  R.  Assessment in Geriatric Psychopharmacology. Mark Powley Associates; 1983.
Buysse  DJ, Reynolds  CF  III, Monk  TH, Berman  SR, Kupfer  DJ.  The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research.   Psychiatry Res. 1989;28(2):193-213. doi:10.1016/0165-1781(89)90047-4 PubMedGoogle ScholarCrossref
Johns  MW.  A new method for measuring daytime sleepiness: the Epworth Sleepiness Scale.   Sleep. 1991;14(6):540-545. doi:10.1093/sleep/14.6.540 PubMedGoogle ScholarCrossref
Müller-Gärtner  HW, Links  JM, Prince  JL,  et al.  Measurement of radiotracer concentration in brain gray matter using positron emission tomography: MRI-based correction for partial volume effects.   J Cereb Blood Flow Metab. 1992;12(4):571-583. doi:10.1038/jcbfm.1992.81 PubMedGoogle ScholarCrossref
Sateia  MJ.  International classification of sleep disorders–third edition: highlights and modifications.   Chest. 2014;146(5):1387-1394. doi:10.1378/chest.14-0970 PubMedGoogle ScholarCrossref
Ju  Y-ES, Finn  MB, Sutphen  CL,  et al.  Obstructive sleep apnea decreases central nervous system-derived proteins in the cerebrospinal fluid.   Ann Neurol. 2016;80(1):154-159. doi:10.1002/ana.24672 PubMedGoogle ScholarCrossref
Osorio  RS, Ayappa  I, Mantua  J,  et al.  Interaction between sleep-disordered breathing and apolipoprotein E genotype on cerebrospinal fluid biomarkers for Alzheimer’s disease in cognitively normal elderly individuals.   Neurobiol Aging. 2014;35(6):1318-1324. doi:10.1016/j.neurobiolaging.2013.12.030 PubMedGoogle ScholarCrossref
Tzourio-Mazoyer  N, Landeau  B, Papathanassiou  D,  et al.  Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain.   Neuroimage. 2002;15(1):273-289. doi:10.1006/nimg.2001.0978 PubMedGoogle ScholarCrossref
Sun  X, He  G, Qing  H,  et al.  Hypoxia facilitates Alzheimer’s disease pathogenesis by up-regulating BACE1 gene expression.   Proc Natl Acad Sci U S A. 2006;103(49):18727-18732. doi:10.1073/pnas.0606298103 PubMedGoogle ScholarCrossref
Li  L, Zhang  X, Yang  D, Luo  G, Chen  S, Le  W.  Hypoxia increases Abeta generation by altering beta- and gamma-cleavage of APP.   Neurobiol Aging. 2009;30(7):1091-1098. doi:10.1016/j.neurobiolaging.2007.10.011 PubMedGoogle ScholarCrossref
Shiota  S, Takekawa  H, Matsumoto  S-E,  et al.  Chronic intermittent hypoxia/reoxygenation facilitate amyloid-β generation in mice.   J Alzheimers Dis. 2013;37(2):325-333. doi:10.3233/JAD-130419 PubMedGoogle ScholarCrossref
Blackwell  T, Yaffe  K, Laffan  A,  et al; Osteoporotic Fractures in Men Study Group.  Associations between sleep-disordered breathing, nocturnal hypoxemia, and subsequent cognitive decline in older community-dwelling men: the Osteoporotic Fractures in Men Sleep Study.   J Am Geriatr Soc. 2015;63(3):453-461. doi:10.1111/jgs.13321 PubMedGoogle ScholarCrossref
Rosenzweig  I, Williams  SCR, Morrell  MJ.  The impact of sleep and hypoxia on the brain: potential mechanisms for the effects of obstructive sleep apnea.   Curr Opin Pulm Med. 2014;20(6):565-571. doi:10.1097/MCP.0000000000000099 PubMedGoogle ScholarCrossref
Cross  NE, Memarian  N, Duffy  SL,  et al.  Structural brain correlates of obstructive sleep apnoea in older adults at risk for dementia.   Eur Respir J. 2018;52(1):1800740. doi:10.1183/13993003.00740-2018 PubMedGoogle Scholar
Aviles-Reyes  RX, Angelo  MF, Villarreal  A, Rios  H, Lazarowski  A, Ramos  AJ.  Intermittent hypoxia during sleep induces reactive gliosis and limited neuronal death in rats: implications for sleep apnea.   J Neurochem. 2010;112(4):854-869. doi:10.1111/j.1471-4159.2009.06535.x PubMedGoogle ScholarCrossref
Li  K, Zhang  J, Qin  Y, Wei  Y-X.  Association between serum homocysteine level and obstructive sleep apnea: a meta-analysis.   Biomed Res Int. 2017;2017:7234528. doi:10.1155/2017/7234528 PubMedGoogle Scholar
Daulatzai  MA.  Death by a thousand cuts in Alzheimer’s disease: hypoxia—the prodrome.   Neurotox Res. 2013;24(2):216-243. doi:10.1007/s12640-013-9379-2 PubMedGoogle ScholarCrossref
Bero  AW, Yan  P, Roh  JH,  et al.  Neuronal activity regulates the regional vulnerability to amyloid-β deposition.   Nat Neurosci. 2011;14(6):750-756. doi:10.1038/nn.2801 PubMedGoogle ScholarCrossref
Raichle  ME, MacLeod  AM, Snyder  AZ, Powers  WJ, Gusnard  DA, Shulman  GL.  A default mode of brain function.   Proc Natl Acad Sci U S A. 2001;98(2):676-682. doi:10.1073/pnas.98.2.676 PubMedGoogle ScholarCrossref
Buckner  RL, Sepulcre  J, Talukdar  T,  et al.  Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer’s disease.   J Neurosci. 2009;29(6):1860-1873. doi:10.1523/JNEUROSCI.5062-08.2009 PubMedGoogle ScholarCrossref
Cirrito  JR, Yamada  KA, Finn  MB,  et al.  Synaptic activity regulates interstitial fluid amyloid-β levels in vivo.   Neuron. 2005;48(6):913-922. doi:10.1016/j.neuron.2005.10.028 PubMedGoogle ScholarCrossref
Kinney  JW, Bemiller  SM, Murtishaw  AS, Leisgang  AM, Salazar  AM, Lamb  BT.  Inflammation as a central mechanism in Alzheimer’s disease.   Alzheimers Dement (N Y). 2018;4:575-590. doi:10.1016/j.trci.2018.06.014 PubMedGoogle Scholar
Fortea  J, Vilaplana  E, Alcolea  D,  et al; Alzheimer’s Disease Neuroimaging Initiative.  Cerebrospinal fluid β-amyloid and phospho-tau biomarker interactions affecting brain structure in preclinical Alzheimer disease.   Ann Neurol. 2014;76(2):223-230. doi:10.1002/ana.24186 PubMedGoogle ScholarCrossref
Pegueroles  J, Vilaplana  E, Montal  V,  et al; Alzheimer’s Disease Neuroimaging Initiative.  Longitudinal brain structural changes in preclinical Alzheimer’s disease.   Alzheimers Dement. 2017;13(5):499-509. doi:10.1016/j.jalz.2016.08.010 PubMedGoogle ScholarCrossref
Stern  Y, Arenaza-Urquijo  EM, Bartrés-Faz  D,  et al; Reserve, Resilience and Protective Factors PIA Empirical Definitions and Conceptual Frameworks Workgroup.  Whitepaper: defining and investigating cognitive reserve, brain reserve, and brain maintenance.   Alzheimers Dement. 2018;pii:S1552-5260(18)33491-5. doi:10.1016/j.jalz.2018.07.219 PubMedGoogle Scholar
Olaithe  M, Bucks  RS, Hillman  DR, Eastwood  PR.  Cognitive deficits in obstructive sleep apnea: Insights from a meta-review and comparison with deficits observed in COPD, insomnia, and sleep deprivation.   Sleep Med Rev. 2018;38:39-49. doi:10.1016/j.smrv.2017.03.005 PubMedGoogle ScholarCrossref
Boland  LL, Shahar  E, Iber  C, Knopman  DS, Kuo  TF, Nieto  FJ; Sleep Heart Health Study (SHHS) Investigators.  Measures of cognitive function in persons with varying degrees of sleep-disordered breathing: the Sleep Heart Health Study.   J Sleep Res. 2002;11(3):265-272. doi:10.1046/j.1365-2869.2002.00308.x PubMedGoogle ScholarCrossref
Sforza  E, Roche  F, Thomas-Anterion  C,  et al.  Cognitive function and sleep related breathing disorders in a healthy elderly population: the SYNAPSE study.   Sleep. 2010;33(4):515-521. doi:10.1093/sleep/33.4.515 PubMedGoogle ScholarCrossref
Limit 200 characters
Limit 25 characters
Conflicts of Interest Disclosure

Identify all potential conflicts of interest that might be relevant to your comment.

Conflicts of interest comprise financial interests, activities, and relationships within the past 3 years including but not limited to employment, affiliation, grants or funding, consultancies, honoraria or payment, speaker's bureaus, stock ownership or options, expert testimony, royalties, donation of medical equipment, or patents planned, pending, or issued.

Err on the side of full disclosure.

If you have no conflicts of interest, check "No potential conflicts of interest" in the box below. The information will be posted with your response.

Not all submitted comments are published. Please see our commenting policy for details.

Limit 140 characters
Limit 3600 characters or approximately 600 words
    1 Comment for this article
    RE: Association of sleep-disordered breathing with Alzheimer disease biomarkers in community-dwelling older adults
    Tomoyuki Kawada, MD | Nippon Medical School
    André et al. conducted a cross-sectional study to evaluate the association of sleep-disordered breathing (SDB) with amyloid deposition and neuronal activity in 127 older cognitively unimpaired individuals (1). Based on an apnea-hypopnea index cutoff of 15 events per hour, participants were classified as having SDB or not. Participants with SDB showed greater amyloid burden, gray matter volume, perfusion, and glucose metabolism, notably in the posterior cingulate cortex and precuneus. In contrast, there were no significant associations of SDB with cognition, self-reported cognitive and sleep difficulties, or excessive daytime sleepiness symptoms. They recommended the screening and treatment for SDB, especially in asymptomatic older populations, to reduce Alzheimer disease (AD) risk. I have some concerns about their study with special reference to the effect of SDB treatment on cognitive impairment and AD.

    Bubu et al. conducted a systematic review on the association between obstructive sleep apnea (OSA), cognition and AD (2). OSA is significantly associated with mild impairment in attention, memory and executive function in middle-aged adults. In older-adults, OSA is significantly associated with the development of mild cognitive impairment (MCI) or Alzheimer disease having symptoms of disturbed sleep/cognitive-impairment by prospective studies. They also recognize that continuous positive airway pressure (CPAP) treatment may be effective in improving cognition in OSA patients with AD.

    Regarding the effect of treatment, Tsai et al. conducted a retrospective cohort study to assess the risk of AD in patients with OSA with or without treatment (3). Adjusted hazard ratio (95% confidence interval [CI]) of OSA for AD was 2.12 (1.27-3.56). In addition, adjusted rate ratio (95% CI) of OSA treatment by CPAP for AD was 0.23 (0.06-0.98). Furthermore, the average period of AD incidence from OSA occurrence was 5.44 years with one standard deviation of 2.96 years. Risk factors for AD incidence have been reported (4), and OSA/SDB should also be included for the risk assessment of AD incidence.

    Finally, Perez-Cabezas et al. conducted a systematic review to evaluate the treatment of OSA with CPAP in patients with AD (5). Treatment decreases excessive daytime sleepiness and improves sleep quality. In addition, CPAP treatment has a preventive effect on the progression of cognitive impairment and AD incidence. This report handled a limited number of papers, and the association should be verified by prospective/interventional studies.

    1. André C, et al. Association of sleep-disordered breathing with Alzheimer disease biomarkers in community-dwelling older adults: A secondary analysis of a randomized clinical trial. JAMA Neurol. 2020 Mar 23. doi: 10.1001/jamaneurol.2020.0311

    2. Bubu OM, et al. Obstructive sleep apnea, cognition and Alzheimer's disease: A systematic review integrating three decades of multidisciplinary research. Sleep Med Rev. 2020;50:101250. doi: 10.1016/j.smrv.2019.101250

    3. Tsai MS, et al. Risk of Alzheimer's disease in obstructive sleep apnea patients with or without treatment: Real-world evidence. Laryngoscope. 2020 Feb 11. doi: 10.1002/lary.28558

    4. Sperling RA, et al. Association of factors with elevated amyloid burden in clinically normal older individuals. JAMA Neurol. 2020 Apr 6. doi: 10.1001/jamaneurol.2020.0387

    5. Perez-Cabezas V, et al. Continuous positive airway pressure treatment in patients with Alzheimer's disease: A systematic review. J Clin Med. 2020;9(1):E181. doi: 10.3390/jcm9010181
    Original Investigation
    March 23, 2020

    Association of Sleep-Disordered Breathing With Alzheimer Disease Biomarkers in Community-Dwelling Older Adults: A Secondary Analysis of a Randomized Clinical Trial

    Author Affiliations
    • 1Normandie Université, Université de Caen, Institut National de la Santé et de la Recherche Médicale, Unité 1237 "Physiopathology and Imaging of Neurological Disorders,” Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, Caen, France
    • 2Normandie Université, Université de Caen, Paris Sciences & Lettres Université, École Pratique des Hautes Études, Institut National de la Santé et de la Recherche Médicale, Unité 1077 "Neuropsychologie et Imagerie de la Mémoire Humaine," Centre Hospitalier Universitaire de Caen, GIP Cyceron, Caen, France
    • 3Centre National de la Recherche Scientifique, Unité Mixte de Service 3048, GIP Cyceron, Caen, France
    • 4Normandie Université, Université de Caen, EA 4650 "Signalisation, Électrophysiologie et Imagerie des Lésions d'Ischémie-Reperfusion Myocardique", GIP Cyceron, Caen, France
    • 5Division of Psychiatry, University College London, London, United Kingdom
    • 6Lyon Neuroscience Research Center, Institut National de la Santé et de la Recherche Médicale Unité 1028, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5292, Lyon University, Lyon, France
    • 7Swiss Center for Affective Sciences, Department of Medicine, University of Geneva, Geneva, Switzerland
    • 8GIGA–Cyclotron Research Centre, In Vivo Imaging and Psychology and Cognitive Neuroscience Unit, Liège University, Liège, Belgium
    • 9Département de Recherche Clinique, Centre Hospitalier Universitaire de Caen-Normandie, Caen, France
    • 10Unité d’Exploration et de Traitement des Troubles du Sommeil, Centre Hospitalier Universitaire de Caen, Caen, France
    • 11Service de Neurologie, Centre Hospitalier Universitaire de Caen, Caen, France
    JAMA Neurol. 2020;77(6):716-724. doi:10.1001/jamaneurol.2020.0311
    Key Points

    Question  Which brain changes are associated with sleep-disordered breathing in aging?

    Findings  In this cross-sectional study of 127 community-dwelling older individuals who were cognitively unimpaired, the presence of sleep-disordered breathing was associated with greater amyloid burden, gray matter volume, metabolism, and perfusion in the posterior cingulate cortex and precuneus. There was no association with cognitive performance, self-reported cognitive or sleep difficulties, or excessive daytime sleepiness.

    Meaning  Sleep-disordered breathing–associated changes include amyloid deposition in brain regions typically involved in Alzheimer disease, which might explain why sleep-disordered breathing is associated with an increased risk for developing Alzheimer clinical syndrome at a younger age.


    Importance  Increasing evidence suggests that sleep-disordered breathing (SDB) increases the risk of developing Alzheimer clinical syndrome. However, the brain mechanisms underlying the link between SDB and Alzheimer disease are still unclear.

    Objective  To determine which brain changes are associated with the presence of SDB in older individuals who are cognitively unimpaired, including changes in amyloid deposition, gray matter volume, perfusion, and glucose metabolism.

    Design, Setting, and Participants  This cross-sectional study was conducted using data from the Age-Well randomized clinical trial of the Medit-Ageing European project, acquired between 2016 and 2018 at Cyceron Center in Caen, France. Community-dwelling older adults were assessed for eligibility and were enrolled in the Age-Well clinical trial if they did not meet medical or cognitive exclusion criteria and were willing to participate. Participants who completed a detailed neuropsychological assessment, polysomnography, a magnetic resonance imaging, and florbetapir and fluorodeoxyglucose positron emission tomography scans were included in the analyses.

    Main Outcomes and Measures  Based on an apnea-hypopnea index cutoff of 15 events per hour, participants were classified as having SDB or not. Voxelwise between-group comparisons were performed for each neuroimaging modality, and secondary analyses aimed at identifying which SDB parameter (sleep fragmentation, hypoxia severity, or frequency of respiratory disturbances) best explained the observed brain changes and assessing whether SDB severity and/or SDB-associated brain changes are associated with cognitive and behavioral changes.

    Results  Of 157 participants initially assessed, 137 were enrolled in the Age-Well clinical trial, and 127 were analyzed in this study. The mean (SD) age of the 127 participants was 69.1 (3.9) years, and 80 (63.0%) were women. Participants with SDB showed greater amyloid burden (t114 = 4.51; familywise error–corrected P = .04; Cohen d, 0.83), gray matter volume (t119 = 4.12; familywise error–corrected P = .04; Cohen d, 0.75), perfusion (t116 = 4.62; familywise error–corrected P = .001; Cohen d, 0.86), and metabolism (t79 = 4.63; familywise error–corrected P = .001; Cohen d, 1.04), overlapping mainly over the posterior cingulate cortex and precuneus. No association was found with cognition, self-reported cognitive and sleep difficulties, or excessive daytime sleepiness symptoms.

    Conclusions and Relevance  The SDB-associated brain changes in older adults who are cognitively unimpaired include greater amyloid deposition and neuronal activity in Alzheimer disease–sensitive brain regions, notably the posterior cingulate cortex and precuneus. These results support the need to screen and treat for SDB, especially in asymptomatic older populations, to reduce Alzheimer disease risk.

    Trial Registration Identifier: NCT02977819