[Skip to Content]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 34.238.190.122. Please contact the publisher to request reinstatement.
[Skip to Content Landing]
1.
Singh  S, Garg  SK, Pardi  DS, Wang  Z, Murad  MH, Loftus  EV  Jr.  Comparative efficacy of pharmacologic interventions in preventing relapse of Crohn’s disease after surgery: a systematic review and network meta-analysis.   Gastroenterology. 2015;148(1):64-76.e2. doi:10.1053/j.gastro.2014.09.031PubMedGoogle Scholar
2.
Elliott  MJ, Maini  RN, Feldmann  M,  et al.  Randomised double-blind comparison of chimeric monoclonal antibody to tumour necrosis factor alpha (cA2) versus placebo in rheumatoid arthritis.   Lancet. 1994;344(8930):1105-1110. doi:10.1016/S0140-6736(94)90628-9PubMedGoogle Scholar
3.
Slevin  SM, Egan  LJ.  New insights into the mechanisms of action of anti-tumor necrosis factor-α monoclonal antibodies in inflammatory bowel disease.   Inflamm Bowel Dis. 2015;21(12):2909-2920. doi:10.1097/MIB.0000000000000533PubMedGoogle Scholar
4.
van Oosten  BW, Barkhof  F, Truyen  L,  et al.  Increased MRI activity and immune activation in two multiple sclerosis patients treated with the monoclonal anti-tumor necrosis factor antibody cA2.   Neurology. 1996;47(6):1531-1534. doi:10.1212/WNL.47.6.1531PubMedGoogle Scholar
5.
The Lenercept Multiple Sclerosis Study Group and The University of British Columbia MS/MRI Analysis Group.  TNF neutralization in MS: results of a randomized, placebo-controlled multicenter study.   Neurology. 1999;53(3):457-465. doi:10.1212/WNL.53.3.457PubMedGoogle Scholar
6.
Mohan  N, Edwards  ET, Cupps  TR,  et al.  Demyelination occurring during anti-tumor necrosis factor alpha therapy for inflammatory arthritides.   Arthritis Rheum. 2001;44(12):2862-2869. doi:10.1002/1529-0131(200112)44:12<2862::AID-ART474>3.0.CO;2-WPubMedGoogle Scholar
7.
Winthrop  KL, Chen  L, Fraunfelder  FW,  et al.  Initiation of anti-TNF therapy and the risk of optic neuritis: from the Safety Assessment of Biologic ThERapy (SABER) Study.   Am J Ophthalmol. 2013;155(1):183-189.e1. doi:10.1016/j.ajo.2012.06.023PubMedGoogle Scholar
8.
Pérez-De-Lis  M, Retamozo  S, Flores-Chávez  A,  et al.  Autoimmune diseases induced by biological agents: a review of 12,731 cases (BIOGEAS Registry).   Expert Opin Drug Saf. 2017;16(11):1255-1271. doi:10.1080/14740338.2017.1372421PubMedGoogle Scholar
9.
Daïen  CI, Monnier  A, Claudepierre  P,  et al; Club Rhumatismes et Inflammation (CRI).  Sarcoid-like granulomatosis in patients treated with tumor necrosis factor blockers: 10 cases.   Rheumatology (Oxford). 2009;48(8):883-886. doi:10.1093/rheumatology/kep046PubMedGoogle Scholar
10.
Grau  RG.  Drug-induced vasculitis: new insights and a changing lineup of suspects.   Curr Rheumatol Rep. 2015;17(12):71. doi:10.1007/s11926-015-0545-9PubMedGoogle Scholar
11.
Zhu  TH, Nakamura  M, Abrouk  M, Farahnik  B, Koo  J, Bhutani  T.  Demyelinating disorders secondary to TNF-inhibitor therapy for the treatment of psoriasis: a review.   J Dermatolog Treat. 2016;27(5):406-413. doi:10.3109/09546634.2015.1136385PubMedGoogle Scholar
12.
Seror  R, Richez  C, Sordet  C,  et al; Club Rhumatismes et Inflammation Section of the SFR.  Pattern of demyelination occurring during anti-TNF-α therapy: a French national survey.   Rheumatology (Oxford). 2013;52(5):868-874. doi:10.1093/rheumatology/kes375PubMedGoogle Scholar
13.
Gherghel  N, Stan  A, Stan  H.  Pearls & Oy-sters: Rheumatoid meningitis occurring during treatment with etanercept.   Neurology. 2018;91(17):806-808.PubMedGoogle Scholar
14.
Berrios  I, Jun-O’Connell  A, Ghiran  S, Ionete  C.  A case of neurosarcoidosis secondary to treatment of etanercept and review of the literature.   BMJ Case Rep. 2015;2015:bcr2014208188. doi:10.1136/bcr-2014-208188PubMedGoogle Scholar
15.
Micheli  F, Scorticati  MC, Pikielny  R, Zurru  C, Gatto  EM.  Pachymeningeal thickening in rheumatoid arthritis.   Eur Neurol. 1993;33(5):397-398. doi:10.1159/000116980PubMedGoogle Scholar
16.
Rang  EH, Brooke  BN, Hermon-Taylor  J.  Association of ulcerative colitis with multiple sclerosis.   Lancet. 1982;2(8297):555. doi:10.1016/S0140-6736(82)90629-8PubMedGoogle Scholar
17.
Barcellos  LF, Kamdar  BB, Ramsay  PP,  et al.  Clustering of autoimmune diseases in families with a high-risk for multiple sclerosis: a descriptive study.   Lancet Neurol. 2006;5(11):924-931. doi:10.1016/S1474-4422(06)70552-XPubMedGoogle Scholar
18.
Gupta  G, Gelfand  JM, Lewis  JD.  Increased risk for demyelinating diseases in patients with inflammatory bowel disease.   Gastroenterology. 2005;129(3):819-826. doi:10.1053/j.gastro.2005.06.022PubMedGoogle Scholar
19.
Kosmidou  M, Katsanos  AH, Katsanos  KH,  et al.  Multiple sclerosis and inflammatory bowel diseases: a systematic review and meta-analysis.   J Neurol. 2017;264(2):254-259. doi:10.1007/s00415-016-8340-8PubMedGoogle Scholar
20.
Singh  JA, Holmgren  AR, Noorbaloochi  S.  Accuracy of Veterans Administration databases for a diagnosis of rheumatoid arthritis.   Arthritis Rheum. 2004;51(6):952-957. doi:10.1002/art.20827PubMedGoogle Scholar
21.
Thompson  AJ, Banwell  BL, Barkhof  F,  et al.  Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria.   Lancet Neurol. 2018;17(2):162-173. doi:10.1016/S1474-4422(17)30470-2PubMedGoogle Scholar
22.
Wingerchuk  DM, Banwell  B, Bennett  JL,  et al; International Panel for NMO Diagnosis.  International consensus diagnostic criteria for neuromyelitis optica spectrum disorders.   Neurology. 2015;85(2):177-189. doi:10.1212/WNL.0000000000001729PubMedGoogle Scholar
23.
Peduzzi  P, Concato  J, Kemper  E, Holford  TR, Feinstein  AR.  A simulation study of the number of events per variable in logistic regression analysis.   J Clin Epidemiol. 1996;49(12):1373-1379. doi:10.1016/S0895-4356(96)00236-3PubMedGoogle Scholar
24.
Dreyer  L, Magyari  M, Laursen  B, Cordtz  R, Sellebjerg  F, Locht  H.  Risk of multiple sclerosis during tumour necrosis factor inhibitor treatment for arthritis: a population-based study from DANBIO and the Danish Multiple Sclerosis Registry.   Ann Rheum Dis. 2016;75(4):785-786. doi:10.1136/annrheumdis-2015-208490PubMedGoogle Scholar
25.
Cavazzana  I, Taraborelli  M, Fredi  M, Tincani  A, Franceschini  F.  Aseptic meningitis occurring during anti-TNF-alpha therapy in rheumatoid arthritis and ankylosing spondylitis.   Clin Exp Rheumatol. 2014;32(5):732-734.PubMedGoogle Scholar
26.
Seago  S, Stroberg  E, Metting  A.  Rheumatoid meningitis associated with infliximab.   Proc (Bayl Univ Med Cent). 2016;29(2):204-206. doi:10.1080/08998280.2016.11929419PubMedGoogle Scholar
27.
Honda  Y, Otsuka  A, Egawa  G,  et al.  Multiple neurological abnormalities, including pontine hemorrhage, multiple sclerosis and aseptic meningitis, during anti-TNF-α therapy in psoriatic arthritis.   Eur J Dermatol. 2015;25(5):487-488. doi:10.1684/ejd.2015.2558PubMedGoogle Scholar
28.
Hegde  N, Gayomali  C, Rich  MW.  Infliximab-induced headache and infliximab-induced meningitis: two ends of the same spectrum?   South Med J. 2005;98(5):564-566. doi:10.1097/01.SMJ.0000155499.21189.75PubMedGoogle Scholar
29.
Matsuura-Otsuki  Y, Hanafusa  T, Yokozeki  H, Watanabe  K.  Infliximab-induced aseptic meningitis during the treatment of psoriatic arthritis.   Case Rep Dermatol. 2017;9(2):26-29. doi:10.1159/000458405PubMedGoogle Scholar
30.
Junga  Z, Theeler  B, Singla  M.  Infliximab-induced aseptic meningitis in a patient with Crohn’s disease.   ACG Case Rep J. 2018;5(1):e48. doi:10.14309/crj.2018.48PubMedGoogle Scholar
31.
Quispel  R, van der Worp  HB, Pruissen  M, Schipper  ME, Oldenburg  B.  Fatal aseptic meningoencephalitis following infliximab treatment for inflammatory bowel disease.   Gut. 2006;55(7):1056-1056. doi:10.1136/gut.2006.093294PubMedGoogle Scholar
32.
Figueroa Rodriguez  F, Minkyung  K, Jinna  S, Farshad  S, Davila  F.  Rheumatoid meningoencephalitis: a feared condition in the era of TNF blockers.   Case Rep Rheumatol. 2018;2018:4610260. doi:10.1155/2018/4610260PubMedGoogle Scholar
33.
Marotte  H, Charrin  JE, Miossec  P.  Infliximab-induced aseptic meningitis.   Lancet. 2001;358(9295):1784. doi:10.1016/S0140-6736(01)06810-6PubMedGoogle Scholar
34.
Zeydan  B, Uygunoglu  U, Saip  S,  et al.  Infliximab is a plausible alternative for neurologic complications of Behçet disease.   Neurol Neuroimmunol Neuroinflamm. 2016;3(5):e258.PubMedGoogle Scholar
35.
Baughman  RP, Drent  M, Kavuru  M,  et al; Sarcoidosis Investigators.  Infliximab therapy in patients with chronic sarcoidosis and pulmonary involvement.   Am J Respir Crit Care Med. 2006;174(7):795-802. doi:10.1164/rccm.200603-402OCPubMedGoogle Scholar
36.
Gelfand  JM, Bradshaw  MJ, Stern  BJ,  et al.  Infliximab for the treatment of CNS sarcoidosis: a multi-institutional series.   Neurology. 2017;89(20):2092-2100. doi:10.1212/WNL.0000000000004644PubMedGoogle Scholar
37.
Hunter  JB, Rivas  A.  Multiple cranial neuropathies following etanercept administration.   Am J Otolaryngol. 2016;37(3):259-262. doi:10.1016/j.amjoto.2015.09.012PubMedGoogle Scholar
38.
Durel  C-A, Feurer  E, Pialat  J-B, Berthoux  E, Chapurlat  RD, Confavreux  CB.  Etanercept may induce neurosarcoidosis in a patient treated for rheumatoid arthritis.   BMC Neurol. 2013;13(1):212. doi:10.1186/1471-2377-13-212PubMedGoogle Scholar
39.
Sturfelt  G, Christensson  B, Bynke  G, Saxne  T.  Neurosarcoidosis in a patient with rheumatoid arthritis during treatment with infliximab.   J Rheumatol. 2007;34(11):2313-2314.PubMedGoogle Scholar
40.
Mao-Draayer  Y, Cash  T.  Neurosarcoidosis in a patient treated with tumor necrosis factor alpha inhibitors.   J Neurol. 2013;260(2):651-653. doi:10.1007/s00415-012-6726-9PubMedGoogle Scholar
41.
Furst  DE, Wallis  R, Broder  M, Beenhouwer  DO.  Tumor necrosis factor antagonists: different kinetics and/or mechanisms of action may explain differences in the risk for developing granulomatous infection.   Semin Arthritis Rheum. 2006;36(3):159-167. doi:10.1016/j.semarthrit.2006.02.001PubMedGoogle Scholar
42.
Kemanetzoglou  E, Andreadou  E.  CNS demyelination with TNF-α blockers.   Curr Neurol Neurosci Rep. 2017;17(4):36. doi:10.1007/s11910-017-0742-1PubMedGoogle Scholar
43.
Robinson  WH, Genovese  MC, Moreland  LW.  Demyelinating and neurologic events reported in association with tumor necrosis factor alpha antagonism: by what mechanisms could tumor necrosis factor alpha antagonists improve rheumatoid arthritis but exacerbate multiple sclerosis?   Arthritis Rheum. 2001;44(9):1977-1983. doi:10.1002/1529-0131(200109)44:9<1977::AID-ART345>3.0.CO;2-6PubMedGoogle Scholar
44.
Salomon  BL, Leclerc  M, Tosello  J, Ronin  E, Piaggio  E, Cohen  JL.  Tumor necrosis factor α and regulatory T cells in oncoimmunology.   Front Immunol. 2018;9:444. doi:10.3389/fimmu.2018.00444PubMedGoogle Scholar
45.
De Felice  KM, Novotna  M, Enders  FT,  et al.  Idiopathic inflammatory demyelinating disease of the central nervous system in patients with inflammatory bowel disease: retrospective analysis of 9095 patients.   Aliment Pharmacol Ther. 2015;41(1):99-107. doi:10.1111/apt.12997PubMedGoogle Scholar
46.
Terdiman  JP, Gruss  CB, Heidelbaugh  JJ, Sultan  S, Falck-Ytter  YT; AGA Institute Clinical Practice and Quality Management Committee.  American Gastroenterological Association Institute guideline on the use of thiopurines, methotrexate, and anti-TNF-α biologic drugs for the induction and maintenance of remission in inflammatory Crohn’s disease.   Gastroenterology. 2013;145(6):1459-1463. doi:10.1053/j.gastro.2013.10.047PubMedGoogle Scholar
47.
Singh  JA, Saag  KG, Bridges  SL  Jr,  et al.  2015 American College of Rheumatology Guideline for the Treatment of Rheumatoid Arthritis.   Arthritis Rheumatol. 2016;68(1):1-26. doi:10.1002/art.39480PubMedGoogle Scholar
Limit 200 characters
Limit 25 characters
Conflicts of Interest Disclosure

Identify all potential conflicts of interest that might be relevant to your comment.

Conflicts of interest comprise financial interests, activities, and relationships within the past 3 years including but not limited to employment, affiliation, grants or funding, consultancies, honoraria or payment, speaker's bureaus, stock ownership or options, expert testimony, royalties, donation of medical equipment, or patents planned, pending, or issued.

Err on the side of full disclosure.

If you have no conflicts of interest, check "No potential conflicts of interest" in the box below. The information will be posted with your response.

Not all submitted comments are published. Please see our commenting policy for details.

Limit 140 characters
Limit 3600 characters or approximately 600 words
    Views 4,599
    Citations 0
    Original Investigation
    May 18, 2020

    Association Between Tumor Necrosis Factor Inhibitor Exposure and Inflammatory Central Nervous System Events

    Author Affiliations
    • 1Department of Neurology, Mayo Clinic, Rochester, Minnesota
    • 2Division of Rheumatology, Mayo Clinic, Rochester, Minnesota
    • 3Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
    JAMA Neurol. Published online May 18, 2020. doi:10.1001/jamaneurol.2020.1162
    Key Points

    Question  Is exposure to tumor necrosis factor inhibitors associated with risk of inflammatory demyelinating and nondemyelinating central nervous system events in patients with an autoimmune disease?

    Findings  In this case-control study of 212 patients with or without inflammatory CNS events, exposure to tumor necrosis factor inhibitors was associated with an increased risk of inflammatory central nervous system events. The association was similar for both inflammatory demyelinating and nondemyelinating central nervous system events.

    Meaning  The association observed between exposure to tumor necrosis factor inhibitor and increased risk of inflammatory demyelinating and nondemyelinating central nervous system events warrants future research to ascertain whether the association may indicate de novo inflammation or exacerbation of already aberrant inflammatory pathways.

    Abstract

    Importance  Tumor necrosis factor (TNF) inhibitors are common therapies for certain autoimmune diseases, such as rheumatoid arthritis. An association between TNF inhibitor exposure and inflammatory central nervous system (CNS) events has been postulated but is poorly understood.

    Objective  To evaluate whether TNF inhibitor exposure is associated with inflammatory demyelinating and nondemyelinating CNS events in patients with an indication for TNF inhibitor use and to describe the spectrum of those CNS events.

    Design, Setting, and Participants  A nested case-control study was conducted using the medical records of patients with autoimmune diseases treated at 3 Mayo Clinic locations (Rochester, Minnesota; Scottsdale, Arizona; and Jacksonville, Florida) between January 1, 2003, and February 20, 2019. Patients were included if their records reported International Statistical Classification of Diseases and Related Health Problems, Tenth Revision, diagnostic codes for US Food and Drug Administration–approved autoimmune disease indication for TNF inhibitor use (ie, rheumatoid arthritis, ankylosing spondylitis, psoriasis and psoriatic arthritis, Crohn disease, and ulcerative colitis) and diagnostic codes for inflammatory CNS events of interest. Patients were matched 1:1 with control participants by year of birth, type of autoimmune disease, and sex.

    Exposures  TNF inhibitor exposure data were derived from the medical records along with type of TNF inhibitor, cumulative duration of exposure, and time of exposure.

    Main Outcomes and Measures  The main outcome was either inflammatory demyelinating (multiple sclerosis and other diseases such as optic neuritis) or nondemyelinating (meningitis, meningoencephalitis, encephalitis, neurosarcoidosis, and CNS vasculitis) CNS event. Association with TNF inhibitor was evaluated with conditional logistic regression and adjusted for disease duration to determine the odds ratios (ORs) and 95% CIs. Secondary analyses included stratification of outcome by inflammatory demyelinating and nondemyelinating CNS events and by autoimmune disease (rheumatoid arthritis and non–rheumatoid arthritis).

    Results  A total of 212 individuals were included: 106 patients with inflammatory CNS events and 106 control participants without such events. Of this total, 136 were female (64%); the median (interquartile range) age at disease onset for patients was 52 (43-62) years. Exposure to TNF inhibitors occurred in 64 patients (60%) and 42 control participants (40%) and was associated with an increased risk of any inflammatory CNS event (adjusted OR, 3.01; 95% CI, 1.55-5.82; P = .001). These results were similar when the outcome was stratified by demyelinating and nondemyelinating CNS events. Secondary analyses found the association was predominantly observed in patients with rheumatoid arthritis (adjusted OR, 4.82; 95% CI, 1.62-14.36; P = .005).

    Conclusions and Relevance  This study found that exposure to TNF inhibitors in patients with autoimmune diseases appeared to be associated with increased risk for inflammatory CNS events. Whether this association represents de novo or exacerbated inflammatory pathways requires further research.

    ×