Associations of Plasma Phospho-Tau217 Levels With Tau Positron Emission Tomography in Early Alzheimer Disease | Dementia and Cognitive Impairment | JAMA Neurology | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 35.153.100.128. Please contact the publisher to request reinstatement.
1.
Scheltens  P, Blennow  K, Breteler  MM,  et al.  Alzheimer’s disease.   Lancet. 2016;388(10043):505-517. doi:10.1016/S0140-6736(15)01124-1PubMedGoogle ScholarCrossref
2.
Beach  TG, Monsell  SE, Phillips  LE, Kukull  W.  Accuracy of the clinical diagnosis of Alzheimer disease at National Institute on Aging Alzheimer Disease Centers, 2005-2010.   J Neuropathol Exp Neurol. 2012;71(4):266-273. doi:10.1097/NEN.0b013e31824b211b PubMedGoogle ScholarCrossref
3.
Jack  CR  Jr, Bennett  DA, Blennow  K,  et al;  NIA-AA research framework: toward a biological definition of Alzheimer’s disease.   Alzheimers Dement. 2018;14(4):535-562. doi:10.1016/j.jalz.2018.02.018 PubMedGoogle ScholarCrossref
4.
Mielke  MM, Hagen  CE, Xu  J,  et al.  Plasma phospho-tau181 increases with Alzheimer’s disease clinical severity and is associated with tau- and amyloid-positron emission tomography.   Alzheimers Dement. 2018;14(8):989-997. doi:10.1016/j.jalz.2018.02.013 PubMedGoogle ScholarCrossref
5.
Tatebe  H, Kasai  T, Ohmichi  T,  et al.  Quantification of plasma phosphorylated tau to use as a biomarker for brain Alzheimer pathology: pilot case-control studies including patients with Alzheimer’s disease and Down syndrome.   Mol Neurodegener. 2017;12(1):63. doi:10.1186/s13024-017-0206-8 PubMedGoogle ScholarCrossref
6.
Yang  CC, Chiu  MJ, Chen  TF, Chang  HL, Liu  BH, Yang  SY.  Assay of plasma phosphorylated tau protein (threonine 181) and total tau protein in early-stage Alzheimer’s disease.   J Alzheimers Dis. 2018;61(4):1323-1332. doi:10.3233/JAD-170810 PubMedGoogle ScholarCrossref
7.
Janelidze  S, Mattsson  N, Palmqvist  S,  et al.  Plasma P-tau181 in Alzheimer’s disease: relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzheimer’s dementia.   Nat Med. 2020;26(3):379-386. doi:10.1038/s41591-020-0755-1 PubMedGoogle ScholarCrossref
8.
Thijssen  EH, La Joie  R, Wolf  A,  et al; Advancing Research and Treatment for Frontotemporal Lobar Degeneration (ARTFL) Investigators.  Diagnostic value of plasma phosphorylated tau181 in Alzheimer’s disease and frontotemporal lobar degeneration.   Nat Med. 2020;26(3):387-397. doi:10.1038/s41591-020-0762-2 PubMedGoogle ScholarCrossref
9.
Barthélemy  NR, Bateman  RJ, Hirtz  C,  et al.  Cerebrospinal fluid phospho-tau T217 outperforms T181 as a biomarker for the differential diagnosis of Alzheimer’s disease and PET amyloid-positive patient identification.   Alzheimers Res Ther. 2020;12(1):26. doi:10.1186/s13195-020-00596-4 PubMedGoogle ScholarCrossref
10.
Janelidze  S, Stomrud  E, Smith  R,  et al.  Cerebrospinal fluid p-tau217 performs better than p-tau181 as a biomarker of Alzheimer’s disease.   Nat Commun. 2020;11(1):1683. doi:10.1038/s41467-020-15436-0 PubMedGoogle ScholarCrossref
11.
Palmqvist  S, Insel  PS, Stomrud  E,  et al.  Cerebrospinal fluid and plasma biomarker trajectories with increasing amyloid deposition in Alzheimer’s disease.   EMBO Mol Med. 2019;11(12):e11170. doi:10.15252/emmm.201911170 PubMedGoogle Scholar
12.
Palmqvist  S, Janelidze  S, Quiroz  YT,  et al.  Discriminative accuracy of plasma phospho-tau 217 for Alzheimer disease vs other neurodegenerative disorders.   JAMA. 2020;324(8):772-781. doi:10.1001/jama.2020.12134 PubMedGoogle ScholarCrossref
13.
Mattsson  N, Schöll  M, Strandberg  O,  et al.  18F-AV-1451 and CSF T-tau and P-tau as biomarkers in Alzheimer’s disease.   EMBO Mol Med. 2017;9(9):1212-1223. doi:10.15252/emmm.201707809 PubMedGoogle ScholarCrossref
14.
Mattsson-Carlgren  N, Andersson  E, Janelidze  S,  et al.  Aβ deposition is associated with increases in soluble and phosphorylated tau that precede a positive tau PET in Alzheimer’s disease.   Sci Adv. 2020;6(16):eaaz2387. doi:10.1126/sciadv.aaz2387 PubMedGoogle Scholar
15.
Meyer  PF, Pichet Binette  A, Gonneaud  J, Breitner  JCS, Villeneuve  S.  Characterization of Alzheimer disease biomarker discrepancies using cerebrospinal fluid phosphorylated tau and AV1451 positron emission tomography.   JAMA Neurol. 2020;77(4):508-516. doi:10.1001/jamaneurol.2019.4749 PubMedGoogle ScholarCrossref
16.
Bejanin  A, Schonhaut  DR, La Joie  R,  et al.  Tau pathology and neurodegeneration contribute to cognitive impairment in Alzheimer’s disease.   Brain. 2017;140(12):3286-3300. doi:10.1093/brain/awx243 PubMedGoogle ScholarCrossref
17.
Ossenkoppele  R, Smith  R, Ohlsson  T,  et al.  Associations between tau, Aβ, and cortical thickness with cognition in Alzheimer disease.   Neurology. 2019;92(6):e601-e612. doi:10.1212/WNL.0000000000006875 PubMedGoogle ScholarCrossref
18.
Braak  H, Braak  E.  Neuropathological stageing of Alzheimer-related changes.   Acta Neuropathol. 1991;82(4):239-259. doi:10.1007/BF00308809 PubMedGoogle ScholarCrossref
19.
Palmqvist  S, Janelidze  S, Stomrud  E,  et al.  Performance of fully automated plasma assays as screening tests for Alzheimer disease-related β-amyloid status.   JAMA Neurol. 2019;76(9):1060-1069. doi:10.1001/jamaneurol.2019.1632 PubMedGoogle Scholar
20.
Blennow  K, Hampel  H, Weiner  M, Zetterberg  H.  Cerebrospinal fluid and plasma biomarkers in Alzheimer disease.   Nat Rev Neurol. 2010;6(3):131-144. doi:10.1038/nrneurol.2010.4 PubMedGoogle ScholarCrossref
21.
Janelidze  S, Stomrud  E, Brix  B, Hansson  O.  Towards a unified protocol for handling of CSF before β-amyloid measurements.   Alzheimers Res Ther. 2019;11(1):63. doi:10.1186/s13195-019-0517-9 PubMedGoogle ScholarCrossref
22.
Leuzy  A, Smith  R, Ossenkoppele  R,  et al.  Diagnostic performance of RO948 F 18 tau positron emission tomography in the differentiation of Alzheimer disease from other neurodegenerative disorders.   JAMA Neurol. 2020;77(8):955-965. doi:10.1001/jamaneurol.2020.0989 PubMedGoogle ScholarCrossref
23.
Young  AL, Oxtoby  NP, Daga  P,  et al; Alzheimer’s Disease Neuroimaging Initiative.  A data-driven model of biomarker changes in sporadic Alzheimer’s disease.   Brain. 2014;137(Pt 9):2564-2577. doi:10.1093/brain/awu176 PubMedGoogle ScholarCrossref
24.
Fagan  AM, Xiong  C, Jasielec  MS,  et al; Dominantly Inherited Alzheimer Network.  Longitudinal change in CSF biomarkers in autosomal-dominant Alzheimer’s disease.   Sci Transl Med. 2014;6(226):226ra30. doi:10.1126/scitranslmed.3007901 PubMedGoogle Scholar
25.
McDade  E, Wang  G, Gordon  BA,  et al; Dominantly Inherited Alzheimer Network.  Longitudinal cognitive and biomarker changes in dominantly inherited Alzheimer disease.   Neurology. 2018;91(14):e1295-e1306. doi:10.1212/WNL.0000000000006277 PubMedGoogle ScholarCrossref
26.
Alzforum. In DIAN-TU, gantenerumab brings down tau. by a lot. open extension planned. Accessed October 3, 2020. https://www.alzforum.org/news/conference-coverage/dian-tu-gantenerumab-brings-down-tau-lot-open-extension-planned
27.
Alzforum. Exposure, exposure, exposure? at CTAD, aducanumab scientists make a case. Accessed October 3, 2020. https://www.alzforum.org/news/conference-coverage/exposure-exposure-exposure-ctad-aducanumab-scientists-make-case
28.
Sato  C, Barthelemy  NR, Mawuenyega  KG,  et al. Tau kinetics in neurons and the human central nervous system. Neuron. 2018;97(6):1284-1298.e7. doi:10.1016/j.neuron.2018.02.015
29.
Stancu  IC, Vasconcelos  B, Terwel  D, Dewachter  I.  Models of β-amyloid induced tau-pathology: the long and “folded” road to understand the mechanism.   Mol Neurodegener. 2014;9:51. doi:10.1186/1750-1326-9-51 PubMedGoogle ScholarCrossref
Limit 200 characters
Limit 25 characters
Conflicts of Interest Disclosure

Identify all potential conflicts of interest that might be relevant to your comment.

Conflicts of interest comprise financial interests, activities, and relationships within the past 3 years including but not limited to employment, affiliation, grants or funding, consultancies, honoraria or payment, speaker's bureaus, stock ownership or options, expert testimony, royalties, donation of medical equipment, or patents planned, pending, or issued.

Err on the side of full disclosure.

If you have no conflicts of interest, check "No potential conflicts of interest" in the box below. The information will be posted with your response.

Not all submitted comments are published. Please see our commenting policy for details.

Limit 140 characters
Limit 3600 characters or approximately 600 words
    Original Investigation
    November 9, 2020

    Associations of Plasma Phospho-Tau217 Levels With Tau Positron Emission Tomography in Early Alzheimer Disease

    Author Affiliations
    • 1Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Sölvegatan, Sweden
    • 2Department of Neurology, Skåne University Hospital, Lund, Sweden
    • 3Eli Lilly and Company, Indianapolis, Indiana
    • 4Memory Clinic, Skåne University Hospital, Malmö, Sweden
    • 5Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
    JAMA Neurol. 2021;78(2):149-156. doi:10.1001/jamaneurol.2020.4201
    Key Points

    Question  How early in the course of Alzheimer disease do plasma levels of tau phosphorylated at threonine 217 (P-tau217) start to change compared with levels of established cerebrospinal fluid and positron emission tomography (PET) tau biomarkers?

    Findings  In this cohort study of 490 individuals without dementia, plasma P-tau217 levels were elevated in amyloid-β–positive cognitively unimpaired participants before insoluble tau aggregates became detectable by tau-PET; modeling approaches predicted that both plasma and cerebrospinal fluid P-tau217 increased before tau-PET in the entorhinal cortex followed by more widespread cortical tau-PET changes.

    Meaning  The study results suggest that in Alzheimer disease, plasma P-tau217 becomes abnormal before tau-PET and that plasma P-tau217 may be considered as an early Alzheimer disease biomarker.

    Abstract

    Importance  There is an urgent need for inexpensive and minimally invasive blood biomarkers for Alzheimer disease (AD) that could be used to detect early disease changes.

    Objective  To assess how early in the course of AD plasma levels of tau phosphorylated at threonine 217 (P-tau217) start to change compared with levels of established cerebrospinal fluid (CSF) and positron emission tomography (PET) biomarkers of AD pathology.

    Design, Setting, and Participants  This cohort study included cognitively healthy control individuals (n = 225) and participants with subjective cognitive decline (n = 89) or mild cognitive impairment (n = 176) from the BioFINDER-2 study. Participants were enrolled at 2 different hospitals in Sweden from January 2017 to October 2019. All study participants underwent plasma P-tau217 assessments and tau- and amyloid-β (Aβ)–PET imaging. A subcohort of 111 participants had 2 or 3 tau-PET scans.

    Main Outcomes and Measures  Changes in plasma P-tau217 levels in preclinical and prodromal AD compared with changes in CSF P-tau217 and PET measures.

    Results  Of 490 participants, 251 were women (51.2%) and the mean (SD) age was 65.9 (13.1) years. Plasma P-tau217 levels were increased in cognitively unimpaired participants with abnormal Aβ-PET but normal tau-PET in the entorhinal cortex (Aβ-PET+/ tau-PET group vs Aβ-PET/ tau-PET group: median, 2.2 pg/mL [interquartile range (IQR), 1.5-2.9 pg/mL] vs 0.7 pg/mL [IQR, 0.3-1.4 pg/mL]). Most cognitively unimpaired participants who were discordant for plasma P-tau217 and tau-PET were positive for plasma P-tau217 and negative for tau-PET (P-tau217+/tau-PET: 36 [94.7%]; P-tau217/tau-PET+: 2 [5.3%]). Event-based modeling of cross-sectional data predicted that in cognitively unimpaired participants and in those with mild cognitive impairment, both plasma and CSF P-tau217 would change before the tau-PET signal in the entorhinal cortex, followed by more widespread cortical tau-PET changes. When testing the association with global Aβ load in nonlinear spline models, both plasma and CSF P-tau217 were increased at lower Aβ-PET values compared with tau-PET measures. Among participants with normal baseline tau-PET, the rates of longitudinal increase in tau-PET in the entorhinal cortex were higher in those with abnormal plasma P-tau217 at baseline (median standardized uptake value ratio, 0.029 [IQR, –0.006 to 0.041] vs –0.001 [IQR, –0.021 to 0.020]; Mann-Whitney U, P = .02).

    Conclusions and Relevance  In this cohort study, plasma P-tau217 levels were increased during the early preclinical stages of AD when insoluble tau aggregates were not yet detectable by tau-PET. Plasma P-tau217 may hold promise as a biomarker for early AD brain pathology.

    ×