DIAPH1 Variants in Non–East Asian Patients With Sporadic Moyamoya Disease | Cerebrovascular Disease | JAMA Neurology | JAMA Network
[Skip to Navigation]
Sign In
Figure 1.  De Novo and Rare, Damaging Transmitted DIAPH1 Variants in Moyamoya Disease
De Novo and Rare, Damaging Transmitted DIAPH1 Variants in Moyamoya Disease

A, Brain magnetic resonance angiography (MRI/A) and carotid, digital subtraction catheter angiography (ICA) catheter angiography demonstrating severe narrowing of the bilateral intracranial internal carotid and middle cerebral arteries (pink arrowheads), along with the associated compensatory development of collateral vasculature comprising abnormally dilated and fragile moyamoya vessels (white arrowheads). B, Linear representation of functional domains (represented by dark rectangles) of mammalian Diaphaneous-1 (mDia1), encoded by DIAPH1, with mapped disease-associated variants. Shown are the C-terminal inhibitory diaphanous autoregulatory domain (DAD) (green) and the N-terminal Rho-GTPase-binding autoinhibitory domain (GBD/FH3) (blue/orange). Also depicted are the FH1 (gray) and F-actin binding and nucleating FH2 (pink) Formin domains. FH2 binds and nucleates F-actin. mDia1 variants are mapped onto the protein structure. Variants associated with moyamoya disease are in red. Variants associated with seizures, cortical blindness, and microcephaly syndrome (OMIM 616632) are in yellow. Variants associated with autosomal deafness with or without thrombocytopenia (OMIM 124900) are in blue. Note: both de novo mDia1 variants in moyamoya disease localize to the Rho-binding GBD. KMM/MM indicates proband identification; L, left; Lat, lateral; mDia1, mammalian diaphanous-1; and R, right.

Figure 2.  Enriched Expression of DIAPH1 and Other Moyamoya Disease Risk Genes in Vascular Cells
Enriched Expression of DIAPH1 and Other Moyamoya Disease Risk Genes in Vascular Cells

A-D, Cell type–specific clusters in mouse brain vascular cells using Betsholtz scRNaseq data. A, Potential of heat-diffusion for affinity-based transition embedding (PHATE) plot clusters of endothelial cells, pericytes, oligodendrocytes, smooth muscle cells, and fibroblasts. B-D, PHATE plots of 2 marker genes per cluster. B, Endothelial cells expressing Cdh5 and Pecam1. C Pericytes expressing Pdgfrb and Cspg4. D, Smooth muscle cells expressing Acta2 and Tagln. E, PHATE plot of cell type–specific expression of Diaph1. Expression maps best to endothelial cells. F, Diaph1 messenger RNA abundance in each cell cluster. G, Enrichment analysis across cell type markers of the midgestational human brain 69 for known human genes and cohort-determined candidate risk genes for moyamoya disease.

aRepresents significant enrichment at the Bonferroni multiple-testing cutoff (α = .05/16 = 3.13 × 10−3).

Table 1.  Case-Control Burden Analysis of All Rare Protein-Damage Variants for DIAPH1, ACTA2, and RNF213a
Case-Control Burden Analysis of All Rare Protein-Damage Variants for DIAPH1, ACTA2, and RNF213a
Table 2.  Characteristics of 6 Patients With Variants in DIAPH1
Characteristics of 6 Patients With Variants in DIAPH1
Table 3.  Clinical Presentations of 6 Patients With Mutations in DIAPH1
Clinical Presentations of 6 Patients With Mutations in DIAPH1
1.
Takeuchi  K, Shimizu  K.  Hypoplasia of the bilateral internal carotid arteries.   Brain Nerv. 1957;9:37–43.Google Scholar
2.
Jung  YS, Wang  W, Jun  S,  et al.  Deregulation of CRAD-controlled cytoskeleton initiates mucinous colorectal cancer via β-catenin.   Nat Cell Biol. 2018;20(11):1303-1314. doi:10.1038/s41556-018-0215-z PubMedGoogle ScholarCrossref
3.
Takeuchi  K, Shimizu  K.  Hypoplasia of the bilateral internalcarotid arteries.   No To Shinkei. 1957(9):37-43.Google Scholar
4.
Roder  C, Nayak  NR, Khan  N, Tatagiba  M, Inoue  I, Krischek  B.  Genetics of moyamoya disease.   J Hum Genet. 2010;55(11):711-716. doi:10.1038/jhg.2010.103 PubMedGoogle ScholarCrossref
5.
Guey  S, Tournier-Lasserve  E, Hervé  D, Kossorotoff  M.  Moyamoya disease and syndromes: from genetics to clinical management.   Appl Clin Genet. 2015;8:49-68.PubMedGoogle Scholar
6.
Baba  T, Houkin  K, Kuroda  S.  Novel epidemiological features of moyamoya disease.   J Neurol Neurosurg Psychiatry. 2008;79(8):900-904. doi:10.1136/jnnp.2007.130666 PubMedGoogle ScholarCrossref
7.
Uchino  K, Johnston  SC, Becker  KJ, Tirschwell  DL.  Moyamoya disease in Washington State and California.   Neurology. 2005;65(6):956-958. doi:10.1212/01.wnl.0000176066.33797.82 PubMedGoogle ScholarCrossref
8.
Lee  S, Rivkin  MJ, Kirton  A, deVeber  G, Elbers  J; International Pediatric Stroke Study.  Moyamoya disease in children: results from the International Pediatric Stroke Study.   J Child Neurol. 2017;32(11):924-929. doi:10.1177/0883073817718730 PubMedGoogle ScholarCrossref
9.
Ferriero  DM, Fullerton  HJ, Bernard  TJ,  et al; American Heart Association Stroke Council and Council on Cardiovascular and Stroke Nursing.  Management of stroke in neonates and children: a scientific statement from the American Heart Association/American Stroke Association.   Stroke. 2019;50(3):e51-e96. doi:10.1161/STR.0000000000000183 PubMedGoogle ScholarCrossref
10.
Huang  S, Guo  ZN, Shi  M, Yang  Y, Rao  M.  Etiology and pathogenesis of moyamoya disease: an update on disease prevalence.   Int J Stroke. 2017;12(3):246-253. doi:10.1177/1747493017694393 PubMedGoogle ScholarCrossref
11.
Liu  W, Morito  D, Takashima  S,  et al.  Identification of RNF213 as a susceptibility gene for moyamoya disease and its possible role in vascular development.   PLoS One. 2011;6(7):e22542. doi:10.1371/journal.pone.0022542 PubMedGoogle Scholar
12.
Takagi  Y, Kikuta  K, Nozaki  K, Hashimoto  N.  Histological features of middle cerebral arteries from patients treated for moyamoya disease.   Neurol Med Chir (Tokyo). 2007;47(1):1-4. doi:10.2176/nmc.47.1 PubMedGoogle ScholarCrossref
13.
Masuda  J, Ogata  J, Yutani  C.  Smooth muscle cell proliferation and localization of macrophages and T cells in the occlusive intracranial major arteries in moyamoya disease.   Stroke. 1993;24(12):1960-1967. doi:10.1161/01.STR.24.12.1960 PubMedGoogle ScholarCrossref
14.
Scott  RM, Smith  ER.  Moyamoya disease and moyamoya syndrome.   N Engl J Med. 2009;360(12):1226-1237. doi:10.1056/NEJMra0804622 PubMedGoogle ScholarCrossref
15.
Fukui  M, Kono  S, Sueishi  K, Ikezaki  K.  Moyamoya disease.   Neuropathology. 2000;20(suppl):S61-S64. doi:10.1046/j.1440-1789.2000.00300.x PubMedGoogle ScholarCrossref
16.
Kamada  F, Aoki  Y, Narisawa  A,  et al.  A genome-wide association study identifies RNF213 as the first moyamoya disease gene.   J Hum Genet. 2011;56(1):34-40. doi:10.1038/jhg.2010.132 PubMedGoogle ScholarCrossref
17.
Pinard  A, Guey  S, Guo  D,  et al.  The pleiotropy associated with de novo variants in CHD4, CNOT3, and SETD5 extends to moyamoya angiopathy.   Genet Med. 2020;22(2):427-431. doi:10.1038/s41436-019-0639-2 PubMedGoogle ScholarCrossref
18.
Hervé  D, Philippi  A, Belbouab  R,  et al.  Loss of α1β1 soluble guanylate cyclase, the major nitric oxide receptor, leads to moyamoya and achalasia.   Am J Hum Genet. 2014;94(3):385-394. doi:10.1016/j.ajhg.2014.01.018 PubMedGoogle ScholarCrossref
19.
Wallace  S, Guo  DC, Regalado  E,  et al.  Disrupted nitric oxide signaling due to GUCY1A3 mutations increases risk for moyamoya disease, achalasia and hypertension.   Clin Genet. 2016;90(4):351-360. doi:10.1111/cge.12739 PubMedGoogle ScholarCrossref
20.
Miskinyte  S, Butler  MG, Hervé  D,  et al.  Loss of BRCC3 deubiquitinating enzyme leads to abnormal angiogenesis and is associated with syndromic moyamoya.   Am J Hum Genet. 2011;88(6):718-728. doi:10.1016/j.ajhg.2011.04.017 PubMedGoogle ScholarCrossref
21.
Warejko  JK, Schueler  M, Vivante  A,  et al.  Whole exome sequencing reveals a monogenic cause of disease in ≈43% of 35 families with midaortic syndrome.   Hypertension. 2018;71(4):691-699. doi:10.1161/HYPERTENSIONAHA.117.10296 PubMedGoogle ScholarCrossref
22.
Guo  DC, Pannu  H, Tran-Fadulu  V,  et al.  Mutations in smooth muscle alpha-actin (ACTA2) lead to thoracic aortic aneurysms and dissections.   Nat Genet. 2007;39(12):1488-1493. doi:10.1038/ng.2007.6 PubMedGoogle ScholarCrossref
23.
Guo  DC, Duan  XY, Regalado  ES,  et al; University of Washington Center for Mendelian Genomics.  Loss-of-function mutations in YY1AP1 lead to Grange syndrome and a fibromuscular dysplasia-like vascular disease.   Am J Hum Genet. 2017;100(1):21-30. doi:10.1016/j.ajhg.2016.11.008 PubMedGoogle ScholarCrossref
24.
Milewicz  DM, Østergaard  JR, Ala-Kokko  LM,  et al.  De novo ACTA2 mutation causes a novel syndrome of multisystemic smooth muscle dysfunction.   Am J Med Genet A. 2010;152A(10):2437-2443. doi:10.1002/ajmg.a.33657 PubMedGoogle ScholarCrossref
25.
Rauch  A, Thiel  CT, Schindler  D,  et al.  Mutations in the pericentrin (PCNT) gene cause primordial dwarfism.   Science. 2008;319(5864):816-819. doi:10.1126/science.1151174 PubMedGoogle ScholarCrossref
26.
Zhu  B, Liu  X, Zhen  X,  et al.  RNF213 gene polymorphism rs9916351 and rs8074015 significantly associated with moyamoya disease in Chinese population.   Ann Transl Med. 2020;8(14):851. doi:10.21037/atm-20-1040 PubMedGoogle ScholarCrossref
27.
Park  YS, An  HJ, Kim  JO,  et al.  The role of RNF213 4810G>A and 4950G>A variants in patients with moyamoya disease in Korea.   Int J Mol Sci. 2017;18(11):E2477. doi:10.3390/ijms18112477 PubMedGoogle Scholar
28.
Liu  W, Senevirathna  ST, Hitomi  T,  et al.  Genomewide association study identifies no major founder variant in Caucasian moyamoya disease.   J Genet. 2013;92(3):605-609. doi:10.1007/s12041-013-0304-5 PubMedGoogle ScholarCrossref
29.
Furey  CG, Choi  J, Jin  SC,  et al.  De novo mutation in genes regulating neural stem cell fate in human congenital hydrocephalus.   Neuron. 2018;99(2):302-314.e4. doi:10.1016/j.neuron.2018.06.019PubMedGoogle ScholarCrossref
30.
Jin  SC, Lewis  SA, Bakhtiari  S,  et al.  Mutations disrupting neuritogenesis genes confer risk for cerebral palsy.   Nat Genet. 2020;52(10):1046-1056. doi:10.1038/s41588-020-0695-1 PubMedGoogle ScholarCrossref
31.
Jin  SC, Dong  W, Kundishora  AJ,  et al.  Exome sequencing implicates genetic disruption of prenatal neuro-gliogenesis in sporadic congenital hydrocephalus.   Nat Med. 2020;26(11):1754-1765. doi:10.1038/s41591-020-1090-2 PubMedGoogle ScholarCrossref
32.
Duran  D, Zeng  X, Jin  SC,  et al.  Mutations in chromatin modifier and ephrin signaling genes in vein of Galen malformation.   Neuron. 2019;101(3):429-443. doi:10.1016/j.neuron.2018.11.041PubMedGoogle ScholarCrossref
33.
Zhang  M, Ding  X, Zhang  Q,  et al.  Exome sequencing of 112 trios identifies recessive genetic variants in brain arteriovenous malformations.   J Neurointerv Surg. 2020;neurintsurg-2020-016469. doi:10.1136/neurintsurg-2020-016469 PubMedGoogle Scholar
34.
Research Committee on the Pathology and Treatment of Spontaneous Occlusion of the Circle of Willis; Health Labour Sciences Research Grant for Research on Measures for Intractable Diseases.  Guidelines for diagnosis and treatment of moyamoya disease (spontaneous occlusion of the circle of Willis).   Neurol Med Chir (Tokyo). 2012;52(5):245-266. doi:10.2176/nmc.52.245 PubMedGoogle ScholarCrossref
35.
McKenna  A, Hanna  M, Banks  E,  et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data.   Genome Res. 2010;20(9):1297-1303. doi:10.1101/gr.107524.110 PubMedGoogle ScholarCrossref
36.
Van der Auwera  GA, Carneiro  MO, Hartl  C,  et al.  From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline.   Curr Protoc Bioinformatics. 2013;43(1110):11.10.1-11.10.33. doi:10.1002/0471250953.bi1110s43PubMedGoogle Scholar
37.
Garrison  E, Marth  G. Haplotype-based variant detection from short-read sequencing. arXiv:12073907. Preprint posted online July 12, 2012.
38.
Wang  K, Li  M, Hakonarson  H.  ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data.   Nucleic Acids Res. 2010;38(16):e164. doi:10.1093/nar/gkq603 PubMedGoogle Scholar
39.
Liu  X, Wu  C, Li  C, Boerwinkle  E.  dbNSFP v3.0: a one-stop database of functional predictions and annotations for human nonsynonymous and splice-site SNVs.   Hum Mutat. 2016;37(3):235-241. doi:10.1002/humu.22932 PubMedGoogle ScholarCrossref
40.
Karczewski  KJ, Francioli  LC, Tiao  G,  et al; Genome Aggregation Database Consortium.  The mutational constraint spectrum quantified from variation in 141,456 humans.   Nature. 2020;581(7809):434-443. doi:10.1038/s41586-020-2308-7 PubMedGoogle ScholarCrossref
41.
Taliun  D, Harris  DN, Kessler  MD,  et al  Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program.   bioRxiv. 2019:563866. doi:10.1101/563866 Google Scholar
42.
Dong  C, Wei  P, Jian  X,  et al.  Comparison and integration of deleteriousness prediction methods for nonsynonymous SNVs in whole exome sequencing studies.   Hum Mol Genet. 2015;24(8):2125-2137. doi:10.1093/hmg/ddu733 PubMedGoogle ScholarCrossref
43.
Rentzsch  P, Witten  D, Cooper  GM, Shendure  J, Kircher  M.  CADD: predicting the deleteriousness of variants throughout the human genome.   Nucleic Acids Res. 2019;47(D1):D886-D894. doi:10.1093/nar/gky1016 PubMedGoogle ScholarCrossref
44.
Wei  Q, Zhan  X, Zhong  X,  et al.  A bayesian framework for de novo mutation calling in parents-offspring trios.   Bioinformatics. 2015;31(9):1375-1381. doi:10.1093/bioinformatics/btu839 PubMedGoogle ScholarCrossref
45.
Quinlan  AR, Hall  IM.  BEDTools: a flexible suite of utilities for comparing genomic features.   Bioinformatics. 2010;26(6):841-842. doi:10.1093/bioinformatics/btq033 PubMedGoogle ScholarCrossref
46.
Krumm  N, Turner  TN, Baker  C,  et al.  Excess of rare, inherited truncating mutations in autism.   Nat Genet. 2015;47(6):582-588. doi:10.1038/ng.3303 PubMedGoogle ScholarCrossref
47.
Samocha  KE, Robinson  EB, Sanders  SJ,  et al.  A framework for the interpretation of de novo mutation in human disease.   Nat Genet. 2014;46(9):944-950. doi:10.1038/ng.3050 PubMedGoogle ScholarCrossref
48.
Ware  JS, Samocha  KE, Homsy  J, Daly  MJ.  Interpreting de novo variation in human disease using denovolyzeR.   Curr Protoc Hum Genet. 2015;87:7.25.1-7.25.15. doi:10.1002/0471142905.hg0725s87PubMedGoogle Scholar
49.
Landrum  MJ, Lee  JM, Benson  M,  et al.  ClinVar: improving access to variant interpretations and supporting evidence.   Nucleic Acids Res. 2018;46(D1):D1062-D1067. doi:10.1093/nar/gkx1153 PubMedGoogle ScholarCrossref
50.
Polioudakis  D, de la Torre-Ubieta  L, Langerman  J,  et al.  A single-cell transcriptomic atlas of human neocortical development during mid-gestation.   Neuron. 2019;103(5):785-801.e8. doi:10.1016/j.neuron.2019.06.011PubMedGoogle ScholarCrossref
51.
He  L, Vanlandewijck  M, Mäe  MA,  et al.  Single-cell RNA sequencing of mouse brain and lung vascular and vessel-associated cell types.   Sci Data. 2018;5:180160. doi:10.1038/sdata.2018.160 PubMedGoogle Scholar
52.
Vanlandewijck  M, He  L, Mäe  MA,  et al.  A molecular atlas of cell types and zonation in the brain vasculature.   Nature. 2018;554(7693):475-480. doi:10.1038/nature25739 PubMedGoogle ScholarCrossref
53.
Chen  X, Burkhardt  DB, Hartman  AA,  et al.  MLL-AF9 initiates transformation from fast-proliferating myeloid progenitors.   Nat Commun. 2019;10(1):5767. doi:10.1038/s41467-019-13666-5 PubMedGoogle ScholarCrossref
54.
van Dijk  D, Sharma  R, Nainys  J,  et al.  Recovering gene interactions from single-cell data using data diffusion.   Cell. 2018;174(3):716-729.e27. doi:10.1016/j.cell.2018.05.061PubMedGoogle ScholarCrossref
55.
Moon  KR, van Dijk  D, Wang  Z,  et al.  Visualizing structure and transitions in high-dimensional biological data.   Nat Biotechnol. 2019;37(12):1482-1492. doi:10.1038/s41587-019-0336-3 PubMedGoogle ScholarCrossref
56.
Dutrow  EV, Emera  D, Yim  K,  et al.  The human accelerated region HACNS1 modifies developmental gene expression in humanized mice.   bioRxiv. 2019. doi:10.1101/2019.12.11.873075 Google Scholar
57.
Krishnaswamy  S, Spitzer  MH, Mingueneau  M,  et al.  Systems biology: conditional density-based analysis of T cell signaling in single-cell data.   Science. 2014;346(6213):1250689. doi:10.1126/science.1250689 PubMedGoogle Scholar
58.
Liberzon  A. A description of the molecular signatures database (MSigDB) website. In:  Stem Cell Transcriptional Networks. Springer; 2014:153-160. doi:10.1007/978-1-4939-0512-6_9
59.
Scholz  B, Korn  C, Wojtarowicz  J,  et al.  Endothelial RSPO3 controls vascular stability and pruning through non-canonical WNT/Ca(2+)/NFAT signaling.   Dev Cell. 2016;36(1):79-93. doi:10.1016/j.devcel.2015.12.015 PubMedGoogle ScholarCrossref
60.
Rose  R, Weyand  M, Lammers  M, Ishizaki  T, Ahmadian  MR, Wittinghofer  A.  Structural and mechanistic insights into the interaction between Rho and mammalian Dia.   Nature. 2005;435(7041):513-518. doi:10.1038/nature03604 PubMedGoogle ScholarCrossref
61.
Shimada  A, Nyitrai  M, Vetter  IR,  et al.  The core FH2 domain of diaphanous-related formins is an elongated actin binding protein that inhibits polymerization.   Mol Cell. 2004;13(4):511-522. doi:10.1016/S1097-2765(04)00059-0 PubMedGoogle ScholarCrossref
62.
Touré  F, Fritz  G, Li  Q,  et al.  Formin mDia1 mediates vascular remodeling via integration of oxidative and signal transduction pathways.   Circ Res. 2012;110(10):1279-1293. doi:10.1161/CIRCRESAHA.111.262519 PubMedGoogle ScholarCrossref
63.
Bachmann  C, Fischer  L, Walter  U, Reinhard  M.  The EVH2 domain of the vasodilator-stimulated phosphoprotein mediates tetramerization, F-actin binding, and actin bundle formation.   J Biol Chem. 1999;274(33):23549-23557. doi:10.1074/jbc.274.33.23549 PubMedGoogle ScholarCrossref
64.
Young  AM, Karri  SK, Ogilvy  CS, Zhao  N.  Is there a role for treating inflammation in moyamoya disease?: a review of histopathology, genetics, and signaling cascades.   Front Neurol. 2013;4:105. doi:10.3389/fneur.2013.00105 PubMedGoogle ScholarCrossref
65.
Cipolla  MJ, Gokina  NI, Osol  G.  Pressure-induced actin polymerization in vascular smooth muscle as a mechanism underlying myogenic behavior.   FASEB J. 2002;16(1):72-76. doi:10.1096/cj.01-0104hyp PubMedGoogle ScholarCrossref
66.
Aslan  JE, McCarty  OJ.  Rho GTPases in platelet function.   J Thromb Haemost. 2013;11(1):35-46. doi:10.1111/jth.12051 PubMedGoogle ScholarCrossref
67.
Moreno-Domínguez  A, Colinas  O, El-Yazbi  A,  et al.  Ca2+ sensitization due to myosin light chain phosphatase inhibition and cytoskeletal reorganization in the myogenic response of skeletal muscle resistance arteries.   J Physiol. 2013;591(5):1235-1250. doi:10.1113/jphysiol.2012.243576 PubMedGoogle ScholarCrossref
68.
Nunes  KP, Rigsby  CS, Webb  RC.  RhoA/Rho-kinase and vascular diseases: what is the link?   Cell Mol Life Sci. 2010;67(22):3823-3836. doi:10.1007/s00018-010-0460-1 PubMedGoogle ScholarCrossref
69.
Bros  M, Haas  K, Moll  L, Grabbe  S.  RhoA as a key regulator of innate and adaptive immunity.   Cells. 2019;8(7):E733. doi:10.3390/cells8070733 PubMedGoogle Scholar
70.
Shinohara  R, Thumkeo  D, Kamijo  H,  et al.  A role for mDia, a Rho-regulated actin nucleator, in tangential migration of interneuron precursors.   Nat Neurosci. 2012;15(3):373-380, S1-S2. doi:10.1038/nn.3020PubMedGoogle ScholarCrossref
71.
Otomo  T, Otomo  C, Tomchick  DR, Machius  M, Rosen  MK.  Structural basis of Rho GTPase-mediated activation of the formin mDia1.   Mol Cell. 2005;18(3):273-281. doi:10.1016/j.molcel.2005.04.002 PubMedGoogle ScholarCrossref
72.
Goode  BL, Eck  MJ.  Mechanism and function of formins in the control of actin assembly.   Annu Rev Biochem. 2007;76:593-627. doi:10.1146/annurev.biochem.75.103004.142647 PubMedGoogle ScholarCrossref
73.
Lynch  ED, Lee  MK, Morrow  JE, Welcsh  PL, León  PE, King  MC.  Nonsyndromic deafness DFNA1 associated with mutation of a human homolog of the Drosophila gene diaphanous.   Science. 1997;278(5341):1315-1318. doi:10.1126/science.278.5341.1315 PubMedGoogle ScholarCrossref
74.
Stritt  S, Nurden  P, Turro  E,  et al; BRIDGE-BPD Consortium.  A gain-of-function variant in DIAPH1 causes dominant macrothrombocytopenia and hearing loss.   Blood. 2016;127(23):2903-2914. doi:10.1182/blood-2015-10-675629 PubMedGoogle ScholarCrossref
75.
Al-Maawali  A, Barry  BJ, Rajab  A,  et al.  Novel loss-of-function variants in DIAPH1 associated with syndromic microcephaly, blindness, and early onset seizures.   Am J Med Genet A. 2016;170A(2):435-440. doi:10.1002/ajmg.a.37422 PubMedGoogle ScholarCrossref
76.
Ishizaki  T, Morishima  Y, Okamoto  M, Furuyashiki  T, Kato  T, Narumiya  S.  Coordination of microtubules and the actin cytoskeleton by the Rho effector mDia1.   Nat Cell Biol. 2001;3(1):8-14. doi:10.1038/35050598 PubMedGoogle ScholarCrossref
77.
Timberlake  AT, Choi  J, Zaidi  S,  et al.  Two locus inheritance of non-syndromic midline craniosynostosis via rare SMAD6 and common BMP2 alleles.   Elife. 2016;5:5. doi:10.7554/eLife.20125 PubMedGoogle ScholarCrossref
78.
Sakaguchi  T, Yan  SF, Yan  SD,  et al.  Central role of RAGE-dependent neointimal expansion in arterial restenosis.   J Clin Invest. 2003;111(7):959-972. doi:10.1172/JCI200317115 PubMedGoogle ScholarCrossref
79.
Ren  Z, Chen  X, Tang  W,  et al.  Association of DIAPH1 gene polymorphisms with ischemic stroke.   Aging (Albany NY). 2020;12(1):416-435. doi:10.18632/aging.102631 PubMedGoogle ScholarCrossref
80.
Guo  DC, Papke  CL, Tran-Fadulu  V,  et al.  Mutations in smooth muscle alpha-actin (ACTA2) cause coronary artery disease, stroke, and moyamoya disease, along with thoracic aortic disease.   Am J Hum Genet. 2009;84(5):617-627. doi:10.1016/j.ajhg.2009.04.007 PubMedGoogle ScholarCrossref
81.
Bearer  EL, Prakash  JM, Li  Z.  Actin dynamics in platelets.   Int Rev Cytol. 2002;217:137-182. doi:10.1016/S0074-7696(02)17014-8 PubMedGoogle ScholarCrossref
Limit 200 characters
Limit 25 characters
Conflicts of Interest Disclosure

Identify all potential conflicts of interest that might be relevant to your comment.

Conflicts of interest comprise financial interests, activities, and relationships within the past 3 years including but not limited to employment, affiliation, grants or funding, consultancies, honoraria or payment, speaker's bureaus, stock ownership or options, expert testimony, royalties, donation of medical equipment, or patents planned, pending, or issued.

Err on the side of full disclosure.

If you have no conflicts of interest, check "No potential conflicts of interest" in the box below. The information will be posted with your response.

Not all submitted comments are published. Please see our commenting policy for details.

Limit 140 characters
Limit 3600 characters or approximately 600 words
    Original Investigation
    June 14, 2021

    DIAPH1 Variants in Non–East Asian Patients With Sporadic Moyamoya Disease

    Author Affiliations
    • 1Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center, Houston
    • 2Department of Neurosurgery, University of Mississippi Medical Center, Jackson
    • 3Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut
    • 4Department of Genetics, Yale School of Medicine, New Haven, Connecticut
    • 5Department of Neuroscience, Yale School of Medicine, New Haven, Connecticut
    • 6Yale Program on Neurogenetics, Yale School of Medicine, New Haven, Connecticut
    • 7Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, New York
    • 8Department of Pharmaceutical and Biological Chemistry, University College London School of Pharmacy, London, United Kingdom
    • 9Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles
    • 10Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut
    • 11Department of Drug Discovery Medicine, Kyoto University, Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, Japan
    • 12Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, Missouri
    • 13Department of Genetics, Washington University School of Medicine, St Louis, Missouri
    • 14Department of Developmental Biology, Center of Regenerative Medicine, Washington University School of Medicine, St Louis, Missouri
    • 15Department of Biostatistics & Medical Informatics, University of Wisconsin, Madison
    • 16Yale Center for Genome Analysis, West Haven, Connecticut
    • 17Genome Sciences, University of Washington School of Medicine, Seattle
    • 18Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles
    • 19Division of Neurosurgery, Children's Hospital of Philadelphia, Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia
    • 20Department of Neurosurgery, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
    • 21Division of Nephrology and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, and Department of Medicine, Harvard Medical School, Boston, Massachusetts
    • 22Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut
    • 23Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, Connecticut
    JAMA Neurol. 2021;78(8):993-1003. doi:10.1001/jamaneurol.2021.1681
    Key Points

    Question  Are rare pathogenic genetic variants associated with risk for sporadic moyamoya disease?

    Findings  In a genetic association study including a 24-proband discovery cohort and an 84-proband validation cohort of non–East Asian patients with moyamoya disease, whole-exome sequencing identified rare, damaging variants in DIAPH1 (diaphanous-1), a key effector of actin remodeling in vascular cells and platelets. DIAPH1 was enriched in mural cells of the midgestational human brain and its coexpression network converges on cytoskeleton regulatory pathways.

    Meaning  These results suggest DIAPH1 as a novel moyamoya disease risk gene and may implicate impaired vascular cell actin remodeling in moyamoya disease pathogenesis, with likely diagnostic and therapeutic ramifications.

    Abstract

    Importance  Moyamoya disease (MMD), a progressive vasculopathy leading to narrowing and ultimate occlusion of the intracranial internal carotid arteries, is a cause of childhood stroke. The cause of MMD is poorly understood, but genetic factors play a role. Several familial forms of MMD have been identified, but the cause of most cases remains elusive, especially among non–East Asian individuals.

    Objective  To assess whether ultrarare de novo and rare, damaging transmitted variants with large effect sizes are associated with MMD risk.

    Design, Setting, and Participants  A genetic association study was conducted using whole-exome sequencing case-parent MMD trios in a small discovery cohort collected over 3.5 years (2016-2019); data were analyzed in 2020. Medical records from US hospitals spanning a range of 1 month to 1.5 years were reviewed for phenotyping. Exomes from a larger validation cohort were analyzed to identify additional rare, large-effect variants in the top candidate gene. Participants included patients with MMD and, when available, their parents. All participants who met criteria and were presented with the option to join the study agreed to do so; none were excluded. Twenty-four probands (22 trios and 2 singletons) composed the discovery cohort, and 84 probands (29 trios and 55 singletons) composed the validation cohort.

    Main Outcomes and Measures  Gene variants were identified and filtered using stringent criteria. Enrichment and case-control tests assessed gene-level variant burden. In silico modeling estimated the probability of variant association with protein structure. Integrative genomics assessed expression patterns of MMD risk genes derived from single-cell RNA sequencing data of human and mouse brain tissue.

    Results  Of the 24 patients in the discovery cohort, 14 (58.3%) were men and 18 (75.0%) were of European ancestry. Three of 24 discovery cohort probands contained 2 do novo (1-tailed Poisson P = 1.1 × 10−6) and 1 rare, transmitted damaging variant (12.5% of cases) in DIAPH1 (mammalian diaphanous-1), a key regulator of actin remodeling in vascular cells and platelets. Four additional ultrarare damaging heterozygous DIAPH1 variants (3 unphased) were identified in 3 other patients in an 84-proband validation cohort (73.8% female, 77.4% European). All 6 patients were non–East Asian. Compound heterozygous variants were identified in ena/vasodilator-stimulated phosphoproteinlike protein EVL, a mammalian diaphanous-1 interactor that regulates actin polymerization. DIAPH1 and EVL mutant probands had severe, bilateral MMD associated with transfusion-dependent thrombocytopenia. DIAPH1 and other MMD risk genes are enriched in mural cells of midgestational human brain. The DIAPH1 coexpression network converges in vascular cell actin cytoskeleton regulatory pathways.

    Conclusions and Relevance  These findings provide the largest collection to date of non–East Asian individuals with sporadic MMD harboring pathogenic variants in the same gene. The results suggest that DIAPH1 is a novel MMD risk gene and impaired vascular cell actin remodeling in MMD pathogenesis, with diagnostic and therapeutic ramifications.

    Introduction

    Moyamoya disease (MMD) is a primary cerebrovascular disorder characterized by progressive stenosis and eventual occlusion of the bilateral intracranial internal carotid arteries and their proximal branches.1,2 Resultant tissue ischemia leads to compensatory development of abnormally dilated and fragile collateral vessels that appear on cerebral angiography as a “puff of smoke” (Japanese, moyamoya3). The incidence of MMD is highest in the Japanese population4,5 and is 10 times lower in non–East Asian populations.6,7 Moyamoya disease is one of the most frequent causes of pediatric stroke.8 Current therapy consists of stroke prevention via platelet inhibition with aspirin and indirect or direct neurosurgical revascularization, with the attendant risks of morbidity.9The progressive nature of MMD requires early diagnosis to optimize selection of patients for surgery, which is the only currently effective disease treatment.

    Gaps in our understanding of MMD pathogenesis impede the development of preventive, diagnostic, and therapeutic strategies. Pathologic changes in MMD include fragmentation of the inner elastic lamina and concentric fibrocellular thickening of the intima associated with increased proliferation of α-actin–positive vascular smooth muscle cells (VSMCs).10-13 Genetic factors play a substantial role; 10% of Japanese patients have affected first-degree relatives, as do 6% of patients in the US.14,15 Identification of 4 genes involved in familial monogenic MMD11,16-20 and several monogenic forms of moyamoya syndrome21-25 has implicated nitric oxide signaling (GUCY1A3), genomic stability (RNF213), actin polymerization (ACTA2), RAS signaling (with NF-1, Noonan, and Costello syndromes), and the NOTCH pathway (with Alagille syndrome), among others, in disease pathogenesis (eTable 1 in the Supplement). However, these rare pathogenic variants with large effect size account for less than 2% of MMD cases.19 Moreover, although contributing significantly to the genetic burden of MMD, the common variant risk factor RNF213 is represented predominantly in Japanese and other East Asian populations.16,26,27 Therefore, a significant proportion of MMD remains genetically undefined, especially among the European population.5,28

    The sporadic nature of most MMD cases limits the utility of classic genetic approaches. Whole-exome sequencing (WES) of relatively small, well-phenotyped, trio (case-parent)-based cohorts has identified pathogenic de novo variants (DNVs) in sporadic cases of neurodevelopmental disease,29-31 including vein of Galen malformation and other arteriovenous malformations.17,32,33 We hypothesized that trio-based WES might uncover new, rare pathogenic gene variants with large effect size that increase the risk for sporadic MMD. We provide data herein suggesting that DIAPH1 is a new MMD risk gene for sporadic MMD in non–East Asian individuals.

    Methods

    All study procedures and protocols complied with human investigation committees, institutional review boards, and human research protection programs at Yale University School of Medicine, New Haven, Connecticut, and the University of Texas Health Science Center, Houston. Written informed consent for genetic studies was obtained from all participants. Participants did not receive financial compensation. This study followed the Strengthening the Reporting of Genetic Association Studies (STREGA) reporting guideline for genetic association studies.

    Inclusion criteria of the Yale Center for Mendelian Genomics–based 24-patient discovery cohort (22 trios) and the University of Texas–based 84-patient validation cohort (29 trios) (eTable 2 in the Supplement) were identical and restricted to primary MMD.5 Cases were diagnosed by neurosurgical specialists using international consensus criteria.34 Patients and participating family members provided buccal swab samples (SK-2S DNA buccal swab kits, Isohelix), medical records, neuroimaging study results, and operative reports. Patient phenotypes are presented in eTable 3 in the Supplement. Representative neuroimaging is presented in Figure 1.

    Exon capture was performed using the Nimblegen v.2 exome capture reagent (Roche) in 3 participants, Nimblegen SeqxCap EZ MedExome Target Enrichment Kit (Roche) in 9 participants, or xGen Exome Research Panel v1 (IDT) in 56 participants, followed by 101 base pair paired-end sequencing using the Illumina NovaSeq platform (eTable 4 in the Supplement). Sequence reads were aligned to the human reference genome GRCh37/hg19 using BWA-MEM. Single-nucleotide variants and small indels were called using a combination of genome analysis toolkit HaplotypeCaller35,36 and Freebayes.37 Functional annotations were added using ANNOVAR38 with the dbNSFP39 database. Allele frequency annotations originated from the gnomAD (v.2.1.1) and Bravo databases.40,41 MetaSVM and combined annotation-dependent depletion, version 1.6 (CADD v1.6) algorithms were used to predict deleteriousness of missense variants (D-Mis, defined as MetaSVM-deleterious or combined annotation-dependent depletion, version 1.6 score ≥20).42,43 Inferred classes of loss-of-function (LoF) variants consisted of stop-gain, stop-loss, frameshift insertions/deletions, canonical splice site and start-loss variants. Loss-of-function and D-Mis variants were considered damaging.

    De novo variants were called using TrioDeNovo.44 Candidate DNVs were further filtered based on the following criteria: (1) exonic or splice-site variants, (2) read depth of 10 in the proband and both parents; (3) minimum proband alternative read depth of 5; (4) proband alternative allele ratio greater than or equal to 28% if having less than 10 alternative reads or greater than or equal to 20% if having greater than or equal to 10 alternative reads, (5) alternative allele ratio in both parents greater than or equal to 3.5%, and (6) global minor allele frequency (MAF)≤4 × 10−4 in ExAC.

    Rare heterozygous variants were identified as having a Bravo MAF≤5 × 10−4 and were classified as LoF or D-Mis by the previously described filtering criteria. Predicted LoF and D-Mis variants were further filtered for high quality using the following criteria: (1) Pass Genome Analysis Toolkit variant quality score recalibration, (2) read depth greater than or equal to 8 independent reads, and (3) genotype quality score greater than or equal to 20. Recessive genotypes and DNVs were excluded.

    Recessive genotypes were filtered for rare (MAF≤1 × 10−3 in Bravo) homozygous and compound heterozygous variants that exhibited high-quality sequence reads (Pass Genome Analysis Toolkit variant quality score recalibration, GQ≥20, ≥4 total reads total for homozygous, and a minimum of 8 reads for compound heterozygous variants). Only LoF and D-mis were considered as potentially damaging. For probands whose parents’ WES data were not available, only homozygous variants were analyzed. Detailed methods regarding kinship analysis, ruling out duplicated samples, and principal component analysis are given in the eMethods in the Supplement.

    After filtering using the aforementioned criteria for each type of variant, in silico visualization was performed to remove false-positive calls. Variants in the top candidate genes were further confirmed by Sanger sequencing (eFigure 1 in the Supplement).

    Because the MMD trios were captured by 3 different reagents (ie, Nimblegen v.2, MedExome, and IDT), we took the union of all bases covered by different capture reagents and generated a browser-extensible data file representing a unified capture for all trios. We used bedtools (version 2.27.1) to extract sequences from the browser-extensible data file.45 A total of 1798 control trios consisting of unaffected siblings and parents of patients with autism spectrum disorder from the Simons Simplex Collection were analyzed in parallel.46 We then applied a sequence context-based method to calculate the probability of observing a DNV for each base in the coding region, adjusting for sequencing depth in each gene as described previously.47 The eMethods in the Supplement provides further details.

    The burden of DNVs in MMD cases was determined using the denovolyzeR package (eMethods in the Supplement).48 To examine whether any gene contains more protein-damaging DNVs than expected, the expected number of protein-altering DNVs was calculated from the corresponding probability, adjusting for cohort size. The Poisson test was then used to compare the observed DNVs for each gene vs the expected number of DNVs. Because separate tests were performed for protein-damaging and LoF DNVs, the Bonferroni multiple-testing threshold was equal to 1.3 × 10−6 (α = .05/[2 tests ×19 347 genes]).

    The gnomAD control cohort was filtered with identical criteria. A 2-tailed Fisher exact test was used to compare the number of total heterozygous damaging variants observed in DIAPH1, ACTA2, and RNF213 between 18 European MMD cases and non-Finnish European controls in the gnomAD (without disease-enriched TOPMed samples) database,40 regardless of the transmission pattern.

    High-confidence MMD genes (monogenic causes of MMD) are provided in eTable 1 in the Supplement. Further clinical significance was determined by screening ClinVar database variants for those with predicted pathogenicity49

    Polioudakis et al50 identified 16 prenatal cell types and associated marker genes in a single-cell RNA sequence atlas that maps the human midgestational brain (17-18 gestational weeks). We sought to test for enrichment of previously known and cohort-determined MMD genes in each of these cell types. Known MMD genes were compiled from the literature (eTable 1 in the Supplement). Candidate MMD risk genes from our cohort were defined using similar criteria from prior genomics studies as genes intolerant to LoF variants(pLI>0.9) with 1 or more LoF DNV and genes intolerant to missense variants (mis-Z>2) with 1 or more missense DNV (eTable 5 in the Supplement).29,31 Using an indicator-based binomial logistic regression model, we determined the significance of association between a gene’s status as an MMD gene and its identity as a cell-type marker for all genes expressed in 3 or more cells of the single-cell RNA-sequencing atlas, accounting for gene length and guanine-cytosine content as covariates. Enrichment significance was defined at the Bonferroni multiple-testing cutoff (α = .05/16 = 3.13 × 10−3).

    The Betsholtz mouse brain vasculature scRNaseq database was used as an additional way to assess Diaph1 expression in cell types.51,52 The database was preprocessed by filtering for mitochondrial genes, library size, and cell doublets, followed by library normalization and log-transformation using scprep.53 Data were imputed using Markov Affinity-based graph imputation of cells.54 Optimal cluster number was determined by computing a silhouette score after principal component analysis linear-dimensionality reduction followed by kmeans clustering. Potential of heat-diffusion for affinity-based transition embedding,55 a nonlinear method of dimensionality reduction, was used for visualization. Gene-specific clusters were identified using mean difference in scprep. Marker genes were visualized to validate cluster identity (endothelial cells: Cdh5 and Pecam1, pericytes Pdgfrb and Cspg4, smooth muscle cells: Acta2 and Tagln, fibroblasts: Col1a1 and Col1a2, and oligodendrocytes: Plp1 and Cnp).

    We then implemented k-nearest-neighbors conditional-density resampled estimate of mutual information (kNN-DREMI), which is a computational method successfully applied to study statistical dependency of gene expression in single-cell RNA sequencing data to identify genes associated with Diaph1 expression in mouse cerebrovascular cells.54,56,57 We determined the direction of relationship of the top Diaph1-scored genes (95th percentile) and performed hypergeometric enrichment analysis for the genes positively coregulated with Diaph1 expression using KEGG pathways from the molecular signatures database (MSigDB).58 Heatmaps were generated using pheatmap in R, version 4.0.2 (R Foundation for Statistical Computing). For visualization purposes, a random subset of 400 cells was used and visualized genes were restricted to those with a DREMI score greater than the 98th percentile. Columns were ordered by Diaph1 expression, whereas rows were hierarchically clustered.

    Results

    Of the 24 patients with MMD patients in our discovery cohort (22 trios) (eTable 2 in the Supplement), 14 (58.3%) were male and 18 (75.0%) were of European ancestry (eTable 6 in the Supplement). DNA was isolated and WES was performed.31 More than 93.7% of the targeted bases had 8 or more independent reads, and more than 89.7% had 15 or more independent reads (eTable 4 and eTable 7 in the Supplement).

    We first screened for rare, damaging heterozygous variants (MAF≤5 × 10−4 in Bravo41) in genes previously implicated in MMD, including ACTA2, BRCC2, GUCY1A1, MTCP1, PCNT, RNF213, and YY1AP1 (eTable 1 in the Supplement). Three European probands carried different transmitted D-Mis variants (p.Cyc998Arg, p.Ile4717Thr, and p.Thr4845Lys) in highly conserved residues of RNF21359 (eTable 8 in the Supplement).11 Another European patient with MMD carried a transmitted D-Mis variant (p.Ile77Val) in ACTA2 (eTable 8 in the Supplement). To our knowledge, none of these variants found exclusively in White probands has been previously reported in patients with MMD. Orthogonal case-control analysis of these variants in 18 European probands with MMD vs non-Finnish European controls in the gnomAD database (without TOPMed samples) was significant in the case of RNF213 (odds ratio, 6.45; 2-tailed Fisher P = .01) but did not reach the multiple comparisons significance threshold for ACTA2 (Table 1).

    Identification of Multiple DNVs and Damaging Variants

    We next examined the contribution of DNVs to MMD risk. Our MMD cohort demonstrated a rate of 1.09 coding region DNVs per proband (eTable 5 in the Supplement), following the expected Poisson distribution and similar to previous results with the identical sequencing platform31 (eFigure 2 in the Supplement). We did not observe any significant enrichment of DNVs in any functional class (eTable 9 in the Supplement). However, 1 gene (DIAPH1) harbored 2 damaging heterozygous DNVs (c.534-2A>G and p.Cys220Arg) in unrelated European MMD probands, which is a very unlikely chance event (enrichment, 1372; 1-tailed Poisson P value = 1.1 × 10−6) (Table 2). In contrast, we identified no DNV in DIAPH1 among 1798 Simons simplex collection control trios.

    DIAPH1 (CCDS43374.1; RefSeq: NM_005219.4), encoding mammalian Diaphanous-1 (mDia1), is highly intolerant to LoF variant per gnomAD (pLI = 0.92) (Figure 1). Both DNVs map to the mDia1 guanosine triphosphatase (GTP)ase binding domain (GBD) domain, which mediates the interaction between activated GTP-bound RhoA and mDia160 (Figure 1 and Table 2). The c.534-2A>G alteration in the canonical acceptor splice site likely leads to exclusion of the 87 base pair exon 6, deleting 29 in-frame amino acids within the GBD domain. Arg substitution at the highly conserved Cys220 residue in mDia1 is predicted to disrupt tight helical packing of its GBD/FH3 domain required for RhoA-mDia1 interaction60 (eFigure 3 in the Supplement).

    A transmitted heterozygous D-Mis (p.Arg1155Gln) mDia1 variant was detected in a third European patient with MMD. p.Arg1155Gln is ultrarare in Bravo (MAF = 8.0 × 10−6) and deleterious (CADD score, 27.8). The monomeric FH2 domains of mDia1 inhibit actin polymerization and bind filamentous actin (F-actin) in a 1:1 complex at micromolar concentrations.61 p.Arg1155Gln maps to the mDia1 FH2 domain (Figure 1 and Table 2). Gln substitution at the highly conserved Arg1155 residue is predicted to disrupt a hydrogen bond network and destabilize secondary structure of the FH2 domain required for F-actin binding (eFigure 3 in the Supplement).

    An orthogonal case-control analysis of rare, damaging DIAPH1 variants in all 18 European MMD probands vs controls in the non-Finnish European gnomAD database (without TOPMed samples) provide additional support for DIAPH1 as an MMD risk gene (odds ratio, 12.17; 2-tailed Fisher exact test P = 2.4 × 10−3) (Table 1).

    We prioritized DIAPH1 for further genomic validation because it was the only gene to harbor multiple damaging DNVs, showed variant enrichment in MMD cases vs controls, accounted for 12.5% of damaging variants in our discovery cohort, and has a biologically plausible mechanism given its role in RhoA-mediated actin dynamics in vascular cells and platelets.62 We therefore screened for rare, damaging DIAPH1 variants in a validation cohort of 84 MMD probands negative for known MMD gene pathogenic variants by WES.17

    We identified 4 additional DIAPH1 protein-altering variants (3 unphased and 1 transmitted variant in 3 unrelated individuals with MMD (Figure 1, Table 2). In 1 patient, p.Met906Ile and p.Leu907Phe substitutions in the mDia1 FH2 domain were identified on the same allele. The p.Glu475Lys and p.Asp536Tyr D-mis variants in the linker region between the FH1 and FH3 domains were noted in 2 other unrelated MMD probands. All 4 DIAPH1 variants impact conserved residues and are predicted to significantly impair protein structure (eFigure 3 in the Supplement). These data lend support to the pathogenicity of these DIAPH1 variants in MMD and suggest haploinsufficiency as a genetic mechanism, with incomplete penetrance of a dominant trait in 2 cases.

    Clinical Presentation of DIAPH1 Probands and Association With Thrombocytopenia

    All patients with DIAPH1 variants presented with sporadic, bilateral MMD disease (Table 3). Both patients with DIAPH1 DNVs had severe disease (Suzuki grade IV or worse), and each presented with ischemic strokes, in contrast to only 22.2% of patients without DIAPH1 variants (P < .001). Patients with MMD and DIAPH1 variants who had available preoperative complete blood cell counts had thrombocytopenia (blood platelets, values <150 × 103/μL that required preoperative platelet transfusions (Table 3). The patient with the de novo DIAPH1 p.Cys220Arg variant developed preoperative nontraumatic bilateral subdural hemorrhages and the postoperative complication of subdural hemorrhage related to recalcitrant thrombocytopenia.

    Compound Heterozygous Variants in EVL, a mDia1 Interactor and Actin Remodeler

    To identify additional rare variants with large effect size that contribute to MMD, we evaluated recessive genotypes in 24 MMD trios. No genes harbored more than 1 recessive genotype (eTable 10 in the Supplement reports all damaging recessive genotypes). One patient harbored compound heterozygous D-mis variants (p.Gln236Arg and p.Arg363Lys) in EVL (pLI = 1.00), encoding the Ena/vasodilator-stimulated phosphoprotein (VASP)-like protein EVL. Similar to patients with DIAPH1 DNVs, the proband with the EVL variant had severe, bilateral MMD and thrombocytopenia. As with all Ena/VASP proteins, EVL has an N-terminal Ena/VASP homology EVH1 domain, a C-terminal EVH2 domain, and a central proline-rich domain. Both p.Gln236Arg and p.Arg363Lys map to EVL’s EVH2 domain, which mediates protein multimerization and binds F-actin in vitro.63

    Enrichment of DIAPH1 and Other MMD Risk Genes in Mural Cells of the Midgestational Human Brain

    To gain insight into the biological role of genes associated with MMD, we examined potential enrichment of known (eTable 1 in the Supplement) and cohort-determined (DIAPH1, CDH2, LRP2, MAP2K4, NOTCH3, TPR, and ZFC3H1) (eMethods and eTable 5 in the Supplement) MMD risk genes in the largest available single-cell RNA transcriptomic atlas of human midgestational brain development50 (Figure 2). Known MMD genes are enriched in pericytes (P = 1.3 × 10−3), and cohort-determined MMD risk genes are enriched in pericytes (P = 1.7 × 10−3), endothelial cells (P = 7.6 × 10−4), and interneurons of the prenatal caudate ganglionic eminence (P = 1.9 × 10−3). Enrichment of MMD genes in endothelial cells and pericytes suggests that MMD variants disrupt convergent pathways to affect mural cell biology.

    Genes Co-regulated With Diaph1 Expression in Vascular Cells Are Enriched for Roles in Actin Remodeling

    The above results prompted us to study Diaph1 expression in mouse brain vascular cells in greater detail using Betsholtz scRNA sequencing data,51,52 as described in the Methods section. The top 3 cell types represented in the database were endothelial cells, pericytes, and smooth muscle cells (Figure 2A-D). Diaph1 expression was enriched in endothelial cells and fibroblasts (Figure 2E-F). kNN-DREMI analysis revealed that genes coexpressed with Diaph1 were enriched in an adherens junction (false discovery rate = 1.02 × 10−5) and regulation of actin cytoskeleton (false discovery rate = 3.27 × 10−4) (eFigure 4 in the Supplement), implicating Diaph1 in vascular organization and vascular tone regulation.

    Discussion

    We have identified a novel association of de novo and rare, transmitted damaging variants in DIAPH1 with the risk of MMD. The variant burden of DIAPH1 in MMD surpassed genome-wide significance thresholds, and variants were significantly increased in cases vs controls. The discovery of multiple additional, ultrarare, damaging DIAPH1 variants in an independent cohort of 84 probands supports our findings.

    Previous work in monogenic familial forms of MMD has implicated impaired cytoskeleton regulation and increased fibrocellular proliferation of VSMCs in MMD pathogenesis.11,64 Pressure- and stretch-induced actin polymerization in VSMCs underlies blood vessel constriction,65 and agonist-induced actin polymerization mediates platelet surface adhesion, aggregation, and thrombus formation.66 These events are regulated by RhoA and other Rho family small GTPases, which cycle between inactive GDP-bound and active GTP-bound states.67 Dysregulation of Rho GTPases and their signaling effectors has been implicated in vascular cell (eg, vasospasm and stroke)68 and platelet (thrombocytopenia) diseases.69

    DIAPH1 encodes the RhoA GTPase mDia1,61,70 which contains a C-terminal inhibitory diaphanous autoregulatory domain and an N-terminal Rho- GBD embedded within the larger diaphanous autoinhibitory domain.60,71 The binding of activated RhoA allows the mDia1 FH2 domain to bind F-actin and stimulate the addition of actin monomers at barbed ends.72 DIAPH1 pathogenic variants have been implicated in 2 other mendelian diseases. Heterozygous truncating DIAPH1 variants (including the recurrent variant p.Arg1213Ter) cause deafness 1 with or without thrombocytopenia (OMIM 124900)73,74; these variants eliminate the C-terminal autoinhibitory diaphanous autoregulatory domain and lead to increased mDia1 gain of function.74 In contrast, homozygous loss-of-function variants cause a syndrome characterized by seizures, cortical blindness, and microcephaly (OMIM 616632).75

    Moyamoya disease–associated DIAPH1 variants are heterozygous and likely result in haploinsufficiency, with evidence of incomplete penetrance or potential somatic mosaicism in 1 of our trios. De novo variants localize to the GBD-binding domain and lead to more severe MMD and thrombocytopenia, the latter of which is present also in patients with DFNA1 with DIAPH1 variants. Notably, none of the probands with DIAPH1-variant MMD had deafness. This absence of deafness and the discovery of multiple DIAPH1 variants in a cohort of such modest size decrease the chance that DIAPH1 variants were responsible only for thrombocytopenia and simply coincident with MMD.

    Moyamoya disease–associated DIAPH1 DNVs might result in loss of activation of mDia1 by abrogating its interaction with activated GTP-bound RhoA. Moyamoya disease–variants in other parts of the protein distal to the GBD domain but proximal to the autoinhibitory diaphanous autoregulatory domain also likely impair mDia1 function. For example, site-directed mutagenesis in the FH2 domain—the site of multiple mDia1 variants in MMD—abolishes bundling of actin filaments induced by a constitutively active mDia1 mutant.76 Phenotypic heterogeneity among patients with DIAPH1 variants likely reflects differences in variant zygosity (homozygous vs heterozygous), type (LoF vs D-mis), and domain localization of variants within the mDia1 protein. Determinants of incomplete penetrance and variable expressivity remain obscure but may include common genetic or environmental modifiers (eg, inflammatory or oxidative triggers) or stochastic elements.77

    Moyamoya disease DIAPH1 variants impairing RhoA-mDia1–regulated actin remodeling may cause neointimal expansion and progressive narrowing of the bilateral internal carotid arteries.78 Consistent with this hypothetical mechanism, Rho-A-mDia1 regulates signal transduction of oxidative stress and inflammatory events that control VSMC migration, vascular remodeling, and pathological neointimal expansion.62 Moreover, DIAPH1 single-nucleotide variants are associated with increased susceptibility to ischemic stroke risk, especially small-artery occlusion subtypes.79 The next most frequently mutated gene among non–East Asian patients with MMD, ACTA2, encodes the smooth muscle–specific isoform of α-actin in VSMCs.80 ACTA2-mutant vascular stenosis is associated, in turn, with fibrocellular proliferation of intimal VSMCs.80 Impaired RhoA-mDia1–regulated actin dynamics could also help explain the thrombocytopenia seen in patients with MMD.81

    Limitations

    This study has limitations. The interpretation of our results is limited by our discovery cohort size. Furthermore, identified variants in DIAPH1 are not identical and therefore may have slightly different biological effects or carry different phenotype risk. Nonetheless, these results demonstrate the power of trio-based WES for identifying potential rare, large-effect pathogenic variants in rare disease.

    Conclusions

    Future WES of additional MMD trios and the modeling of discovered variants in appropriate model systems will be important topics of investigation that may yield new insight into the pathogenic mechanism of DIAPH1 in MMD. In addition, further research might foster the discovery of other new monogenic forms of disease and define clinically relevant MMD subtypes.

    Back to top
    Article Information

    Accepted for Publication: March 31, 2021.

    Published Online: June 14, 2021. doi:10.1001/jamaneurol.2021.1681

    Corresponding Authors: Sheng Chih Jin, PhD, Department of Genetics, Washington University School of Medicine, 60 S Euclid Ave, Campus Box 8232, St Louis, MO 63110 (jin810@wustl.edu); Kristopher T. Kahle, MD, PhD, Department of Neurosurgery, Yale School of Medicine, 789 Howard Ave, New Haven, CT 06520 (kristopher.kahle@yale.edu).

    Author Contributions: Dr Kahle had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. Dr Kundishora and Mr Peters are co–first authors.

    Concept and design: Kundishora, Pinard, Panchagnula, H. Smith, Chen, S. Zhao, Roszko, Bamshad, Nickerson, DiLuna, Lifton, Gunel, Dianna, Jin, Kahle.

    Acquisition, analysis, or interpretation of data: Kundishora, Peters, Pinard, Duran, Panchagnula, Barak, Miyagishima, Dong, Dunbar, Ocken, Nelson-Williams, Haider, Walker, Li, H. Zhao, Thumkeo, Marlier, Duy, Diab, Reeves, Robert, Sujijantarat, Stratman, S. Zhao, Lu, Zhang, Mane, Castaldi, Lopez-Giraldez, Knight, Bamshad, Nickerson, Geschwind, Lang, Storm, Matouk, Orbach, Alper, E. Smith, Gunel, Dianna, Jin, Kahle.

    Drafting of the manuscript: Kundishora, Peters, Panchagnula, Barak, Miyagishima, Dunbar, H. Smith, Ocken, Haider, Diab, Stratman, Castaldi, Jin, Kahle.

    Critical revision of the manuscript for important intellectual content: Kundishora, Pinard, Duran, Panchagnula, Barak, Miyagishima, Dong, Nelson-Williams, Haider, Walker, Li, H. Zhao, Thumkeo, Marlier, Duy, Diab, Reeves, Robert, Sujijantarat, Chen, S. Zhao, Roszko, Lu, Zhang, Mane, Lopez-Giraldez, Knight, Bamshad, Nickerson, Geschwind, Lang, Storm, DiLuna, Matouk, Orbach, Alper, E. Smith, Lifton, Gunel, Dianna, Jin, Kahle.

    Statistical analysis: Kundishora, Panchagnula, Barak, Miyagishima, Dong, Walker, Li, Duy, Diab, S. Zhao, Lu, Zhang, Jin.

    Obtained funding: Pinard, Storm, Lifton, Dianna, Jin, Kahle.

    Administrative, technical, or material support: Kundishora, Duran, Miyagishima, Dunbar, H. Smith, Ocken, Nelson-Williams, Marlier, Diab, Mane, Castaldi, Lopez-Giraldez, Knight, Nickerson, Geschwind, Storm, DiLuna, Lifton, Dianna, Jin, Kahle.

    Supervision: Kundishora, Duran, Barak, H. Zhao, DiLuna, Gunel, Jin, Kahle.

    Conflict of Interest Disclosures: Dr Pinard reported receiving grants from the American Heart Association Postdoctoral Fellowship during the conduct of the study. Dr Stratman reported receiving grants from the National Institutes of Health (NIH) during the conduct of the study. Dr Jin reported receiving grant 4R00HL143036-02 from the NIH/National Heart, Lung, and Blood Institute during the conduct of the study. No other disclosures were reported.

    Funding/Support: This work was supported by the Yale-NIH Center for Mendelian Genomics (grant 5U54HG006504) and the University of Washington Center for Mendelian Genomics (grants UW-CMG, UM1HG006493, U24HG008956), National Institutes of Health (grants R01 NS111029-01A1, R01 NS109358, and K12 228168); the Rudi Schulte Research Institute (K.K.), the National Heart, Lung, and Blood Institute (grant R00HL143036-02; (S.C.J), NIH grant R01HL109942, and the American Heart Association Merit Award (D.M.M.), and American Heart Association Postdoctoral Fellowship Award (18POST34020031; A.P.).

    Role of the Funder/Sponsor: The funding organizations had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

    Additional Contributions: We are grateful to the patients and families who participated in this research.

    Additional Information: The Bravo variant browser is available at https://bravo.sph.umich.edu/freeze8/hg38/.

    References
    1.
    Takeuchi  K, Shimizu  K.  Hypoplasia of the bilateral internal carotid arteries.   Brain Nerv. 1957;9:37–43.Google Scholar
    2.
    Jung  YS, Wang  W, Jun  S,  et al.  Deregulation of CRAD-controlled cytoskeleton initiates mucinous colorectal cancer via β-catenin.   Nat Cell Biol. 2018;20(11):1303-1314. doi:10.1038/s41556-018-0215-z PubMedGoogle ScholarCrossref
    3.
    Takeuchi  K, Shimizu  K.  Hypoplasia of the bilateral internalcarotid arteries.   No To Shinkei. 1957(9):37-43.Google Scholar
    4.
    Roder  C, Nayak  NR, Khan  N, Tatagiba  M, Inoue  I, Krischek  B.  Genetics of moyamoya disease.   J Hum Genet. 2010;55(11):711-716. doi:10.1038/jhg.2010.103 PubMedGoogle ScholarCrossref
    5.
    Guey  S, Tournier-Lasserve  E, Hervé  D, Kossorotoff  M.  Moyamoya disease and syndromes: from genetics to clinical management.   Appl Clin Genet. 2015;8:49-68.PubMedGoogle Scholar
    6.
    Baba  T, Houkin  K, Kuroda  S.  Novel epidemiological features of moyamoya disease.   J Neurol Neurosurg Psychiatry. 2008;79(8):900-904. doi:10.1136/jnnp.2007.130666 PubMedGoogle ScholarCrossref
    7.
    Uchino  K, Johnston  SC, Becker  KJ, Tirschwell  DL.  Moyamoya disease in Washington State and California.   Neurology. 2005;65(6):956-958. doi:10.1212/01.wnl.0000176066.33797.82 PubMedGoogle ScholarCrossref
    8.
    Lee  S, Rivkin  MJ, Kirton  A, deVeber  G, Elbers  J; International Pediatric Stroke Study.  Moyamoya disease in children: results from the International Pediatric Stroke Study.   J Child Neurol. 2017;32(11):924-929. doi:10.1177/0883073817718730 PubMedGoogle ScholarCrossref
    9.
    Ferriero  DM, Fullerton  HJ, Bernard  TJ,  et al; American Heart Association Stroke Council and Council on Cardiovascular and Stroke Nursing.  Management of stroke in neonates and children: a scientific statement from the American Heart Association/American Stroke Association.   Stroke. 2019;50(3):e51-e96. doi:10.1161/STR.0000000000000183 PubMedGoogle ScholarCrossref
    10.
    Huang  S, Guo  ZN, Shi  M, Yang  Y, Rao  M.  Etiology and pathogenesis of moyamoya disease: an update on disease prevalence.   Int J Stroke. 2017;12(3):246-253. doi:10.1177/1747493017694393 PubMedGoogle ScholarCrossref
    11.
    Liu  W, Morito  D, Takashima  S,  et al.  Identification of RNF213 as a susceptibility gene for moyamoya disease and its possible role in vascular development.   PLoS One. 2011;6(7):e22542. doi:10.1371/journal.pone.0022542 PubMedGoogle Scholar
    12.
    Takagi  Y, Kikuta  K, Nozaki  K, Hashimoto  N.  Histological features of middle cerebral arteries from patients treated for moyamoya disease.   Neurol Med Chir (Tokyo). 2007;47(1):1-4. doi:10.2176/nmc.47.1 PubMedGoogle ScholarCrossref
    13.
    Masuda  J, Ogata  J, Yutani  C.  Smooth muscle cell proliferation and localization of macrophages and T cells in the occlusive intracranial major arteries in moyamoya disease.   Stroke. 1993;24(12):1960-1967. doi:10.1161/01.STR.24.12.1960 PubMedGoogle ScholarCrossref
    14.
    Scott  RM, Smith  ER.  Moyamoya disease and moyamoya syndrome.   N Engl J Med. 2009;360(12):1226-1237. doi:10.1056/NEJMra0804622 PubMedGoogle ScholarCrossref
    15.
    Fukui  M, Kono  S, Sueishi  K, Ikezaki  K.  Moyamoya disease.   Neuropathology. 2000;20(suppl):S61-S64. doi:10.1046/j.1440-1789.2000.00300.x PubMedGoogle ScholarCrossref
    16.
    Kamada  F, Aoki  Y, Narisawa  A,  et al.  A genome-wide association study identifies RNF213 as the first moyamoya disease gene.   J Hum Genet. 2011;56(1):34-40. doi:10.1038/jhg.2010.132 PubMedGoogle ScholarCrossref
    17.
    Pinard  A, Guey  S, Guo  D,  et al.  The pleiotropy associated with de novo variants in CHD4, CNOT3, and SETD5 extends to moyamoya angiopathy.   Genet Med. 2020;22(2):427-431. doi:10.1038/s41436-019-0639-2 PubMedGoogle ScholarCrossref
    18.
    Hervé  D, Philippi  A, Belbouab  R,  et al.  Loss of α1β1 soluble guanylate cyclase, the major nitric oxide receptor, leads to moyamoya and achalasia.   Am J Hum Genet. 2014;94(3):385-394. doi:10.1016/j.ajhg.2014.01.018 PubMedGoogle ScholarCrossref
    19.
    Wallace  S, Guo  DC, Regalado  E,  et al.  Disrupted nitric oxide signaling due to GUCY1A3 mutations increases risk for moyamoya disease, achalasia and hypertension.   Clin Genet. 2016;90(4):351-360. doi:10.1111/cge.12739 PubMedGoogle ScholarCrossref
    20.
    Miskinyte  S, Butler  MG, Hervé  D,  et al.  Loss of BRCC3 deubiquitinating enzyme leads to abnormal angiogenesis and is associated with syndromic moyamoya.   Am J Hum Genet. 2011;88(6):718-728. doi:10.1016/j.ajhg.2011.04.017 PubMedGoogle ScholarCrossref
    21.
    Warejko  JK, Schueler  M, Vivante  A,  et al.  Whole exome sequencing reveals a monogenic cause of disease in ≈43% of 35 families with midaortic syndrome.   Hypertension. 2018;71(4):691-699. doi:10.1161/HYPERTENSIONAHA.117.10296 PubMedGoogle ScholarCrossref
    22.
    Guo  DC, Pannu  H, Tran-Fadulu  V,  et al.  Mutations in smooth muscle alpha-actin (ACTA2) lead to thoracic aortic aneurysms and dissections.   Nat Genet. 2007;39(12):1488-1493. doi:10.1038/ng.2007.6 PubMedGoogle ScholarCrossref
    23.
    Guo  DC, Duan  XY, Regalado  ES,  et al; University of Washington Center for Mendelian Genomics.  Loss-of-function mutations in YY1AP1 lead to Grange syndrome and a fibromuscular dysplasia-like vascular disease.   Am J Hum Genet. 2017;100(1):21-30. doi:10.1016/j.ajhg.2016.11.008 PubMedGoogle ScholarCrossref
    24.
    Milewicz  DM, Østergaard  JR, Ala-Kokko  LM,  et al.  De novo ACTA2 mutation causes a novel syndrome of multisystemic smooth muscle dysfunction.   Am J Med Genet A. 2010;152A(10):2437-2443. doi:10.1002/ajmg.a.33657 PubMedGoogle ScholarCrossref
    25.
    Rauch  A, Thiel  CT, Schindler  D,  et al.  Mutations in the pericentrin (PCNT) gene cause primordial dwarfism.   Science. 2008;319(5864):816-819. doi:10.1126/science.1151174 PubMedGoogle ScholarCrossref
    26.
    Zhu  B, Liu  X, Zhen  X,  et al.  RNF213 gene polymorphism rs9916351 and rs8074015 significantly associated with moyamoya disease in Chinese population.   Ann Transl Med. 2020;8(14):851. doi:10.21037/atm-20-1040 PubMedGoogle ScholarCrossref
    27.
    Park  YS, An  HJ, Kim  JO,  et al.  The role of RNF213 4810G>A and 4950G>A variants in patients with moyamoya disease in Korea.   Int J Mol Sci. 2017;18(11):E2477. doi:10.3390/ijms18112477 PubMedGoogle Scholar
    28.
    Liu  W, Senevirathna  ST, Hitomi  T,  et al.  Genomewide association study identifies no major founder variant in Caucasian moyamoya disease.   J Genet. 2013;92(3):605-609. doi:10.1007/s12041-013-0304-5 PubMedGoogle ScholarCrossref
    29.
    Furey  CG, Choi  J, Jin  SC,  et al.  De novo mutation in genes regulating neural stem cell fate in human congenital hydrocephalus.   Neuron. 2018;99(2):302-314.e4. doi:10.1016/j.neuron.2018.06.019PubMedGoogle ScholarCrossref
    30.
    Jin  SC, Lewis  SA, Bakhtiari  S,  et al.  Mutations disrupting neuritogenesis genes confer risk for cerebral palsy.   Nat Genet. 2020;52(10):1046-1056. doi:10.1038/s41588-020-0695-1 PubMedGoogle ScholarCrossref
    31.
    Jin  SC, Dong  W, Kundishora  AJ,  et al.  Exome sequencing implicates genetic disruption of prenatal neuro-gliogenesis in sporadic congenital hydrocephalus.   Nat Med. 2020;26(11):1754-1765. doi:10.1038/s41591-020-1090-2 PubMedGoogle ScholarCrossref
    32.
    Duran  D, Zeng  X, Jin  SC,  et al.  Mutations in chromatin modifier and ephrin signaling genes in vein of Galen malformation.   Neuron. 2019;101(3):429-443. doi:10.1016/j.neuron.2018.11.041PubMedGoogle ScholarCrossref
    33.
    Zhang  M, Ding  X, Zhang  Q,  et al.  Exome sequencing of 112 trios identifies recessive genetic variants in brain arteriovenous malformations.   J Neurointerv Surg. 2020;neurintsurg-2020-016469. doi:10.1136/neurintsurg-2020-016469 PubMedGoogle Scholar
    34.
    Research Committee on the Pathology and Treatment of Spontaneous Occlusion of the Circle of Willis; Health Labour Sciences Research Grant for Research on Measures for Intractable Diseases.  Guidelines for diagnosis and treatment of moyamoya disease (spontaneous occlusion of the circle of Willis).   Neurol Med Chir (Tokyo). 2012;52(5):245-266. doi:10.2176/nmc.52.245 PubMedGoogle ScholarCrossref
    35.
    McKenna  A, Hanna  M, Banks  E,  et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data.   Genome Res. 2010;20(9):1297-1303. doi:10.1101/gr.107524.110 PubMedGoogle ScholarCrossref
    36.
    Van der Auwera  GA, Carneiro  MO, Hartl  C,  et al.  From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline.   Curr Protoc Bioinformatics. 2013;43(1110):11.10.1-11.10.33. doi:10.1002/0471250953.bi1110s43PubMedGoogle Scholar
    37.
    Garrison  E, Marth  G. Haplotype-based variant detection from short-read sequencing. arXiv:12073907. Preprint posted online July 12, 2012.
    38.
    Wang  K, Li  M, Hakonarson  H.  ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data.   Nucleic Acids Res. 2010;38(16):e164. doi:10.1093/nar/gkq603 PubMedGoogle Scholar
    39.
    Liu  X, Wu  C, Li  C, Boerwinkle  E.  dbNSFP v3.0: a one-stop database of functional predictions and annotations for human nonsynonymous and splice-site SNVs.   Hum Mutat. 2016;37(3):235-241. doi:10.1002/humu.22932 PubMedGoogle ScholarCrossref
    40.
    Karczewski  KJ, Francioli  LC, Tiao  G,  et al; Genome Aggregation Database Consortium.  The mutational constraint spectrum quantified from variation in 141,456 humans.   Nature. 2020;581(7809):434-443. doi:10.1038/s41586-020-2308-7 PubMedGoogle ScholarCrossref
    41.
    Taliun  D, Harris  DN, Kessler  MD,  et al  Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program.   bioRxiv. 2019:563866. doi:10.1101/563866 Google Scholar
    42.
    Dong  C, Wei  P, Jian  X,  et al.  Comparison and integration of deleteriousness prediction methods for nonsynonymous SNVs in whole exome sequencing studies.   Hum Mol Genet. 2015;24(8):2125-2137. doi:10.1093/hmg/ddu733 PubMedGoogle ScholarCrossref
    43.
    Rentzsch  P, Witten  D, Cooper  GM, Shendure  J, Kircher  M.  CADD: predicting the deleteriousness of variants throughout the human genome.   Nucleic Acids Res. 2019;47(D1):D886-D894. doi:10.1093/nar/gky1016 PubMedGoogle ScholarCrossref
    44.
    Wei  Q, Zhan  X, Zhong  X,  et al.  A bayesian framework for de novo mutation calling in parents-offspring trios.   Bioinformatics. 2015;31(9):1375-1381. doi:10.1093/bioinformatics/btu839 PubMedGoogle ScholarCrossref
    45.
    Quinlan  AR, Hall  IM.  BEDTools: a flexible suite of utilities for comparing genomic features.   Bioinformatics. 2010;26(6):841-842. doi:10.1093/bioinformatics/btq033 PubMedGoogle ScholarCrossref
    46.
    Krumm  N, Turner  TN, Baker  C,  et al.  Excess of rare, inherited truncating mutations in autism.   Nat Genet. 2015;47(6):582-588. doi:10.1038/ng.3303 PubMedGoogle ScholarCrossref
    47.
    Samocha  KE, Robinson  EB, Sanders  SJ,  et al.  A framework for the interpretation of de novo mutation in human disease.   Nat Genet. 2014;46(9):944-950. doi:10.1038/ng.3050 PubMedGoogle ScholarCrossref
    48.
    Ware  JS, Samocha  KE, Homsy  J, Daly  MJ.  Interpreting de novo variation in human disease using denovolyzeR.   Curr Protoc Hum Genet. 2015;87:7.25.1-7.25.15. doi:10.1002/0471142905.hg0725s87PubMedGoogle Scholar
    49.
    Landrum  MJ, Lee  JM, Benson  M,  et al.  ClinVar: improving access to variant interpretations and supporting evidence.   Nucleic Acids Res. 2018;46(D1):D1062-D1067. doi:10.1093/nar/gkx1153 PubMedGoogle ScholarCrossref
    50.
    Polioudakis  D, de la Torre-Ubieta  L, Langerman  J,  et al.  A single-cell transcriptomic atlas of human neocortical development during mid-gestation.   Neuron. 2019;103(5):785-801.e8. doi:10.1016/j.neuron.2019.06.011PubMedGoogle ScholarCrossref
    51.
    He  L, Vanlandewijck  M, Mäe  MA,  et al.  Single-cell RNA sequencing of mouse brain and lung vascular and vessel-associated cell types.   Sci Data. 2018;5:180160. doi:10.1038/sdata.2018.160 PubMedGoogle Scholar
    52.
    Vanlandewijck  M, He  L, Mäe  MA,  et al.  A molecular atlas of cell types and zonation in the brain vasculature.   Nature. 2018;554(7693):475-480. doi:10.1038/nature25739 PubMedGoogle ScholarCrossref
    53.
    Chen  X, Burkhardt  DB, Hartman  AA,  et al.  MLL-AF9 initiates transformation from fast-proliferating myeloid progenitors.   Nat Commun. 2019;10(1):5767. doi:10.1038/s41467-019-13666-5 PubMedGoogle ScholarCrossref
    54.
    van Dijk  D, Sharma  R, Nainys  J,  et al.  Recovering gene interactions from single-cell data using data diffusion.   Cell. 2018;174(3):716-729.e27. doi:10.1016/j.cell.2018.05.061PubMedGoogle ScholarCrossref
    55.
    Moon  KR, van Dijk  D, Wang  Z,  et al.  Visualizing structure and transitions in high-dimensional biological data.   Nat Biotechnol. 2019;37(12):1482-1492. doi:10.1038/s41587-019-0336-3 PubMedGoogle ScholarCrossref
    56.
    Dutrow  EV, Emera  D, Yim  K,  et al.  The human accelerated region HACNS1 modifies developmental gene expression in humanized mice.   bioRxiv. 2019. doi:10.1101/2019.12.11.873075 Google Scholar
    57.
    Krishnaswamy  S, Spitzer  MH, Mingueneau  M,  et al.  Systems biology: conditional density-based analysis of T cell signaling in single-cell data.   Science. 2014;346(6213):1250689. doi:10.1126/science.1250689 PubMedGoogle Scholar
    58.
    Liberzon  A. A description of the molecular signatures database (MSigDB) website. In:  Stem Cell Transcriptional Networks. Springer; 2014:153-160. doi:10.1007/978-1-4939-0512-6_9
    59.
    Scholz  B, Korn  C, Wojtarowicz  J,  et al.  Endothelial RSPO3 controls vascular stability and pruning through non-canonical WNT/Ca(2+)/NFAT signaling.   Dev Cell. 2016;36(1):79-93. doi:10.1016/j.devcel.2015.12.015 PubMedGoogle ScholarCrossref
    60.
    Rose  R, Weyand  M, Lammers  M, Ishizaki  T, Ahmadian  MR, Wittinghofer  A.  Structural and mechanistic insights into the interaction between Rho and mammalian Dia.   Nature. 2005;435(7041):513-518. doi:10.1038/nature03604 PubMedGoogle ScholarCrossref
    61.
    Shimada  A, Nyitrai  M, Vetter  IR,  et al.  The core FH2 domain of diaphanous-related formins is an elongated actin binding protein that inhibits polymerization.   Mol Cell. 2004;13(4):511-522. doi:10.1016/S1097-2765(04)00059-0 PubMedGoogle ScholarCrossref
    62.
    Touré  F, Fritz  G, Li  Q,  et al.  Formin mDia1 mediates vascular remodeling via integration of oxidative and signal transduction pathways.   Circ Res. 2012;110(10):1279-1293. doi:10.1161/CIRCRESAHA.111.262519 PubMedGoogle ScholarCrossref
    63.
    Bachmann  C, Fischer  L, Walter  U, Reinhard  M.  The EVH2 domain of the vasodilator-stimulated phosphoprotein mediates tetramerization, F-actin binding, and actin bundle formation.   J Biol Chem. 1999;274(33):23549-23557. doi:10.1074/jbc.274.33.23549 PubMedGoogle ScholarCrossref
    64.
    Young  AM, Karri  SK, Ogilvy  CS, Zhao  N.  Is there a role for treating inflammation in moyamoya disease?: a review of histopathology, genetics, and signaling cascades.   Front Neurol. 2013;4:105. doi:10.3389/fneur.2013.00105 PubMedGoogle ScholarCrossref
    65.
    Cipolla  MJ, Gokina  NI, Osol  G.  Pressure-induced actin polymerization in vascular smooth muscle as a mechanism underlying myogenic behavior.   FASEB J. 2002;16(1):72-76. doi:10.1096/cj.01-0104hyp PubMedGoogle ScholarCrossref
    66.
    Aslan  JE, McCarty  OJ.  Rho GTPases in platelet function.   J Thromb Haemost. 2013;11(1):35-46. doi:10.1111/jth.12051 PubMedGoogle ScholarCrossref
    67.
    Moreno-Domínguez  A, Colinas  O, El-Yazbi  A,  et al.  Ca2+ sensitization due to myosin light chain phosphatase inhibition and cytoskeletal reorganization in the myogenic response of skeletal muscle resistance arteries.   J Physiol. 2013;591(5):1235-1250. doi:10.1113/jphysiol.2012.243576 PubMedGoogle ScholarCrossref
    68.
    Nunes  KP, Rigsby  CS, Webb  RC.  RhoA/Rho-kinase and vascular diseases: what is the link?   Cell Mol Life Sci. 2010;67(22):3823-3836. doi:10.1007/s00018-010-0460-1 PubMedGoogle ScholarCrossref
    69.
    Bros  M, Haas  K, Moll  L, Grabbe  S.  RhoA as a key regulator of innate and adaptive immunity.   Cells. 2019;8(7):E733. doi:10.3390/cells8070733 PubMedGoogle Scholar
    70.
    Shinohara  R, Thumkeo  D, Kamijo  H,  et al.  A role for mDia, a Rho-regulated actin nucleator, in tangential migration of interneuron precursors.   Nat Neurosci. 2012;15(3):373-380, S1-S2. doi:10.1038/nn.3020PubMedGoogle ScholarCrossref
    71.
    Otomo  T, Otomo  C, Tomchick  DR, Machius  M, Rosen  MK.  Structural basis of Rho GTPase-mediated activation of the formin mDia1.   Mol Cell. 2005;18(3):273-281. doi:10.1016/j.molcel.2005.04.002 PubMedGoogle ScholarCrossref
    72.
    Goode  BL, Eck  MJ.  Mechanism and function of formins in the control of actin assembly.   Annu Rev Biochem. 2007;76:593-627. doi:10.1146/annurev.biochem.75.103004.142647 PubMedGoogle ScholarCrossref
    73.
    Lynch  ED, Lee  MK, Morrow  JE, Welcsh  PL, León  PE, King  MC.  Nonsyndromic deafness DFNA1 associated with mutation of a human homolog of the Drosophila gene diaphanous.   Science. 1997;278(5341):1315-1318. doi:10.1126/science.278.5341.1315 PubMedGoogle ScholarCrossref
    74.
    Stritt  S, Nurden  P, Turro  E,  et al; BRIDGE-BPD Consortium.  A gain-of-function variant in DIAPH1 causes dominant macrothrombocytopenia and hearing loss.   Blood. 2016;127(23):2903-2914. doi:10.1182/blood-2015-10-675629 PubMedGoogle ScholarCrossref
    75.
    Al-Maawali  A, Barry  BJ, Rajab  A,  et al.  Novel loss-of-function variants in DIAPH1 associated with syndromic microcephaly, blindness, and early onset seizures.   Am J Med Genet A. 2016;170A(2):435-440. doi:10.1002/ajmg.a.37422 PubMedGoogle ScholarCrossref
    76.
    Ishizaki  T, Morishima  Y, Okamoto  M, Furuyashiki  T, Kato  T, Narumiya  S.  Coordination of microtubules and the actin cytoskeleton by the Rho effector mDia1.   Nat Cell Biol. 2001;3(1):8-14. doi:10.1038/35050598 PubMedGoogle ScholarCrossref
    77.
    Timberlake  AT, Choi  J, Zaidi  S,  et al.  Two locus inheritance of non-syndromic midline craniosynostosis via rare SMAD6 and common BMP2 alleles.   Elife. 2016;5:5. doi:10.7554/eLife.20125 PubMedGoogle ScholarCrossref
    78.
    Sakaguchi  T, Yan  SF, Yan  SD,  et al.  Central role of RAGE-dependent neointimal expansion in arterial restenosis.   J Clin Invest. 2003;111(7):959-972. doi:10.1172/JCI200317115 PubMedGoogle ScholarCrossref
    79.
    Ren  Z, Chen  X, Tang  W,  et al.  Association of DIAPH1 gene polymorphisms with ischemic stroke.   Aging (Albany NY). 2020;12(1):416-435. doi:10.18632/aging.102631 PubMedGoogle ScholarCrossref
    80.
    Guo  DC, Papke  CL, Tran-Fadulu  V,  et al.  Mutations in smooth muscle alpha-actin (ACTA2) cause coronary artery disease, stroke, and moyamoya disease, along with thoracic aortic disease.   Am J Hum Genet. 2009;84(5):617-627. doi:10.1016/j.ajhg.2009.04.007 PubMedGoogle ScholarCrossref
    81.
    Bearer  EL, Prakash  JM, Li  Z.  Actin dynamics in platelets.   Int Rev Cytol. 2002;217:137-182. doi:10.1016/S0074-7696(02)17014-8 PubMedGoogle ScholarCrossref
    ×