[Skip to Content]
[Skip to Content Landing]
Article
August 1985

Synergistic Influence of Polypeptide Growth Factors on Cultured Human Muscle

Author Affiliations

From the USC Neuromuscular Center, University of Southern California School of Medicine, Los Angeles.

Arch Neurol. 1985;42(8):749-752. doi:10.1001/archneur.1985.04210090013004
Abstract

• In two- to five-week tissue cultures of biopsied adult human skeletal muscle, combined addition to the culture medium of insulin, fibroblast growth factor, and epidermal growth factor synergistically increased creatine kinase activity 17-fold, increased acetylcholine receptors tenfold, and accelerated muscle differentiation. This study provides the first demonstration of the beneficial influence of these peptides on human muscle. It also establishes a new culture medium, resulting in the following: (1) much better longterm growth and differentiation of biopsied adult human muscle; and (2) by allowing elimination of embryo extract and reduction of serum, an important step toward developing a fully defined medium for culturing biopsied adult human normal and pathologic muscle tissue.

References
1.
Askanas V:  Human muscle and Schwann's cells in tissue culture as a tool in studying pathogenesis and treatment of neuromuscular disorders , in Serratrice G, Desnuelle C, Pellissier JF, et al (eds):  Neuromuscular Diseases . New York, Raven Press, 1984.
2.
Askanas V, Engel WK:  Normal and diseased human muscle in tissue culture , in Vinken PJ, Bruyan GW (eds):  Handbook of Clinical Neurology . New York, North Holland Publishing Co, 1979.
3.
Dollenmeier P, Turner DC, Eppenberger HM:  Proliferation and differentiation of chick skeletal muscle cells cultured in a chemically defined medium .  Exp Cell Res 1981;135:46-61.Crossref
4.
Florini JR, Roberts SB:  A serum-free medium for the growth of muscle cells in culture .  In Vitro 1979;15:983-992.Crossref
5.
Hayashi I, Kobylecki J:  Growth of myoblasts in hormone-supplemented serum-free medium , in Soto GH, Pardee AB, Sirbasku DA (eds):  Growth of Cells in Hormonally Defined Media . Cold Spring Harbor, NY, Cold Spring Harbor Conference on Cell Proliferation, 1982.
6.
Miranda AF, Mongini T:  Duchenne muscle culture: Current status and future trends , in Serratrice G, Desnuelle C, Pellissier JF (eds):  Neuromuscular Diseases . New York, Raven Press, 1984, pp 365-371.
7.
Tahmoush AJ, Askanas V, Nelson PG, et al:  Electrophysiologic properties of aneurally cultured muscle from patients with myotonic muscular atrophy .  Neurology 1983;33:311-316.Crossref
8.
Askanas V, Engel WK:  A new program for investigating adult human skeletal muscle grown aneurally in tissue culture .  Neurology 1975;28:58-67.Crossref
9.
Vogel Z, Sytkowski AJ, Nierenberg MW:  Acetylcholine receptors of muscle grown in vitro .  Proc Nail Acad Sci USA 1982;69:3180-3184.Crossref
10.
Turner DC, Maier V, Appenberger HN:  Creatine kinase and aldolase isoenzyme transitions in cultures of chick skeletal muscle cells .  Dev Biol 1974;37:63-89.Crossref
11.
Lowry OH, Rosebrough NY, Farr AL, et al:  Protein measurement with the folin phenol agent .  J Biol Chem 1951;193:265-275.
12.
Hess YW, Murdock KY, Natho GYW, et al:  Creatine phosphokinase: A spectrophotometric assay with improved sensitivity .  Am J Clin Pathol 1968;50:89-97.
13.
Florini LR, Ewton DZ:  Insulin acts as a somatomedin analog in stimulating myoblast growth in serum-free medium .  In Vitro 1981; 17:763-768.Crossref
14.
Mandel JL, Pearson ML:  Insulin stimulates myogenesis of rat myoblast line .  Nature 1979; 251:618-620.Crossref
15.
Sandra A, Przybylski RY:  Antogeny of insulin binding during chick skeletal myogenesis in vitro .  Dev Biol 1979;68:546-556.Crossref
16.
Linkhart TA, Clegg CH, Hauschka SD:  Control of mouse commitment to terminal differentiation by mitogens .  J Supramolec Str 1980; 14:483-498.Crossref
17.
Gospodarowicz D, Weseman J, Moran JS, et al:  Effect of fibroblast growth factor on the division and fusion of bovine myoblasts .  J Cell Biol 1970;70:395-405.Crossref
18.
Cohen S:  Isolation of a mouse submaxillary gland protein accelerating incisor eruption eyelid opening in the newborn animal .  J Biol Chem 1962;237:1555-1562.
19.
Carpenter G:  Epidermal growth factor: Biology and mechanism of action .  Birth Defects 1980;16:61-72.
20.
Gospodarowicz D:  Localization of a fibroblast growth factor and its effect alone and with hydrocortisone on 3T3 cell growth .  Nature 1974: 249:123-127.Crossref
21.
King GL, Kahn CR, Rechler MM, et al:  Direct demonstration of separate receptors for growth and metabolic activities of insulin and multiplication stimulating activity (an insulinlike growth factor) using antibodies to the insulin receptor .  J Clin Invest 1980;66:130-140.Crossref
22.
Gospodarowicz D, Moran JS:  Growth factors in mammalian cell culture .  Ann Rev Biochem 1976;45:431-558.Crossref
23.
Nilsen-Hamilton M, Hamilton RT, Allen WR, et al:  Synergistic stimulation of S6 ribosomal protein phosphorylation and DNA synthesis by epidermal growth factor and insulin in quiescent 3T3 cells .  Cell 1982;31:237-242.Crossref
24.
Kato Y, Hinaki Y, Ingue H, et al:  Differential and synergistic actions of somatomedin-like growth factors, fibroblast growth factor, and epidermal growth factor in rabbit costal chondrocytes .  Eur J Biochem 1983;129:685-690.Crossref
25.
Linkhart A, Lim RW, Hauschka SD:  Regulation of normal and variant mouse myoblast proliferation and differentiation by specific growth factors , in Sato CH, Pardee AB, Sirbasku DA (eds):  Growth of Cells in Hormonally Definat Media . Cold Spring Harbor, NY, Cold Spring Harbor Conference on Cell Proliferation, 1982.
26.
Cohen S, Carpenter G:  Human epidermal growth factor: Isolation and chemical and biolog ical properties .  Proc Natl Acad Sci USA 1975. 72:1317-1321.Crossref
×