Oculomotor Phenotypes in Autosomal Dominant Ataxias | Genetics and Genomics | JAMA Neurology | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address Please contact the publisher to request reinstatement.
Harding  AE Clinical features and classification of inherited ataxias.  Adv Neurol. 1993;611- 14Google Scholar
Rosenberg  RN Autosomal dominant cerebellar phenotypes: the genotype has settled the issue.  Neurology. 1995;451- 5Google ScholarCrossref
Nance  MA Clinical aspects of CAG repeat diseases.  Brain Pathol. 1997;7881- 900Google ScholarCrossref
David  GAbbas  NStevanin  G  et al.  Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion.  Nat Genet. 1997;1765- 70Google ScholarCrossref
Zhuchenko  OBailey  JBonnen  P  et al.  Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the α-1A voltage-dependent calcium channel.  Nat Genet. 1997;1562- 69Google ScholarCrossref
Geschwind  DHPerlman  SFigueroa  CPBaloh  RWPulst  SM Spinocerebellar ataxia type 6 (SCA6).  Neurology. 1997;491247- 1251Google ScholarCrossref
Geschwind  DHPerlman  SFigueroa  CPTreiman  LJPulst  SM The prevalence and wide clinical spectrum of the spinocerebellar ataxia type 2 trinucleotide repeat in patients with autosomal dominant cerebellar ataxia.  Am J Hum Genet. 1997;60842- 850Google Scholar
Matilla  TMcCall  ASubramony  SHZoghbi  HY Molecular and clinical correlations in spinocerebellar ataxia type 3 and Machado-Joseph disease.  Ann Neurol. 1995;3868- 72Google ScholarCrossref
Durr  AStevanin  GCancel  G  et al.  Spinocerebellar ataxia 3 and Machado-Joseph disease.  Ann Neurol. 1996;39490- 499Google ScholarCrossref
Moschner  CPerlman  SBaloh  RW Comparison of oculomotor findings in the progressive ataxia syndromes.  Brain. 1994;11715- 25Google ScholarCrossref
Pulst  SMNechiporuk  ANechiporuk  T  et al.  Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2.  Nat Genet. 1996;14269- 276Google ScholarCrossref
Baloh  RWLanghofer  LHonrubia  VYee  RD On-line analysis of eye movements using a digital computer.  Aviat Space Environ Med. 1980;51563- 567Google Scholar
Hood  JD Further observations on the phenomenon of rebound nystagmus.  Ann N Y Acad Sci. 1981;374532- 539Google ScholarCrossref
Burk  KAbele  MFetter  M  et al.  Autosomal dominant cerebellar ataxia type I clinical features and MRI in families with SCA1, SCA2 and SCA3.  Brain. 1996;1191497- 1505Google ScholarCrossref
Klostermann  WZuhlke  CHeide  WKompf  DWessel  K Slow saccades and other eye movement disorders in spinocerebellar atrophy type 1.  J Neurol. 1997;244105- 111Google ScholarCrossref
Zee  DSYamazaki  AButler  PHGucer  G Effects of ablation of flocculus and paraflocculus on eye movements in primate.  J Neurophysiol. 1981;46878- 899Google Scholar
Waespe  WCohen  BRaphan  T Role of the flocculus and paraflocculus in optokinetic nystagmus and visual-vestibular interactions: effects of lesions.  Exp Brain Res. 1983;509- 33Google ScholarCrossref
Suzuki  DANoda  HKase  M Visual and pursuit eye movement–related activity in posterior vermis of monkey cerebellum.  J Neurophysiol. 1981;461120- 1139Google Scholar
Versino  MHurko  OZee  DS Disorders of binocular control of eye movements in patients with cerebellar dysfunction.  Brain. 1996;1191933- 1950Google ScholarCrossref
Sato  HNoda  H Saccadic dysmetria induced by transient functional decortication of the cerebellar vermis.  Exp Brain Res. 1992;88455- 458Google ScholarCrossref
Henn  VLang  WHepp  KReisine  H Experimental gaze palsies in monkeys and their relation to human pathology.  Brain. 1984;107619Google ScholarCrossref
Spoendlin  H Optic and cochleovestibular degenerations in the hereditary ataxias, II: temporal bone pathology in two cases of Friedreich's ataxia with vestibulo-cochlear disorders.  Brain. 1974;9741Google ScholarCrossref
Orr  HTChung  MYBanfi  S  et al.  Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1.  Nat Genet. 1993;4221- 226Google ScholarCrossref
Kawaguchi  YOkamoto  TTaniwaki  M  et al.  CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1.  Nat Genet. 1994;8221- 228Google ScholarCrossref
Davies  SWTurmaine  MCozens  BA  et al.  Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation.  Cell. 1997;90537- 548Google ScholarCrossref
Sherzinger  ELurz  RTurmaine  M  et al.  Huntington-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo.  Cell. 1997;90549- 558Google ScholarCrossref
Original Contribution
October 1998

Oculomotor Phenotypes in Autosomal Dominant Ataxias

Author Affiliations

From the Department of Neurology (Drs Buttner, Geschwind, Jen, Perlman, Pulst, and Baloh), Neurogenetics Program (Drs Geschwind, Jen, and Baloh), and Division of Head and Neck Surgery (Dr Baloh), UCLA School of Medicine, Los Angeles, Calif; and Department of Neurology, Cedars-Sinai Medical Center, Los Angeles (Dr Pulst).

Arch Neurol. 1998;55(10):1353-1357. doi:10.1001/archneur.55.10.1353

Objective  To quantify the oculomotor features of the common spinocerebellar ataxia (SCA) syndromes.

Setting  University ataxia clinic.

Patients  Twenty probands with documented SCA mutations.

Methods  Electro-oculographic recordings of saccadic, smooth pursuit, optokinetic, vestibular, and visual-vestibular eye movements.

Results  Distinct phenotype and genotype patterns were identified with modest overlap between patterns. Slowing of saccade peak velocities occurred only in SCA1 and SCA2, being present in 100% of patients with SCA2. Impaired vestibulo-ocular reflex gain occurred with SCA3 only. Patients with SCA6 had prominent deficits in smooth tracking but normal saccade velocities and vestibulo-ocular reflex gain.

Conclusions  The oculomotor findings are consistent with pure cerebellar involvement in SCA6, pontine involvement in SCA1 and SCA2, and vestibular nerve or nuclei involvement in SCA3. These phenotypes can be useful for clinical diagnosis and for investigating the mechanism of system specificity with the SCA syndromes.