Folate, Vitamin B12, and Serum Total Homocysteine Levels in Confirmed Alzheimer Disease | Dementia and Cognitive Impairment | JAMA Neurology | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 18.207.129.82. Please contact the publisher to request reinstatement.
1.
Esiri  MWilcock  GK Cerebral amyloid angiopathy in dementia and in old age.  J Neurol Neurosurg Psychiatry. 1986;491221- 1226Google ScholarCrossref
2.
Nagy  ZSEsiri  MMJobst  KA  et al.  The effects of additional pathology on the cognitive deficit of Alzheimer's disease.  J Neuropathol Exp Neurol. 1997;56165- 170Google ScholarCrossref
3.
Snowden  DAGreiner  LHMortimer  JARiley  KPGreiner  PAMarkesbery  WR Brain infarction and the clinical expression of Alzheimer's disease: the Nun Study.  JAMA. 1997;277813- 817Google ScholarCrossref
4.
Esiri  MMWilcock  GKMorris  JH Neuropathological assessment of the lesions of significance in vascular disease.  J Neurol Neurosurg Psychiatry. 1997;63749- 753Google ScholarCrossref
5.
Hachinsky  V Preventable senility: a call for action against the vascular dementias.  Lancet. 1992;340645- 647Google ScholarCrossref
6.
Launer  LJMasaki  KPetrovitch  HFoley  DHavlick  RJ The association between midlife blood pressure levels and late-life cognitive function: the Honolulu-Asia Aging Study.  JAMA. 1995;2741846- 1851Google ScholarCrossref
7.
Hoffman  AOtt  ABreteler  MM  et al.  Atherosclerosis, apolipoprotein E, and prevalence of dementia and Alzheimer's disease in the Rotterdam Study.  Lancet. 1997;345151- 154Google ScholarCrossref
8.
Kalaria  RN The blood brain barrier and cerebral microcirculation in Alzheimer disease.  Cerebrovasc Brain Metab Rev. 1992;4226- 260Google Scholar
9.
de la Torre  JCMussivand  T Can disturbed brain microcirculation cause Alzheimer's disease?  Neurol Res. 1993;15146- 153Google Scholar
10.
Buee  LHof  PRBouras  C  et al.  Pathological alterations of the cerebral microvasculature in Alzheimer's disease and related dementing disorders.  Acta Neuropathol Berl. 1994;87469- 480Google ScholarCrossref
11.
Roses  AD Apolipoprotein E alleles as risk factors in Alzheimer diseases.  Annu Rev Med. 1996;47387- 400Google ScholarCrossref
12.
Kalaria  RN Arteriosclerosis, apolipoprotein E, and Alzheimer's disease.  Lancet. 1997;3491174Google ScholarCrossref
13.
Clarke  RDaly  LRobinson  K  et al.  Hyperhomocysteinemia: an independent risk factor for vascular disease.  N Engl J Med. 1991;3241149- 1155Google ScholarCrossref
14.
Boushey  CJBeresford  SAOmenn  GSMotulsky  AG A quantitative assessment of plasma homocysteine as a risk factor for vascular disease: probable benefits of increasing folic acid intakes.  JAMA. 1995;2741049- 1057Google ScholarCrossref
15.
Selhub  JJacques  PFWilson  PWFRush  DRosenberg  IH Vitamin status and intake as primary determinants of homocysteinemia in an elderly population.  JAMA. 1993;2702693- 2698Google ScholarCrossref
16.
Nygard  OVollset  SERefsum  H  et al.  Total plasma homocysteine and cardiovascular risk profile: the Hordaland Homocysteine Study.  JAMA. 1995;2741526- 1533Google ScholarCrossref
17.
Nilsson  KGustafson  LFaldt  R  et al.  Hyperhomocysteinemia: a common finding in a psychogeriatric population.  Eur J Clin Invest. 1996;26853- 859Google ScholarCrossref
18.
Joosten  ELesaffre  ERiezler  R  et al.  Is metabolic evidence for vitamin B-12 and folate deficiency more frequent in elderly patients with Alzheimer's disease?  J Gerontol A Biol Sci Med Sci. 1997;5276- 79Google ScholarCrossref
19.
Frosst  PBlom  HJMilos  R  et al.  A candidate genetic risk factor for vascular disease: a common genetic mutation in methylene tetrahydrofolate reductase.  Nat Genet. 1995;10111- 113Google ScholarCrossref
20.
Jobst  KASmith  ADSzatmari  M  et al.  Rapidly progressing atrophy of medial temporal lobe in Alzheimer's disease.  Lancet. 1994;343829- 830Google ScholarCrossref
21.
Jobst  KASmith  ADSzatmari  M  et al.  Detection in life of confirmed Alzheimer's disease using a simple measurement of medial temporal lobe atrophy by computed tomography.  Lancet. 1992;3401179- 1183Google ScholarCrossref
22.
Mirra  SSHeyman  AMcKeel  D  et al.  The Consortium to Establish a Registry for Alzheimer's Disease (CERAD), 2: standardization of the neuropathologic assessment of Alzheimer's disease.  Neurology. 1991;41479- 486Google ScholarCrossref
23.
McKhann  GDrachman  DFolstein  MKatzman  RPrice  DStadlan  EM Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA work group under the auspices of the Department of Health and Human Services Task Force of Alzheimer's Disease.  Neurology. 1984;34939- 944Google ScholarCrossref
24.
Roth  MHuppert  FATym  E  et al.  CAMDEX: The Cambridge Examination for Mental Disorders of the Elderly.  Cambridge, England Cambridge University Press1988;
25.
Ueland  PMRefsum  HStabler  SPMalinow  MRAndersson  AAllen  RH Total homocysteine in plasma or serum: methods and clinical applications.  Clin Chem. 1993;391764- 1779Google Scholar
26.
Clarke  RWoodhouse  PUlvik  A  et al.  Variability and determinants of plasma total homocysteine levels in an elderly population.  Clin Chem. 1998;44102- 107Google Scholar
27.
Wenham  PRPrice  WHBlandell  G Apolipoprotein E genotyping by one-stage PCR.  Lancet. 1991;3371158- 1159Google ScholarCrossref
28.
Easton  DFPeto  JBabiker  AG Floating absolute risk: an alternative to relative risk in survival and case-control analysis avoiding an arbitrary reference group.  Stat Med. 1991;101025- 1035Google ScholarCrossref
29.
Renvall  MJSpindler  AARamsdell  JWPaskvan  M Nutritional status of free-living Alzheimer's patients.  Am J Med Sci. 1989;29820- 27Google ScholarCrossref
30.
Kristensen  MOGulmann  NCChristensen  JEJOstergaard  KRasmussen  K Serum cobalamin and methylmalonic acid in Alzheimer dementia.  Acta Neurol Scand. 1993;87475- 481Google ScholarCrossref
31.
Ball  MJFisman  MHachinski  V  et al.  A new definition of Alzheimer's disease: a hippocampal dementia.  Lancet. 1985;114- 16Google ScholarCrossref
32.
Cole  MGPrchal  JF Low serum vitamin B12 in Alzheimer-type dementia.  Age Ageing. 1984;13101- 105Google ScholarCrossref
33.
Karnaze  DSCarmel  R Low serum cobalamin levels in primary degenerative dementia: do some patients harbor atypical cobalamin deficiency states?  Arch Intern Med. 1987;147429- 431Google ScholarCrossref
34.
Nijst  TQWevers  RASchoonderwaldt  HCHommes  ORde Haan  AF Vitamin B12 and folate concentrations in serum and cerebrospinal fluid of neurological patients with special reference to multiple sclerosis and dementia.  J Neurol Neurosurg Psychiatry. 1990;53951- 954Google ScholarCrossref
35.
Riggs  KMSpiro  ATucker  KRush  D Relations of vitamin B12, vitamin B6, folate, and homocysteine to cognitive performance in the Normative Aging Study.  Am J Clin Nutr. 1996;63306- 314Google Scholar
36.
Clarke  RFrost  CLeroy  VCollins  R Lowering blood homocysteine with folic acid based supplements: meta-analysis of randomised trials: Homocysteine Lowering Trialist's Collaboration.  BMJ. 1998;316894- 898Google ScholarCrossref
37.
Bottiglieri  THyland  KReynolds  EH The clinical potential of adometionine (S-adenosylmethionine) in neurological disorders.  Drugs. 1994;48137- 152Google ScholarCrossref
38.
Lipton  SAKim  WKChoi  YB  et al.  Neurotoxicity associated with dual actions of homocysteine at the N-methyl-D-aspartate receptor.  Proc Natl Acad Sci U S A. 1997;945923- 5928Google ScholarCrossref
39.
Beal  MFSwartz  KJFinn  SFMazurek  MFKowall  NW Neurochemical characterization of excitoxin lesions in the cerebral cortex.  J Neurosci. 1991;11147- 158Google Scholar
40.
Schmidt-Kastner  RFreund  TF Selective vulnerability of the hippocampus in brain ischemia.  Neuroscience. 1991;40599- 636Google ScholarCrossref
41.
West  MJColeman  PDFlood  DGTroncoso  JC Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer's disease.  Lancet. 1994;344769- 772Google ScholarCrossref
Original Contribution
November 1998

Folate, Vitamin B12, and Serum Total Homocysteine Levels in Confirmed Alzheimer Disease

Author Affiliations

From the Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Clinical Medicine (Dr Clarke), Oxford Project to Investigate Memory and Ageing (OPTIMA), University Department of Pharmacology, University of Oxford, and Radcliffe Infirmary Trust (Drs Smith and Jobst and Ms Sutton), Oxford, England; and Department of Pharmacology, University of Bergen, Bergen, Norway (Drs Refsum and Ueland).

Arch Neurol. 1998;55(11):1449-1455. doi:10.1001/archneur.55.11.1449
Abstract

Background  Recent studies suggest that vascular disease may contribute to the cause of Alzheimer disease (AD). Since elevated plasma total homocysteine (tHcy) level is a risk factor for vascular disease, it may also be relevant to AD.

Objective  To examine the association of AD with blood levels of tHcy, and its biological determinants folate and vitamin B12.

Design  Case-control study of 164 patients, aged 55 years or older, with a clinical diagnosis of dementia of Alzheimer type (DAT), including 76 patients with histologically confirmed AD and 108 control subjects.

Setting  Referral population to a hospital clinic between July 1988 and April 1996.

Main Outcome Measures  Serum tHcy, folate, and vitamin B12 levels in patients and controls at entry; the odds ratio of DAT or confirmed AD with elevated tHcy or low vitamin levels; and the rate of disease progression in relation to tHcy levels at entry.

Results  Serum tHcy levels were significantly higher and serum folate and vitamin B12 levels were lower in patients with DAT and patients with histologically confirmed AD than in controls. The odds ratio of confirmed AD associated with a tHcy level in the top third (≥14 µmol/L) compared with the bottom third (≤11 µmol/L) of the control distribution was 4.5 (95% confidence interval, 2.2-9.2), after adjustment for age, sex, social class, cigarette smoking, and apolipoprotein E ϵ4. The corresponding odds ratio for the lower third compared with the upper third of serum folate distribution was 3.3 (95% confidence interval, 1.8-6.3) and of vitamin B12 distribution was 4.3 (95% confidence interval, 2.1-8.8). The mean tHcy levels were unaltered by duration of symptoms before enrollment and were stable for several years afterward. In a 3-year follow-up of patients with DAT, radiological evidence of disease progression was greater among those with higher tHcy levels at entry.

Conclusions  Low blood levels of folate and vitamin B12, and elevated tHcy levels were associated with AD. The stability of tHcy levels over time and lack of relationship with duration of symptoms argue against these findings being a consequence of disease and warrant further studies to assess the clinical relevance of these associations for AD.

×