[Skip to Content]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 34.232.62.209. Please contact the publisher to request reinstatement.
[Skip to Content Landing]
1.
Mourino  MR From Thales to Lauterbur, or from the lodestone to MR imaging: magnetism and medicine.  Radiology. 1991;180593- 612Google ScholarCrossref
2.
Matthews  PMFrancis  GAntel  JArnold  DL Proton magnetic resonance spectroscopy for metabolic characterization of plaques in multiple sclerosis [published correction appears in Neurology. 1991;41:1828].  Neurology. 1991;411251- 1256Google ScholarCrossref
3.
van der Knaap  MSvan der Grond  Jvan Rijen  PCFaber  JAValk  JWillemse  K Age-dependent changes in localized proton and phosphorus MR spectroscopy of the brain.  Radiology. 1990;176509- 515Google ScholarCrossref
4.
Kato  TNishina  MMatsushita  KHori  EMito  TTakashima  S Neuronal maturation and N-acetyl-L-aspartic acid development in human fetal and child brains.  Brain Dev. 1997;19131- 133Google ScholarCrossref
5.
Preul  MCCaramanos  ZCollins  DL  et al.  Accurate, noninvasive diagnosis of human brain tumors by using proton magnetic resonance spectroscopy.  Nat Med. 1996;2323- 325Google ScholarCrossref
6.
Preul  MCCaramanos  ZLeblanc  RVillemure  JGArnold  DL Using pattern analysis of in vivo proton MRSI data to improve the diagnosis and surgical management of patients with brain tumors.  NMR Biomed. 1998;11192- 200Google ScholarCrossref
7.
Cendes  FCaramanos  ZAndermann  FDubeau  FArnold  DL Proton magnetic resonance spectroscopic imaging and magnetic resonance imaging volumetry in the lateralization of temporal lobe epilepsy: a series of 100 patients.  Ann Neurol. 1997;42737- 746Google ScholarCrossref
8.
Cendes  FAndermann  FDubeau  FMatthews  PMArnold  DL Normalization of neuronal metabolic dysfunction after surgery for temporal lobe epilepsy: evidence from proton MR spectroscopic imaging.  Neurology. 1997;491525- 1533Google ScholarCrossref
9.
Vargha-Khadem  FGadian  DGWatkins  KEConnelly  AVan Paesschen  WMishkin  M Differential effects of early hippocampal pathology on episodic and semantic memory [published correction appears in Science. 1997;277:1117].  Science. 1997;277376- 380Google ScholarCrossref
10.
Arnold  DLMatthews  PMFrancis  GSO'Connor  JAntel  JP Proton magnetic resonance spectroscopic imaging for metabolic characterization of demyelinating plaques.  Ann Neurol. 1992;31235- 241Google ScholarCrossref
11.
Husted  CAGoodin  DSHugg  JW  et al.  Biochemical alterations in multiple sclerosis lesions and normal-appearing white matter detected by in vivo 31P and 1H spectroscopic imaging.  Ann Neurol. 1994;36157- 165Google ScholarCrossref
12.
Waxman  SG Demyelinating diseases: new pathological insights, new therapeutic targets.  N Engl J Med. 1998;338323- 325Google Scholar
13.
Ferguson  BMatyszak  MKEsiri  MMPerry  VH Axonal damage in acute multiple sclerosis lesions.  Brain. 1997;120 ((pt 3)) 393- 399Google ScholarCrossref
14.
Matthews  PMDe Stefano  NNarayanan  S  et al.  Putting magnetic resonance spectroscopy studies in context: axonal damage and disability in mulitple sclerosis.  Semin Neurol. 1998;18327- 336Google ScholarCrossref
15.
Davie  CAHawkins  CPBarker  GJ  et al.  Serial proton magnetic resonance spectroscopy in acute multiple sclerosis lesions.  Brain. 1994;117 ((pt 1)) 49- 58Google ScholarCrossref
16.
Narayana  PADoyle  TJLai  DWolinsky  JS Serial proton magnetic resonance spectroscopic imaging, contrast-enhanced magnetic resonance imaging, and quantitative lesion volumetry in multiple sclerosis.  Ann Neurol. 1998;4356- 71Google ScholarCrossref
17.
Fu  LMatthews  PMDe Stefano  N  et al.  Imaging axonal damage of normal appearing white matter in multiple sclerosis.  Brain. 1998;121103- 113Google ScholarCrossref
18.
Chang  L In vivo magnetic resonance spectroscopy in HIV and HIV-related brain diseases.  Rev Neurosci. 1995;6365- 378Google ScholarCrossref
19.
Wilkinson  IDLunn  SMiszkiel  KA  et al.  Proton MRS and quantitative MRI assessment of the short term neurological response to antiretroviral therapy in AIDS.  J Neurol Neurosurg Psychiatry. 1997;63477- 482Google ScholarCrossref
20.
Holshouser  BAAshwal  SLuh  GY  et al.  Proton MR spectroscopy after acute central nervous system injury: outcome prediction in neonates, infants, and children.  Radiology. 1997;202487- 496Google ScholarCrossref
21.
Saunders  DEHowe  FAVan den Boogaart  A  et al.  Continuing ischemic damage after acute middle cerebral artery infarction in humans demonstrated by short-echo proton spectroscopy.  Stroke. 1995;261007- 1013Google ScholarCrossref
22.
Graham  GDKalvach  PBlamire  AMBrass  LMFayad  PBPrichard  JW Clinical correlates of proton magnetic resonance spectroscopy findings after acute cerebral infarction.  Stroke. 1995;26225- 229Google ScholarCrossref
23.
Uno  MUeda  SHondo  HMatsumoto  KHarada  M Effectiveness of revascularization surgery evaluated by proton magnetic resonance spectroscopy and single photon emission computed tomography.  Neurologia Med Chir (Tokyo). 1996;36560- 566Google ScholarCrossref
24.
Pioro  EPAntel  JPCashman  NRArnold  DL Detection of cortical neuron loss in motor neuron disease by proton magnetic resonance spectroscopic imaging in vivo.  Neurology. 1994;441933- 1938Google ScholarCrossref
25.
Kalra  SCashman  NRGenge  AArnold  DL Recovery of N-acetylaspartate in corticomotor neurons of patients with ALS after riluzole therapy.  Neuroreport. 1998;91757- 1761Google ScholarCrossref
26.
Schuff  NAmend  DEzekiel  F  et al.  Changes of hippocampal N-acetylaspartate and volume in Alzheimer's disease: a proton MR spectroscopic imaging and MRI study.  Neurology. 1997;491513- 1521Google ScholarCrossref
27.
Holshouser  BAKomu  MMoller  HE  et al.  Localized proton NMR spectroscopy in the striatum of patients with idiopathic Parkinson's disease: a multicenter pilot study.  Magn Reson Med. 1995;33589- 594Google ScholarCrossref
28.
Jenkins  BGKoroshetz  WJBeal  MFRosen  BR Evidence for impairment of energy metabolism in vivo in Huntington's disease using localized 1H NMR spectroscopy.  Neurology. 1993;432689- 2695Google ScholarCrossref
29.
Laubenberger  JHaussinger  DBayer  SGufler  HHennig  JLanger  M Proton magnetic resonance spectroscopy of the brain in symptomatic and asymptomatic patients with liver cirrhosis.  Gastroenterology. 1997;1121610- 1616Google ScholarCrossref
30.
Frahm  JHanefeld  F Localized proton magnetic resonance spectroscopy of brain disorders in childhood. Bachelard  HSed Advances in Neurochemistry London, England Plenum Press1998;330- 402Google Scholar
31.
Grodd  WKrageloh-Mann  IKlose  USauter  R Metabolic and destructive brain disorders in children: findings with localized proton MR spectroscopy.  Radiology. 1991;181173- 181Google ScholarCrossref
Basic Science Seminars in Neurology
August 1999

Proton Magnetic Resonance Spectroscopy for the Diagnosis and Management of Cerebral Disorders

Author Affiliations

From the University of Ottawa, Ottawa, Ontario (Ms Rudkin); and Montreal Neurological Institute, McGill University, Montreal, Quebec (Dr Arnold).

 

M. FATHALLAH-SHAYKHHASSANMD

Arch Neurol. 1999;56(8):919-926. doi:10.1001/archneur.56.8.919
Abstract

The use of magnetism in medicine has a long and colorful history since its legendary discovery in the Western world by the shepherd Magnes. More recent use of magnetism has centered on nuclear magnetic resonance. Magnetic resonance spectroscopy (MRS) provides chemical information on tissue metabolites. Both hydrogen 1 (1H) and phosphorus 31 resonances have been used to study brain tissue, but the magnetic resonance sensitivity for protons is far greater than it is for phosphorus. One of the most important contributions of 1H-MRS to clinical neurology is its ability to quantify neuronal loss and to demonstrate reversible neuronal damage. 1H–magnetic resonance spectroscopy has been found to be a useful research tool in elucidating the pathophysiology underlying certain diseases. This review focuses on the use of proton MRS to study various neurologic diseases, including epilepsy, multiple sclerosis, brain tumors, human immunodeficiency virus 1–associated neurologic disorders, as well as cerebrovascular, neurodegenerative, and metabolic diseases. It highlights the contributions of 1H-MRS to the diagnosis and the monitoring of these neurologic diseases that make it a useful adjunct in patient management.

×