[Skip to Navigation]
Sign In
Figure 1. 
Low-density lipoprotein receptor–related protein (LRP) structure. The multiple repeat regions in the extracellular domain create ligand binding sites, whereas the relatively small intracellular domain contains 2 NPXY sequences important for LRP trafficking.

Low-density lipoprotein receptor–related protein (LRP) structure. The multiple repeat regions in the extracellular domain create ligand binding sites, whereas the relatively small intracellular domain contains 2 NPXY sequences important for LRP trafficking.

Figure 2. 
Results of immunohistochemical staining for low-density lipoprotein receptor–related protein (antibody R77718) of neurons and senile plaques in an Alzheimer disease brain specimen (original magnification, ×160).

Results of immunohistochemical staining for low-density lipoprotein receptor–related protein (antibody R77718) of neurons and senile plaques in an Alzheimer disease brain specimen (original magnification, ×160).

Figure 3. 
Postulated apolipoprotein E (apoE), low-density lipoprotein receptor–related protein (LRP), α2-macroglobulin (α2M), and β-amyloid (Aβ) interactions. In the extracellular compartment, apoE, α2M, and amyloid precursor protein (APP) interact with LRP binding domains. Adaptor proteins, which potentially provide a scaffolding for APP-LRP interactions, are illustrated in the intracellular compartment.

Postulated apolipoprotein E (apoE), low-density lipoprotein receptor–related protein (LRP), α2-macroglobulin (α2M), and β-amyloid (Aβ) interactions. In the extracellular compartment, apoE, α2M, and amyloid precursor protein (APP) interact with LRP binding domains. Adaptor proteins, which potentially provide a scaffolding for APP-LRP interactions, are illustrated in the intracellular compartment.

1.
Terry  RDMasliah  ESalmon  DP Physical basis of cognitive alterations in Alzheimer's disease: synapse loss is the major correlate of cognitive impairment.  Ann Neurol. 1991;41572- 580Google ScholarCrossref
2.
Gomez-Isla  THollister  RWest  H  et al.  Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer's disease.  Ann Neurol. 1997;4117- 24Google ScholarCrossref
3.
Selkoe  DJ The cell biology of beta-amyloid precursor protein and presenilin in Alzheimer's disease.  Trends Cell Biol. 1998;8447- 453Google ScholarCrossref
4.
Sherrington  RRogaev  EILiang  Y  et al.  Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease.  Nature. 1995;375754- 760Google ScholarCrossref
5.
Levy-Lahad  EWasco  WPoorkaj  P  et al.  Candidate gene for the chromosome 1 familial Alzheimer's disease locus.  Science. 1995;269973- 977Google ScholarCrossref
6.
Rogaev  EISherrington  RRogaeva  EA  et al.  Familial Alzheimer's disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer's disease type 3 gene.  Nature. 1995;376775- 778Google ScholarCrossref
7.
Scheuner  DEckman  CJensen  M  et al.  Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer's disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer's disease.  Nat Med. 1996;2864- 870Google ScholarCrossref
8.
Hardy  J The Alzheimer family of diseases: many etiologies, one pathogenesis?  Proc Natl Acad Sci U S A. 1997;942095- 2097Google ScholarCrossref
9.
Hyman  BTMarzloff  KArriagada  PV The lack of accumulation of senile plaques or amyloid burden in Alzheimer's disease suggests a dynamic balance between amyloid deposition and resolution.  J Neuropathol Exp Neurol. 1993;52594- 600Google ScholarCrossref
10.
Jarrett  JTLansbury  PT  Jr Seeding "one-dimensional crystallization" of amyloid: a pathogenic mechanism in Alzheimer's disease and scrapie?  Cell. 1993;731055- 1058Google ScholarCrossref
11.
Cruz  LUrbanc  BBuldyrev  SV  et al.  Aggregation and disaggregation of senile plaques in Alzheimer disease.  Proc Natl Acad Sci U S A. 1997;947612- 7616Google ScholarCrossref
12.
Frautschy  SACole  GMBaird  A Phagocytosis and deposition of vascular beta-amyloid in rat brains injected with Alzheimer beta-amyloid.  Am J Pathol. 1992;1401389- 1399Google Scholar
13.
Paresce  DMGhosh  RNMaxfield  FR Microglial cells internalize aggregates of the Alzheimer's disease amyloid beta-protein via a scavenger receptor.  Neuron. 1996;17553- 565Google ScholarCrossref
14.
Du Yan  SZhu  HFu  J  et al.  Amyloid-beta peptide-receptor for advanced glycation endproduct interaction elicits neuronal expression of macrophage-colony stimulating factor: a proinflammatory pathway in Alzheimer disease.  Proc Natl Acad Sci U S A. 1997;945296- 5301Google ScholarCrossref
15.
Willnow  TEMoehring  JMInocencio  NMMoehring  TJHerz  J The low-density-lipoprotein receptor-related protein (LRP) is processed by furin in vivo and in vitro.  Biochem J. 1996;31371- 76Google Scholar
16.
Herz  JHamann  URogne  SMyklebost  OGausepohl  HStanley  KK Surface location and high affinity for calcium of a 500-kd liver membrane protein closely related to the LDL-receptor suggest a physiological role as lipoprotein receptor.  EMBO J. 1988;74119- 4127Google Scholar
17.
Strickland  DKAshcom  JDWilliams  SBurgess  WHMigliorini  MArgraves  WS Sequence identity between the alpha 2-macroglobulin receptor and low density lipoprotein receptor-related protein suggests that this molecule is a multifunctional receptor.  J Biol Chem. 1990;26517401- 17404Google Scholar
18.
Rebeck  GWReiter  JSStrickland  DKHyman  BT Apolipoprotein E in sporadic Alzheimer's disease: allelic variation and receptor interactions.  Neuron. 1993;11575- 580Google ScholarCrossref
19.
Herz  JGoldstein  JLStrickland  DKHo  YKBrown  MS 39-kDa Protein modulates binding of ligands to low density lipoprotein receptor-related protein/alpha 2-macroglobulin receptor.  J Biol Chem. 1991;26621232- 21238Google Scholar
20.
Williams  SEAshcom  JDArgraves  WSStrickland  DK A novel mechanism for controlling the activity of alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein: multiple regulatory sites for 39-kDa receptor-associated protein.  J Biol Chem. 1992;2679035- 9040Google Scholar
21.
Medved  LVMigliorini  MMikhailenko  IBarrientos  LGLlinas  MStrickland  DK Domain organization of the 39-kDa receptor-associated protein.  J Biol Chem. 1999;274717- 727Google ScholarCrossref
22.
Mahley  RWNathan  BPPitas  RE Apolipoprotein E: structure, function, and possible roles in Alzheimer's disease.  Ann N Y Acad Sci. 1996;777139- 145Google ScholarCrossref
23.
Beisiegel  UWeber  WIhrke  GHerz  JStanley  KK The LDL-receptor-related protein, LRP, is an apolipoprotein E-binding protein.  Nature. 1989;341162- 164Google ScholarCrossref
24.
Namba  YTomonaga  MKawasaki  HOtomo  EIkeda  K Apolipoprotein E immunoreactivity in cerebral amyloid deposits and neurofibrillary tangles in Alzheimer's disease and kuru plaque amyloid in Creutzfeldt-Jakob disease.  Brain Res. 1991;541163- 166Google ScholarCrossref
25.
Wisniewski  TFrangione  B Apolipoprotein E: a pathological chaperone protein in patients with cerebral and systemic amyloid.  Neurosci Lett. 1992;135235- 238Google ScholarCrossref
26.
Strittmatter  WJSaunders  AMSchmechel  D  et al.  Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease.  Proc Natl Acad Sci U S A. 1993;901977- 1981Google ScholarCrossref
27.
Saunders  AMStrittmatter  WJSchmechel  D  et al.  Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer's disease.  Neurology. 1993;431467- 1472Google ScholarCrossref
28.
Poirier  JDavignon  JBouthillier  DKogan  SBertrand  PGauthier  S Apolipoprotein E polymorphism and Alzheimer's disease.  Lancet. 1993;342697- 699Google ScholarCrossref
29.
Mayeux  RStern  YOttman  R  et al.  The apolipoprotein epsilon 4 allele in patients with Alzheimer's disease.  Ann Neurol. 1993;34752- 754Google ScholarCrossref
30.
Hyman  BT Apolipoprotein E genotype: utility in clinical practice in Alzheimer's disease.  J Am Geriatr Soc. 1996;441469- 471Google Scholar
31.
Poirier  J Apolipoprotein E in animal models of CNS injury and in Alzheimer's disease.  Trends Neurosci. 1994;17525- 530Google ScholarCrossref
32.
Nathan  BPBellosta  SSanan  DAWeisgraber  KHMahley  RWPitas  RE Differential effects of apolipoproteins E3 and E4 on neuronal growth in vitro.  Science. 1994;264850- 852Google ScholarCrossref
33.
Holtzman  DMPitas  REKilbridge  J  et al.  Low density lipoprotein receptor–related protein mediates apolipoprotein E-dependent neurite outgrowth in a central nervous system-derived neuronal cell line.  Proc Natl Acad Sci U S A. 1995;929480- 9484Google ScholarCrossref
34.
Strittmatter  WJSaunders  AMGoedert  M  et al.  Isoform-specific interactions of apolipoprotein E with microtubule-associated protein tau: implications for Alzheimer disease.  Proc Natl Acad Sci U S A. 1994;9111183- 11186Google ScholarCrossref
35.
Ma  JYee  ABrewer  HB  JrDas  SPotter  H Amyloid-associated proteins alpha 1-antichymotrypsin and apolipoprotein E promote assembly of Alzheimer beta-protein into filaments.  Nature. 1994;37292- 94Google ScholarCrossref
36.
Sanan  DAWeisgraber  KHRussell  SJ  et al.  Apolipoprotein E associates with beta amyloid peptide of Alzheimer's disease to form novel monofibrils: isoform apoE4 associates more efficiently than apoE3.  J Clin Invest. 1994;94860- 869Google ScholarCrossref
37.
Wisniewski  TCastano  EMGolabek  AVogel  TFrangione  B Acceleration of Alzheimer's fibril formation by apolipoprotein E in vitro.  Am J Pathol. 1994;1451030- 1035Google Scholar
38.
Castano  EMPrelli  FWisniewski  T  et al.  Fibrillogenesis in Alzheimer's disease of amyloid beta peptides and apolipoprotein E.  Biochem J. 1995;306599- 604Google Scholar
39.
Schmechel  DESaunders  AMStrittmatter  WJ  et al.  Increased amyloid beta-peptide deposition in cerebral cortex as a consequence of apolipoprotein E genotype in late-onset Alzheimer disease.  Proc Natl Acad Sci U S A. 1993;909649- 9653Google ScholarCrossref
40.
Polvikoski  TSulkava  RHaltia  M  et al.  Apolipoprotein E, dementia, and cortical deposition of beta-amyloid protein.  N Engl J Med. 1995;3331242- 1247Google ScholarCrossref
41.
Gomez-Isla  TWest  HLRebeck  GW  et al.  Clinical and pathological correlates of apolipoprotein E epsilon 4 in Alzheimer's disease.  Ann Neurol. 1996;3962- 70Google ScholarCrossref
42.
Greenberg  SMRebeck  GWVonsattel  JPGomez-Isla  THyman  BT Apolipoprotein E epsilon 4 and cerebral hemorrhage associated with amyloid angiopathy.  Ann Neurol. 1995;38254- 259Google ScholarCrossref
43.
Wisniewski  TGolabek  AMatsubara  EGhiso  JFrangione  B Apolipoprotein E: binding to soluble Alzheimer's beta-amyloid.  Biochem Biophys Res Commun. 1993;192359- 365Google ScholarCrossref
44.
Naslund  JThyberg  JTjernberg  LO  et al.  Characterization of stable complexes involving apolipoprotein E and the amyloid beta peptide in Alzheimer's disease brain.  Neuron. 1995;15219- 228Google ScholarCrossref
45.
LaDu  MJLukens  JRReardon  CAGetz  GS Association of human, rat, and rabbit apolipoprotein E with beta-amyloid.  J Neurosci Res. 1997;499- 18Google ScholarCrossref
46.
Jordan  JGalindo  MFMiller  RJReardon  CAGetz  GSLaDu  MJ Isoform-specific effect of apolipoprotein E on cell survival and beta-amyloid-induced toxicity in rat hippocampal pyramidal neuronal cultures.  J Neurosci. 1998;18195- 204Google Scholar
47.
Urmoneit  BPrikulis  IWihl  G  et al.  Cerebrovascular smooth muscle cells internalize Alzheimer amyloid beta protein via a lipoprotein pathway: implications for cerebral amyloid angiopathy.  Lab Invest. 1997;77157- 166Google Scholar
48.
Du  YNi  BGlinn  M  et al.  Alpha2-macroglobulin as a beta-amyloid peptide-binding plasma protein.  J Neurochem. 1997;69299- 305Google ScholarCrossref
49.
Du  YBales  KRDodel  RC  et al.  Alpha2-macroglobulin attenuates beta-amyloid peptide 1-40 fibril formation and associated neurotoxicity of cultured fetal rat cortical neurons.  J Neurochem. 1998;701182- 1188Google ScholarCrossref
50.
Hughes  SRKhorkova  OGoyal  S  et al.  Alpha2-macroglobulin associates with beta-amyloid peptide and prevents fibril formation.  Proc Natl Acad Sci U S A. 1998;953275- 3280Google ScholarCrossref
51.
Qiu  WQBorth  WYe  ZHaass  CTeplow  DBSelkoe  DJ Degradation of amyloid beta-protein by a serine protease-alpha2-macroglobulin complex.  J Biol Chem. 1996;2718443- 8451Google ScholarCrossref
52.
Narita  MHoltzman  DMSchwartz  ALBu  G Alpha2-macroglobulin complexes with and mediates the endocytosis of beta-amyloid peptide via cell surface low-density lipoprotein receptor-related protein.  J Neurochem. 1997;691904- 1911Google ScholarCrossref
53.
Qiu  ZStrickland  DHyman  BRebeck  G Alpha2-macroglobulin enhances the clearance of endogenous soluble beta amyloid peptide via the low-density lipoprotein receptor-related protein in cortical neurons.  J Neurochem. 1999;731393- 1398Google ScholarCrossref
54.
Morrot  AStrickland  DKHiguchi  MdLReis  MPedrosa  RScharfstein  J Human T cell responses against the major cysteine proteinase (cruzipain) of Trypanosoma cruzi: role of the multifunctional alpha 2-macroglobulin receptor in antigen presentation by monocytes.  Int Immunol. 1997;9825- 834Google ScholarCrossref
55.
Schenk  DBarbour  RDunn  W  et al.  Immunization with amyloid-beta attenuates Alzheimer disease-like pathology in the PDAPP mouse.  Nature. 1999;400173- 177Google ScholarCrossref
56.
Blacker  DWilcox  MALaird  NM  et al.  Alpha-2 macroglobulin is genetically associated with Alzheimer disease.  Nat Genet. 1998;19357- 360Google ScholarCrossref
57.
Liao  ANitsch  RMGreenberg  SM  et al.  Genetic association of an alpha2-macroglobulin (Val1000Ile) polymorphism and Alzheimer's disease.  Hum Mol Genet. 1998;71953- 1956Google ScholarCrossref
58.
Wavrant-DeVrieze  FRudrasingham  VLambert  JC  et al.  No association between the alpha-2 macroglobulin I1000V polymorphism and Alzheimer's disease.  Neurosci Lett. 1999;262137- 139Google ScholarCrossref
59.
Rudrasingham  VWavrant-De Vrieze  FLambert  JC  et al.  Alpha-2 macroglobulin gene and Alzheimer disease [letter].  Nat Genet. 1999;2217- 19Google ScholarCrossref
60.
Rogaeva  EAPremkumar  SGrubber  J  et al.  An alpha-2-macroglobulin insertion-deletion polymorphism in Alzheimer disease [letter].  Nat Genet. 1999;2219- 20Google ScholarCrossref
61.
Dow  DJLindsey  NCairns  NJ  et al.  Alpha-2 macroglobulin polymorphism and Alzheimer disease risk in the UK [letter].  Nat Genet. 1999;2216- 17Google ScholarCrossref
62.
Kounnas  MZMoir  RDRebeck  GW  et al.  LDL receptor-related protein, a multifunctional ApoE receptor, binds secreted beta-amyloid precursor protein and mediates its degradation.  Cell. 1995;82331- 340Google ScholarCrossref
63.
Knauer  MFOrlando  RAGlabe  CG Cell surface APP751 forms complexes with protease nexin 2 ligands and is internalized via the low density lipoprotein receptor-related protein (LRP).  Brain Res. 1996;7406- 14Google ScholarCrossref
64.
Perez  RSoriano  SHayes  J  et al.  Mutagenesis identifies new signals for β-amyloid precursor protein endocytosis, turnover, and the generation of secreted fragments, including Aβ42.  J Biol Chem. 1999;27418851- 18856Google ScholarCrossref
65.
Ulery  PGBeers  JMikhailenko  I  et al.  Modulation of β-amyloid precursor protein processing by the low density lipoprotein receptor-related protein (LRP): evidence that LRP contributes to the pathogenesis of Alzheimer's disease.  J Biol Chem. 2000;2757410- 7415Google ScholarCrossref
66.
Trommsdorff  MBorg  JPMargolis  BHerz  J Interaction of cytosolic adaptor proteins with neuronal apolipoprotein E receptors and the amyloid precursor protein.  J Biol Chem. 1998;27333556- 33560Google ScholarCrossref
67.
Fiore  FZambrano  NMinopoli  GDonini  VDuilio  ARusso  T The regions of the Fe65 protein homologous to the phosphotyrosine interaction/phosphotyrosine binding domain of Shc bind the intracellular domain of the Alzheimer's amyloid precursor protein.  J Biol Chem. 1995;27030853- 30856Google ScholarCrossref
68.
Guenette  SYChen  JJondro  PDTanzi  RE Association of a novel human FE65-like protein with the cytoplasmic domain of the beta-amyloid precursor protein.  Proc Natl Acad Sci U S A. 1996;9310832- 10837Google ScholarCrossref
69.
Bressler  SLGray  MDSopher  BL  et al.  cDNA cloning and chromosome mapping of the human Fe65 gene: interaction of the conserved cytoplasmic domains of the human beta-amyloid precursor protein and its homologues with the mouse Fe65 protein.  Hum Mol Genet. 1996;51589- 1598Google ScholarCrossref
70.
Borg  JPOoi  JLevy  EMargolis  B The phosphotyrosine interaction domains of X11 and FE65 bind to distinct sites on the YENPTY motif of amyloid precursor protein.  Mol Cell Biol. 1996;166229- 6241Google Scholar
71.
McLoughlin  DMMiller  CC The intracellular cytoplasmic domain of the Alzheimer's disease amyloid precursor protein interacts with phosphotyrosine-binding domain proteins in the yeast two-hybrid system.  FEBS Lett. 1996;397197- 200Google ScholarCrossref
72.
Howell  BWLanier  LMFrank  RGertler  FBCooper  JA The disabled 1 phosphotyrosine-binding domain binds to the internalization signals of transmembrane glycoproteins and to phospholipids.  Mol Cell Biol. 1999;195179- 5188Google Scholar
73.
Wavrant-DeVrieze  FPerez-Tur  JLambert  JC  et al.  Association between the low density lipoprotein receptor-related protein (LRP) and Alzheimer's disease.  Neurosci Lett. 1997;22768- 70Google ScholarCrossref
74.
Clatworthy  AEGomez-Isla  TRebeck  GWWallace  RBHyman  BT Lack of association of a polymorphism in the low-density lipoprotein receptor–related protein gene with Alzheimer disease.  Arch Neurol. 1997;541289- 1292Google ScholarCrossref
75.
Fallin  DKundtz  ATown  T  et al.  No association between the low density lipoprotein receptor-related protein (LRP) gene and late-onset Alzheimer's disease in a community-based sample.  Neurosci Lett. 1997;233145- 147Google ScholarCrossref
76.
Lendon  CLTalbot  CJCraddock  NJ  et al.  Genetic association studies between dementia of the Alzheimer's type and three receptors for apolipoprotein E in a Caucasian population.  Neurosci Lett. 1997;222187- 190Google ScholarCrossref
77.
Kang  DESaitoh  TChen  X  et al.  Genetic association of the low-density lipoprotein receptor-related protein gene (LRP), an apolipoprotein E receptor, with late-onset Alzheimer's disease.  Neurology. 1997;4956- 61Google ScholarCrossref
78.
Hollenbach  EAckermann  SHyman  BTRebeck  GW Confirmation of an association between a polymorphism in exon 3 of the low-density lipoprotein receptor-related protein gene and Alzheimer's disease.  Neurology. 1998;501905- 1907Google ScholarCrossref
79.
Baum  LChen  LNg  HK  et al.  Low density lipoprotein receptor related protein gene exon 3 polymorphism association with Alzheimer's disease in Chinese.  Neurosci Lett. 1998;24733- 36Google ScholarCrossref
80.
Tooyama  IKawamata  TAkiyama  HMoestrup  SKGliemann  JMcGeer  PL Immunohistochemical study of alpha 2 macroglobulin receptor in Alzheimer and control postmortem human brain.  Mol Chem Neuropathol. 1993;18153- 160Google ScholarCrossref
81.
Thal  DRSchober  RBirkenmeier  G The subunits of alpha2-macroglobulin receptor/low density lipoprotein receptor-related protein, native and transformed alpha2-macroglobulin and interleukin 6 in Alzheimer's disease.  Brain Res. 1997;777223- 227Google ScholarCrossref
82.
Rebeck  GWHarr  SDStrickland  DKHyman  BT Multiple, diverse senile plaque-associated proteins are ligands of an apolipoprotein E receptor, the alpha 2-macroglobulin receptor/low-density-lipoprotein receptor-related protein.  Ann Neurol. 1995;37211- 217Google ScholarCrossref
83.
Hollister  RDKisiel  WHyman  BT Immunohistochemical localization of tissue factor pathway inhibitor-1 (TFPI-1), a Kunitz proteinase inhibitor, in Alzheimer's disease.  Brain Res. 1996;72813- 19Google ScholarCrossref
84.
Postuma  RBMartins  RNCappai  R  et al.  Effects of the amyloid protein precursor of Alzheimer's disease and other ligands of the LDL receptor-related protein on neurite outgrowth from sympathetic neurons in culture.  FEBS Lett. 1998;42813- 16Google ScholarCrossref
Neurological Review
May 2000

Role of the Low-density Lipoprotein Receptor–Related Protein in β-Amyloid Metabolism and Alzheimer Disease

Author Affiliations

From the Alzheimer Disease Research Laboratory, Massachusetts General Hospital, Boston (Drs Hyman and Rebeck), and The Holland Laboratory, American Red Cross, Rockville, Md (Dr Strickland).

 

E. PLEASUREDAVIDMD

Arch Neurol. 2000;57(5):646-650. doi:10.1001/archneur.57.5.646
Abstract

Deposition of β-amyloid (Aβ), a metabolite of approximately 4 kd of the amyloid precursor protein, is a critical pathological feature in Alzheimer disease. We postulate that deposition reflects an imbalance of Aβ synthesis and clearance. Several pathways that impact Aβ converge on a single receptor molecule, the low-density lipoprotein receptor–related protein (LRP). This multifunctional receptor is the major neuronal receptor both for apolipoprotein E (apoE, protein; APOE, gene) and for α2-macroglobulin (α2M, protein; A2M, gene), and it mediates clearance of apoE/Aβ and α2M/Aβ complexes. The LRP also interacts with the amyloid precursor protein itself. In this review, we highlight data that support a role for LRP in Aβ metabolism and hypothesize that LRP therefore plays a critical role in Alzheimer disease.

The neuropathological characteristics of Alzheimer disease (AD) include the development of neurofibrillary tangles and senile plaques throughout cortical and limbic brain regions, ultimately leading to marked neuronal and synaptic loss and cortical atrophy.1,2 Senile plaques consist of β-amyloid (Aβ), a peptide made up of 40 or 42 amino acids derived from the amyloid precursor protein (APP).3 Early-onset autosomal dominant AD is caused by mutations in APP, presenilin 1, or presenilin 2,4-6 all of which modify Aβ synthesis,3,7,8 suggesting a central role for Aβ in causing AD.

The early-onset autosomal dominant forms of the disease, in which the key metabolic error is a presumed alteration in Aβ synthesis, are quite rare. We hypothesize that late-onset AD, which accounts for the vast majority of all AD (and indeed of all dementia), may be caused by alterations in Aβ clearance mechanisms. The idea that Aβ clearance occurs at all is based, in part, on the observation that the total amount of Aβ (called the Aβ burden) in AD brains remains fairly constant from early in the disease until the end stage, suggesting a steady state of Aβ deposition and clearance.9 Detailed examination of the geometry of Aβ deposits and computer modeling of aggregation and disaggregation models support this idea.10,11 Moreover, in vitro, several molecular mechanisms for clearance of Aβ or small Aβ aggregates have been demonstrated, including microglial clearance12 via the macrophage scavenger receptor13 or the receptor for advanced glycation end products.14

Herein, we postulate that a major clearance route for Aβ is by forming complexes with 2 proteins known to bind and clear a variety of molecules: apolipoprotein E (apoE) and α2-macroglobulin (α2M). Both of these molecules are internalized by a common receptor, the low-density lipoprotein receptor–related protein (LRP). Several lines of evidence suggest that LRP plays a prominent role in putative Aβ clearance pathways and support the hypothesis that LRP occupies a critical position in the complex metabolic cascades that influence the balance of Aβ clearance and synthesis. We first review the LRP structure and known functions and then examine in more detail the evidence implicating 3 different LRP ligands (apoE, α2M, and APP itself) in the disease process.

STRUCTURE AND FUNCTION OF LRPs

The LRP is a multifunctional receptor greater than 600 kd (4454 amino acids in length) with a single transmembrane-spanning domain expressed on the cell surface (Figure 1). It is cleaved by furin in the trans-Golgi network to form a heterodimer.15 The extracellular domain (approximately 515 kd) contains multiple epidermal growth factor and growth factor repeats and 4 distinct ligand binding sites. An 85-kd carboxy terminal domain contains 2 intracellular NPXY sites that direct endocytosis of the receptor.16,17 In the central nervous system, the LRP is strongly expressed on neurons and is also upregulated on activated astrocytes and microglia, placing it in an ideal location to clear a variety of bioactive substances. The LRP is also found on senile plaques18(Figure 2).

The LRP has more than 20 identified ligands, many of them of import in the central nervous system. The ligands fall into several broad categories: apoE and lipid-related ligands; proteinase and proteinase inhibitor complexes (including APP containing Kunitz proteinase inhibitor, α2M, and tissue plasminogen activator and plasminogen activator inhibitor 1 complexes); and others (eg, lactoferrin). The binding of ligands to LRP leads to endocytosis and degradation, which can be blocked by the receptor-associated protein. The receptor-associated protein is a 39-kd protein that was initially isolated with LRP and has a very high affinity for LRP.17 Used pharmacologically, the receptor-associated protein blocks binding of all known LRP ligands.19-21

apoE AND AD

Apolipoprotein E is a small protein that contains 2 major domains: an amphipathic helical domain that binds to hydrophobic substances, and a receptor binding domain that binds members of the low-density lipoprotein receptor family,22 including LRP.23 Immunohistochemical results showed that antibodies to apoE stained senile plaques24,25 when data from genetic studies implicated it in the pathogenesis of AD. The APOE gene is inherited in 3 common alleles (ϵ 2, ϵ3, and ϵ4). Inheritance of the APOE4 allele is a genetic risk factor for late-onset AD (age 60 years or older) both in individuals with a family history of AD26 and in the general population.18,27-29 Heterozygosity for APOE4 increases the risk for AD compared with the common APOEϵ3/ϵ3 genotype by approximately 3-fold; APOE2 decreases the risk for AD by about half, and homozygosity changes the odds ratios to an even greater extent (see Hyman30 for review).

Several hypotheses have been proposed for the role of apoE in AD. It has been implicated in clearance of debris after neuronal injury.22,31 There are isoform-specific effects on neurite outgrowth, mediated through LRP,32,33 and on in vitro apoE-τ complex formation.34 Apolipoprotein E also can modulate Aβ fibrillogenesis, although under different conditions apoE4 produces either a promoting or inhibiting effect.35-38 We postulated that apoE may be involved in an Aβ clearance mechanism.18 Consistent with this idea, there is a clear effect of the APOE genotype on Aβ deposition. Inheritance of APOE4 is associated with increased deposition of Aβ in plaques18,39-41 and in congophilic amyloid angiopathy.42 The apoE forms a complex with Aβ both in vitro and in vivo,26,43-45 and both apoE and LRP are associated with Aβ deposits in the AD brain (Figure 2). Importantly, cellular uptake of Aβ/apoE complexes has been demonstrated to occur through LRP in several systems.46,47

α2M AND AD

α2-Macroglobulin is a tetrameric complex that acts as a pan-protease inhibitor through a unique trapping mechanism. When a protease cleaves one of several amino acids in a bait region, a marked conformational alteration occurs that sterically traps the protease and makes α2M a ligand (referred to as α2M*) for LRP endocytosis and clearance. It has been demonstrated that α2M* binds Aβ48 and alters the likelihood of Aβ to cause fibrillogenesis or to display in vitro toxic effects.49,50 It also has been shown that Aβ/α2M* complexes can be metabolized51 or cleared via an LRP-mediated process.52,53 One other aspect of α2M/LRP function warrants mention. There is evidence54 that LRP can act to enhance antigen presentation by monocytes after α2M complexes are internalized by LRP. It is possible that LRP plays a role in presenting α2M/Aβ complexes to the immune system. Recent data55 suggesting that immune responses to Aβ can modulate Aβ deposition in transgenic models make this an intriguing speculation.

Recently, 2 different polymorphisms in the A2M gene have been genetically linked to increased risk for AD.56,57 The first polymorphism is a pentanucleotide deletion near an intronic splice site postulated to alter splicing near the critical bait region. The deletion was found to be a risk factor in an analysis of a large number of sibships and small families selected for late-onset AD.56 The second polymorphism, an Ile-Val interchange at position 1000, is near the active site. Homozygosity for the rare Val allele was associated with a modestly increased risk for AD in a large case-control study57 using a hypothesis forming–hypothesis testing study design with 2 separate populations. The polymorphisms are not in linkage disequilibrium with one another. Other studies58-61 have provided conflicting results, and, unlike APOE, neither polymorphism appears to be a strong risk factor for AD in the general population. We believe that the importance of these genetic associations is to reinforce the potential role of α2M in AD pathobiology.

Lrp interacts with app

Recent data suggest that, in addition to the relationship between LRP and putative Aβ clearance mechanisms, there may be direct interactions between LRP and APP itself. Isoforms of APP containing Kunitz protease inhibitor (APP751 and APP770) are ligands for LRP, and APP is bound and internalized by LRP.62,63 Whether or not this directly impacts Aβ production is not yet clear, but since recent data64 suggest that endocytosis of APP is an important step in Aβ synthesis in some systems, it is plausible that LRP-APP interactions could affect Aβ generation. Indeed, prolonged treatment of cells with receptor-associated protein, which blocks LRP, dramatically reduces Aβ production in culture, while increasing LRP increases Aβ production.65 Additional data implicate an indirect interaction between LRP and APP via intracellular adapter proteins. The carboxy terminal of LRP interacts with an adaptor protein, Fe65, in isolated protein coprecipitation experiments66; Fe65 contains 2 distinct protein interaction domains; one interacts with LRP and the other is known to interact with APP.67-71 An analogous situation has been suggested for another adapter protein called disabled.66,72 These observations raise the possibility that LRP can modulate the intracellular trafficking of APP.

Lrp polymorphisms: implicated as genetic risk factors for ad

Because of the multiple relationships between LRP and AD pathobiological findings, the LRP gene has been tested as a "candidate gene" in late-onset AD. Two common polymorphisms in the LRP gene have been studied, neither of which alters the coding region of the protein: a tetranucleotide repeat in the 5′ region and a silent polymorphism in exon 3. Although data on the tetranucleotide repeat in the 5′ region of LRP are not consistent among studies,73-76 Kang and colleagues77 found an association between a risk for AD and a silent polymorphism in exon 3 of LRP that has been confirmed by our studies78 and others.79

In summary, our overarching hypothesis is that LRP plays an important role in determining the balance between Aβ synthesis and clearance mechanisms (Figure 3). A remarkable convergence of data relating AD pathophysiology and LRP supports this hypothesis: (1) LRP18,80,81 and multiple LRP ligands are associated with senile plaques24,81-83; (2) LRP is the primary apoE receptor in neurons, APOE is a genetic risk factor for AD, and apoE is present on senile plaques18,25; (3) LRP can bind and clear apoE/Aβ complexes46,47; (4) LRP is the major α2M receptor in the brain, and A2M may be a genetic risk factor for AD56,57; (5) LRP can bind and clear α2M/Aβ complexes48,49,52,53; (6) LRP interacts with isoforms of APP that contain the Kunitz protease inhibitor domain,62,63 and blocking LRP in vitro decreases Aβ production65; (7) the C-terminus of LRP interacts with intracellular adaptor proteins that also bind the C-terminus of APP66,72; (8) LRP mediates the neurite outgrowth response of neurons to apoE32,33 and α2M83; and (9) the LRP gene on chromosome 12 has been suggested as a genetic risk factor for AD.77,78 We suggest that strategies aimed at manipulating LRP activity in the central nervous system may prove beneficial in enhancing Aβ clearance and hence altering the imbalance of Aβ synthesis and clearance that leads to Aβ deposition in late-onset AD.

Accepted for publication October 6, 1999.

Supported by grant AG12406 from the National Institutes of Health, Bethesda, Md, and a grant from the American Health Assistance Foundation, Rockville, Md.

Corresponding author: Bradley T. Hyman MD, PhD, Alzheimer Disease Research Laboratory, Massachusetts General Hospital, 149 13th St, Room 6405, Charlestown, MA 02129 (e-mail: B_Hyman@helix.mgh.harvard.edu).

References
1.
Terry  RDMasliah  ESalmon  DP Physical basis of cognitive alterations in Alzheimer's disease: synapse loss is the major correlate of cognitive impairment.  Ann Neurol. 1991;41572- 580Google ScholarCrossref
2.
Gomez-Isla  THollister  RWest  H  et al.  Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer's disease.  Ann Neurol. 1997;4117- 24Google ScholarCrossref
3.
Selkoe  DJ The cell biology of beta-amyloid precursor protein and presenilin in Alzheimer's disease.  Trends Cell Biol. 1998;8447- 453Google ScholarCrossref
4.
Sherrington  RRogaev  EILiang  Y  et al.  Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease.  Nature. 1995;375754- 760Google ScholarCrossref
5.
Levy-Lahad  EWasco  WPoorkaj  P  et al.  Candidate gene for the chromosome 1 familial Alzheimer's disease locus.  Science. 1995;269973- 977Google ScholarCrossref
6.
Rogaev  EISherrington  RRogaeva  EA  et al.  Familial Alzheimer's disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer's disease type 3 gene.  Nature. 1995;376775- 778Google ScholarCrossref
7.
Scheuner  DEckman  CJensen  M  et al.  Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer's disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer's disease.  Nat Med. 1996;2864- 870Google ScholarCrossref
8.
Hardy  J The Alzheimer family of diseases: many etiologies, one pathogenesis?  Proc Natl Acad Sci U S A. 1997;942095- 2097Google ScholarCrossref
9.
Hyman  BTMarzloff  KArriagada  PV The lack of accumulation of senile plaques or amyloid burden in Alzheimer's disease suggests a dynamic balance between amyloid deposition and resolution.  J Neuropathol Exp Neurol. 1993;52594- 600Google ScholarCrossref
10.
Jarrett  JTLansbury  PT  Jr Seeding "one-dimensional crystallization" of amyloid: a pathogenic mechanism in Alzheimer's disease and scrapie?  Cell. 1993;731055- 1058Google ScholarCrossref
11.
Cruz  LUrbanc  BBuldyrev  SV  et al.  Aggregation and disaggregation of senile plaques in Alzheimer disease.  Proc Natl Acad Sci U S A. 1997;947612- 7616Google ScholarCrossref
12.
Frautschy  SACole  GMBaird  A Phagocytosis and deposition of vascular beta-amyloid in rat brains injected with Alzheimer beta-amyloid.  Am J Pathol. 1992;1401389- 1399Google Scholar
13.
Paresce  DMGhosh  RNMaxfield  FR Microglial cells internalize aggregates of the Alzheimer's disease amyloid beta-protein via a scavenger receptor.  Neuron. 1996;17553- 565Google ScholarCrossref
14.
Du Yan  SZhu  HFu  J  et al.  Amyloid-beta peptide-receptor for advanced glycation endproduct interaction elicits neuronal expression of macrophage-colony stimulating factor: a proinflammatory pathway in Alzheimer disease.  Proc Natl Acad Sci U S A. 1997;945296- 5301Google ScholarCrossref
15.
Willnow  TEMoehring  JMInocencio  NMMoehring  TJHerz  J The low-density-lipoprotein receptor-related protein (LRP) is processed by furin in vivo and in vitro.  Biochem J. 1996;31371- 76Google Scholar
16.
Herz  JHamann  URogne  SMyklebost  OGausepohl  HStanley  KK Surface location and high affinity for calcium of a 500-kd liver membrane protein closely related to the LDL-receptor suggest a physiological role as lipoprotein receptor.  EMBO J. 1988;74119- 4127Google Scholar
17.
Strickland  DKAshcom  JDWilliams  SBurgess  WHMigliorini  MArgraves  WS Sequence identity between the alpha 2-macroglobulin receptor and low density lipoprotein receptor-related protein suggests that this molecule is a multifunctional receptor.  J Biol Chem. 1990;26517401- 17404Google Scholar
18.
Rebeck  GWReiter  JSStrickland  DKHyman  BT Apolipoprotein E in sporadic Alzheimer's disease: allelic variation and receptor interactions.  Neuron. 1993;11575- 580Google ScholarCrossref
19.
Herz  JGoldstein  JLStrickland  DKHo  YKBrown  MS 39-kDa Protein modulates binding of ligands to low density lipoprotein receptor-related protein/alpha 2-macroglobulin receptor.  J Biol Chem. 1991;26621232- 21238Google Scholar
20.
Williams  SEAshcom  JDArgraves  WSStrickland  DK A novel mechanism for controlling the activity of alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein: multiple regulatory sites for 39-kDa receptor-associated protein.  J Biol Chem. 1992;2679035- 9040Google Scholar
21.
Medved  LVMigliorini  MMikhailenko  IBarrientos  LGLlinas  MStrickland  DK Domain organization of the 39-kDa receptor-associated protein.  J Biol Chem. 1999;274717- 727Google ScholarCrossref
22.
Mahley  RWNathan  BPPitas  RE Apolipoprotein E: structure, function, and possible roles in Alzheimer's disease.  Ann N Y Acad Sci. 1996;777139- 145Google ScholarCrossref
23.
Beisiegel  UWeber  WIhrke  GHerz  JStanley  KK The LDL-receptor-related protein, LRP, is an apolipoprotein E-binding protein.  Nature. 1989;341162- 164Google ScholarCrossref
24.
Namba  YTomonaga  MKawasaki  HOtomo  EIkeda  K Apolipoprotein E immunoreactivity in cerebral amyloid deposits and neurofibrillary tangles in Alzheimer's disease and kuru plaque amyloid in Creutzfeldt-Jakob disease.  Brain Res. 1991;541163- 166Google ScholarCrossref
25.
Wisniewski  TFrangione  B Apolipoprotein E: a pathological chaperone protein in patients with cerebral and systemic amyloid.  Neurosci Lett. 1992;135235- 238Google ScholarCrossref
26.
Strittmatter  WJSaunders  AMSchmechel  D  et al.  Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease.  Proc Natl Acad Sci U S A. 1993;901977- 1981Google ScholarCrossref
27.
Saunders  AMStrittmatter  WJSchmechel  D  et al.  Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer's disease.  Neurology. 1993;431467- 1472Google ScholarCrossref
28.
Poirier  JDavignon  JBouthillier  DKogan  SBertrand  PGauthier  S Apolipoprotein E polymorphism and Alzheimer's disease.  Lancet. 1993;342697- 699Google ScholarCrossref
29.
Mayeux  RStern  YOttman  R  et al.  The apolipoprotein epsilon 4 allele in patients with Alzheimer's disease.  Ann Neurol. 1993;34752- 754Google ScholarCrossref
30.
Hyman  BT Apolipoprotein E genotype: utility in clinical practice in Alzheimer's disease.  J Am Geriatr Soc. 1996;441469- 471Google Scholar
31.
Poirier  J Apolipoprotein E in animal models of CNS injury and in Alzheimer's disease.  Trends Neurosci. 1994;17525- 530Google ScholarCrossref
32.
Nathan  BPBellosta  SSanan  DAWeisgraber  KHMahley  RWPitas  RE Differential effects of apolipoproteins E3 and E4 on neuronal growth in vitro.  Science. 1994;264850- 852Google ScholarCrossref
33.
Holtzman  DMPitas  REKilbridge  J  et al.  Low density lipoprotein receptor–related protein mediates apolipoprotein E-dependent neurite outgrowth in a central nervous system-derived neuronal cell line.  Proc Natl Acad Sci U S A. 1995;929480- 9484Google ScholarCrossref
34.
Strittmatter  WJSaunders  AMGoedert  M  et al.  Isoform-specific interactions of apolipoprotein E with microtubule-associated protein tau: implications for Alzheimer disease.  Proc Natl Acad Sci U S A. 1994;9111183- 11186Google ScholarCrossref
35.
Ma  JYee  ABrewer  HB  JrDas  SPotter  H Amyloid-associated proteins alpha 1-antichymotrypsin and apolipoprotein E promote assembly of Alzheimer beta-protein into filaments.  Nature. 1994;37292- 94Google ScholarCrossref
36.
Sanan  DAWeisgraber  KHRussell  SJ  et al.  Apolipoprotein E associates with beta amyloid peptide of Alzheimer's disease to form novel monofibrils: isoform apoE4 associates more efficiently than apoE3.  J Clin Invest. 1994;94860- 869Google ScholarCrossref
37.
Wisniewski  TCastano  EMGolabek  AVogel  TFrangione  B Acceleration of Alzheimer's fibril formation by apolipoprotein E in vitro.  Am J Pathol. 1994;1451030- 1035Google Scholar
38.
Castano  EMPrelli  FWisniewski  T  et al.  Fibrillogenesis in Alzheimer's disease of amyloid beta peptides and apolipoprotein E.  Biochem J. 1995;306599- 604Google Scholar
39.
Schmechel  DESaunders  AMStrittmatter  WJ  et al.  Increased amyloid beta-peptide deposition in cerebral cortex as a consequence of apolipoprotein E genotype in late-onset Alzheimer disease.  Proc Natl Acad Sci U S A. 1993;909649- 9653Google ScholarCrossref
40.
Polvikoski  TSulkava  RHaltia  M  et al.  Apolipoprotein E, dementia, and cortical deposition of beta-amyloid protein.  N Engl J Med. 1995;3331242- 1247Google ScholarCrossref
41.
Gomez-Isla  TWest  HLRebeck  GW  et al.  Clinical and pathological correlates of apolipoprotein E epsilon 4 in Alzheimer's disease.  Ann Neurol. 1996;3962- 70Google ScholarCrossref
42.
Greenberg  SMRebeck  GWVonsattel  JPGomez-Isla  THyman  BT Apolipoprotein E epsilon 4 and cerebral hemorrhage associated with amyloid angiopathy.  Ann Neurol. 1995;38254- 259Google ScholarCrossref
43.
Wisniewski  TGolabek  AMatsubara  EGhiso  JFrangione  B Apolipoprotein E: binding to soluble Alzheimer's beta-amyloid.  Biochem Biophys Res Commun. 1993;192359- 365Google ScholarCrossref
44.
Naslund  JThyberg  JTjernberg  LO  et al.  Characterization of stable complexes involving apolipoprotein E and the amyloid beta peptide in Alzheimer's disease brain.  Neuron. 1995;15219- 228Google ScholarCrossref
45.
LaDu  MJLukens  JRReardon  CAGetz  GS Association of human, rat, and rabbit apolipoprotein E with beta-amyloid.  J Neurosci Res. 1997;499- 18Google ScholarCrossref
46.
Jordan  JGalindo  MFMiller  RJReardon  CAGetz  GSLaDu  MJ Isoform-specific effect of apolipoprotein E on cell survival and beta-amyloid-induced toxicity in rat hippocampal pyramidal neuronal cultures.  J Neurosci. 1998;18195- 204Google Scholar
47.
Urmoneit  BPrikulis  IWihl  G  et al.  Cerebrovascular smooth muscle cells internalize Alzheimer amyloid beta protein via a lipoprotein pathway: implications for cerebral amyloid angiopathy.  Lab Invest. 1997;77157- 166Google Scholar
48.
Du  YNi  BGlinn  M  et al.  Alpha2-macroglobulin as a beta-amyloid peptide-binding plasma protein.  J Neurochem. 1997;69299- 305Google ScholarCrossref
49.
Du  YBales  KRDodel  RC  et al.  Alpha2-macroglobulin attenuates beta-amyloid peptide 1-40 fibril formation and associated neurotoxicity of cultured fetal rat cortical neurons.  J Neurochem. 1998;701182- 1188Google ScholarCrossref
50.
Hughes  SRKhorkova  OGoyal  S  et al.  Alpha2-macroglobulin associates with beta-amyloid peptide and prevents fibril formation.  Proc Natl Acad Sci U S A. 1998;953275- 3280Google ScholarCrossref
51.
Qiu  WQBorth  WYe  ZHaass  CTeplow  DBSelkoe  DJ Degradation of amyloid beta-protein by a serine protease-alpha2-macroglobulin complex.  J Biol Chem. 1996;2718443- 8451Google ScholarCrossref
52.
Narita  MHoltzman  DMSchwartz  ALBu  G Alpha2-macroglobulin complexes with and mediates the endocytosis of beta-amyloid peptide via cell surface low-density lipoprotein receptor-related protein.  J Neurochem. 1997;691904- 1911Google ScholarCrossref
53.
Qiu  ZStrickland  DHyman  BRebeck  G Alpha2-macroglobulin enhances the clearance of endogenous soluble beta amyloid peptide via the low-density lipoprotein receptor-related protein in cortical neurons.  J Neurochem. 1999;731393- 1398Google ScholarCrossref
54.
Morrot  AStrickland  DKHiguchi  MdLReis  MPedrosa  RScharfstein  J Human T cell responses against the major cysteine proteinase (cruzipain) of Trypanosoma cruzi: role of the multifunctional alpha 2-macroglobulin receptor in antigen presentation by monocytes.  Int Immunol. 1997;9825- 834Google ScholarCrossref
55.
Schenk  DBarbour  RDunn  W  et al.  Immunization with amyloid-beta attenuates Alzheimer disease-like pathology in the PDAPP mouse.  Nature. 1999;400173- 177Google ScholarCrossref
56.
Blacker  DWilcox  MALaird  NM  et al.  Alpha-2 macroglobulin is genetically associated with Alzheimer disease.  Nat Genet. 1998;19357- 360Google ScholarCrossref
57.
Liao  ANitsch  RMGreenberg  SM  et al.  Genetic association of an alpha2-macroglobulin (Val1000Ile) polymorphism and Alzheimer's disease.  Hum Mol Genet. 1998;71953- 1956Google ScholarCrossref
58.
Wavrant-DeVrieze  FRudrasingham  VLambert  JC  et al.  No association between the alpha-2 macroglobulin I1000V polymorphism and Alzheimer's disease.  Neurosci Lett. 1999;262137- 139Google ScholarCrossref
59.
Rudrasingham  VWavrant-De Vrieze  FLambert  JC  et al.  Alpha-2 macroglobulin gene and Alzheimer disease [letter].  Nat Genet. 1999;2217- 19Google ScholarCrossref
60.
Rogaeva  EAPremkumar  SGrubber  J  et al.  An alpha-2-macroglobulin insertion-deletion polymorphism in Alzheimer disease [letter].  Nat Genet. 1999;2219- 20Google ScholarCrossref
61.
Dow  DJLindsey  NCairns  NJ  et al.  Alpha-2 macroglobulin polymorphism and Alzheimer disease risk in the UK [letter].  Nat Genet. 1999;2216- 17Google ScholarCrossref
62.
Kounnas  MZMoir  RDRebeck  GW  et al.  LDL receptor-related protein, a multifunctional ApoE receptor, binds secreted beta-amyloid precursor protein and mediates its degradation.  Cell. 1995;82331- 340Google ScholarCrossref
63.
Knauer  MFOrlando  RAGlabe  CG Cell surface APP751 forms complexes with protease nexin 2 ligands and is internalized via the low density lipoprotein receptor-related protein (LRP).  Brain Res. 1996;7406- 14Google ScholarCrossref
64.
Perez  RSoriano  SHayes  J  et al.  Mutagenesis identifies new signals for β-amyloid precursor protein endocytosis, turnover, and the generation of secreted fragments, including Aβ42.  J Biol Chem. 1999;27418851- 18856Google ScholarCrossref
65.
Ulery  PGBeers  JMikhailenko  I  et al.  Modulation of β-amyloid precursor protein processing by the low density lipoprotein receptor-related protein (LRP): evidence that LRP contributes to the pathogenesis of Alzheimer's disease.  J Biol Chem. 2000;2757410- 7415Google ScholarCrossref
66.
Trommsdorff  MBorg  JPMargolis  BHerz  J Interaction of cytosolic adaptor proteins with neuronal apolipoprotein E receptors and the amyloid precursor protein.  J Biol Chem. 1998;27333556- 33560Google ScholarCrossref
67.
Fiore  FZambrano  NMinopoli  GDonini  VDuilio  ARusso  T The regions of the Fe65 protein homologous to the phosphotyrosine interaction/phosphotyrosine binding domain of Shc bind the intracellular domain of the Alzheimer's amyloid precursor protein.  J Biol Chem. 1995;27030853- 30856Google ScholarCrossref
68.
Guenette  SYChen  JJondro  PDTanzi  RE Association of a novel human FE65-like protein with the cytoplasmic domain of the beta-amyloid precursor protein.  Proc Natl Acad Sci U S A. 1996;9310832- 10837Google ScholarCrossref
69.
Bressler  SLGray  MDSopher  BL  et al.  cDNA cloning and chromosome mapping of the human Fe65 gene: interaction of the conserved cytoplasmic domains of the human beta-amyloid precursor protein and its homologues with the mouse Fe65 protein.  Hum Mol Genet. 1996;51589- 1598Google ScholarCrossref
70.
Borg  JPOoi  JLevy  EMargolis  B The phosphotyrosine interaction domains of X11 and FE65 bind to distinct sites on the YENPTY motif of amyloid precursor protein.  Mol Cell Biol. 1996;166229- 6241Google Scholar
71.
McLoughlin  DMMiller  CC The intracellular cytoplasmic domain of the Alzheimer's disease amyloid precursor protein interacts with phosphotyrosine-binding domain proteins in the yeast two-hybrid system.  FEBS Lett. 1996;397197- 200Google ScholarCrossref
72.
Howell  BWLanier  LMFrank  RGertler  FBCooper  JA The disabled 1 phosphotyrosine-binding domain binds to the internalization signals of transmembrane glycoproteins and to phospholipids.  Mol Cell Biol. 1999;195179- 5188Google Scholar
73.
Wavrant-DeVrieze  FPerez-Tur  JLambert  JC  et al.  Association between the low density lipoprotein receptor-related protein (LRP) and Alzheimer's disease.  Neurosci Lett. 1997;22768- 70Google ScholarCrossref
74.
Clatworthy  AEGomez-Isla  TRebeck  GWWallace  RBHyman  BT Lack of association of a polymorphism in the low-density lipoprotein receptor–related protein gene with Alzheimer disease.  Arch Neurol. 1997;541289- 1292Google ScholarCrossref
75.
Fallin  DKundtz  ATown  T  et al.  No association between the low density lipoprotein receptor-related protein (LRP) gene and late-onset Alzheimer's disease in a community-based sample.  Neurosci Lett. 1997;233145- 147Google ScholarCrossref
76.
Lendon  CLTalbot  CJCraddock  NJ  et al.  Genetic association studies between dementia of the Alzheimer's type and three receptors for apolipoprotein E in a Caucasian population.  Neurosci Lett. 1997;222187- 190Google ScholarCrossref
77.
Kang  DESaitoh  TChen  X  et al.  Genetic association of the low-density lipoprotein receptor-related protein gene (LRP), an apolipoprotein E receptor, with late-onset Alzheimer's disease.  Neurology. 1997;4956- 61Google ScholarCrossref
78.
Hollenbach  EAckermann  SHyman  BTRebeck  GW Confirmation of an association between a polymorphism in exon 3 of the low-density lipoprotein receptor-related protein gene and Alzheimer's disease.  Neurology. 1998;501905- 1907Google ScholarCrossref
79.
Baum  LChen  LNg  HK  et al.  Low density lipoprotein receptor related protein gene exon 3 polymorphism association with Alzheimer's disease in Chinese.  Neurosci Lett. 1998;24733- 36Google ScholarCrossref
80.
Tooyama  IKawamata  TAkiyama  HMoestrup  SKGliemann  JMcGeer  PL Immunohistochemical study of alpha 2 macroglobulin receptor in Alzheimer and control postmortem human brain.  Mol Chem Neuropathol. 1993;18153- 160Google ScholarCrossref
81.
Thal  DRSchober  RBirkenmeier  G The subunits of alpha2-macroglobulin receptor/low density lipoprotein receptor-related protein, native and transformed alpha2-macroglobulin and interleukin 6 in Alzheimer's disease.  Brain Res. 1997;777223- 227Google ScholarCrossref
82.
Rebeck  GWHarr  SDStrickland  DKHyman  BT Multiple, diverse senile plaque-associated proteins are ligands of an apolipoprotein E receptor, the alpha 2-macroglobulin receptor/low-density-lipoprotein receptor-related protein.  Ann Neurol. 1995;37211- 217Google ScholarCrossref
83.
Hollister  RDKisiel  WHyman  BT Immunohistochemical localization of tissue factor pathway inhibitor-1 (TFPI-1), a Kunitz proteinase inhibitor, in Alzheimer's disease.  Brain Res. 1996;72813- 19Google ScholarCrossref
84.
Postuma  RBMartins  RNCappai  R  et al.  Effects of the amyloid protein precursor of Alzheimer's disease and other ligands of the LDL receptor-related protein on neurite outgrowth from sympathetic neurons in culture.  FEBS Lett. 1998;42813- 16Google ScholarCrossref
×