Analysis of Cerebral Shape in Williams Syndrome | Congenital Defects | JAMA Neurology | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 35.175.212.130. Please contact the publisher to request reinstatement.
1.
Ewart  AKMorris  CAAtkinson  D  et al Hemizygosity at the elastin locus in a developmental disorder, Williams syndrome.  Nat Genet.1993;5:11-16.Google Scholar
2.
Brondum-Nielsen  KBeck  BGyftodimou  J  et al Investigation of deletions at 7q11.23 in 44 patients referred for Williams-Beuren syndrome, using FISH and four DNA polymorphisms.  Hum Genet.1997;99:56-61.Google Scholar
3.
Korenberg  JChen  X-NHirota  H  et al Genome structure and cognitive map of Williams Syndrome.  J Cogn Neurosci.2000;12:89-107.Google Scholar
4.
Korenberg  JChen  X-NLai  ZYimlamia  DBisighini  RBellugi  U Williams syndrome: the search for the genetic origins of cognition [abstract].  Hum Genet.1997;61:A103. Google Scholar
5.
Korenberg  JChen  X-NMitchell  S  et al The genomic organization of Williams syndrome [abstract].  Hum Genet.1996;59(suppl):A386. Google Scholar
6.
Williams  JCPBarrat-Boyes  BGLowe  JB Supravalvular aortic stenosis.  Circulation.1961;24:1311-1318.Google Scholar
7.
Nicholson  WRHockey  KA Williams syndrome: a clinical study of children and adults.  J Paediatr Child Health.1993;29:468-472.Google Scholar
8.
Morris  CADemsey  SALeonard  CODilts  CBlackburn  BL Natural history of Williams syndrome: physical characteristics.  J Pediatr.1988;113:318-326.Google Scholar
9.
Wang  PPBellugi  U Evidence from two genetic syndromes for a dissociation between verbal and visual-spatial short-term memory.  J Clin Exp Neuropsychol.1994;16:317-322.Google Scholar
10.
Wang  PPDoherty  SRourke  SBBellugi  U Unique profile of visuo-perceptual skills in a genetic syndrome.  Brain Cogn.1995;29:54-65.Google Scholar
11.
Bellugi  UBihrle  AJernigan  TTrauner  DDoherty  S Neuropsychological, neurological, and neuroanatomical profile of Williams syndrome.  Am J Med Genet Suppl.1990;6(suppl):115-125.Google Scholar
12.
Bellugi  ULichtenberger  LMills  DGalaburda  AKorenberg  JR Bridging cognition, the brain and molecular genetics: evidence from Williams syndrome.  Trends Neurosci.1999;22:197-207.Google Scholar
13.
Bellugi  UKlima  EWang  P Cognitive and neural development: clues from genetically based syndromes.  In: Magnussen  D, ed.  The Life-Span Development of Individuals: Behavioral, Neurobiological, and Psychosocial Perspectives: The Nobel Symposium. New York, NY: Cambridge University Press; 1996. Google Scholar
14.
Bellugi  ULichtenberger  LJones  WLai  ZSt George  MI The neurocognitive profile of Williams syndrome: a complex pattern of strengths and weaknesses.  J Cogn Neurosci.2000;12:7-29.Google Scholar
15.
Jernigan  TLBellugi  USowell  EDoherty  SHesselink  JR Cerebral morphologic distinctions between Williams and Down syndromes.  Arch Neurol.1993;50:186-191.Google Scholar
16.
Wang  PPHesselink  JRJernigan  TLDoherty  SBellugi  U Specific neurobehavioral profile of Williams' syndrome is associated with neocerebellar hemispheric preservation.  Neurology.1992;42:1999-2002.Google Scholar
17.
Reiss  ALEliez  SSchmitt  JE  et al Neuroanatomy of Williams syndrome: a high-resolution MRI study.  J Cogn Neurosci.2000;12:65-73.Google Scholar
18.
Talairach  JTournoux  PMusolino  AMissir  O Stereotaxic exploration in frontal epilepsy.  Adv Neurol.1992;57:651-688.Google Scholar
19.
Kates  WRWarsofsky  ISPatwardhan  A  et al Automated Talairach-based parcellation and measurement of cerebral lobes in children.  Psychiatry Res.1999;91:11-30.Google Scholar
20.
Reiss  AL Brainimage.  Stanford, Calif: Stanford University; 1999.
21.
Peterson  BSLeckman  JFDuncan  JS  et al Corpus callosum morphology from magnetic resonance images in Tourette's syndrome.  Psychiatry Res.1994;55:85-99.Google Scholar
22.
Allen  LSRichey  MFChai  YMGorski  RA Sex differences in the corpus callosum of the living human being.  J Neurosci.1991;11:933-942.Google Scholar
23.
Baumgardner  TLSinger  HSDenckla  MB  et al Corpus callosum morphology in children with Tourette syndrome and attention deficit hyperactivity disorder.  Neurology.1996;47:477-482.Google Scholar
24.
Andreasen  NCRajarethinam  RCizadlo  T  et al Automatic atlas-based volume estimation of human brain regions from MR images.  J Comput Assist Tomogr.1996;20:98-106.Google Scholar
25.
Talairach  JTournoux  P Co-Planar Stereotaxic Atlas of the Human Brain.  New York, NY: Thieme Medical Publishers Inc; 1988:122.
26.
Aylward  EHReiss  A Area and volume measurement of posterior fossa structures in MRI.  J Psychiatr Res.1991;25:159-168.Google Scholar
27.
Wang  PPDoherty  SHesselink  JRBellugi  U Callosal morphology concurs with neurobehavioral and neuropathological findings in two neurodevelopmental disorders.  Arch Neurol.1992;49:407-411.Google Scholar
28.
Schimitt  JEEliez  SWarsofsky  ISBellugi  UReiss  AL Corpus callosum morphology in Williams syndrome: relationship to genetics and behavior.  Dev Med Child Nero.2001. In press. Google Scholar
29.
de Lacoste  MCKirkpatrick  JBRoss  ED Topography of the human corpus callosum.  J Neuropathol Exp Neurol.1985;44:578-591.Google Scholar
30.
Barkovich  AJNorman  D Anomalies of the corpus callosum: correlation with further anomalies of the brain.  AJR Am J Roentgenol.1988;151:171-179.Google Scholar
31.
Huttenlocher  PR Morphometric study of human cerebral cortex development.  Neuropsychologia.1990;28:517-527.Google Scholar
32.
Nakayama  TMatsuoka  RKimura  M  et al Hemizygous deletion of the HPC-1/syntaxin 1A gene (STX1A) in patients with Williams syndrome.  Cytogenet Cell Genet.1998;82:49-51.Google Scholar
33.
Osborne  LRCampbell  TDaradich  AScherer  SWTsui  LC Identification of a putative transcription factor gene (WBSCR11) that is commonly deleted in Williams-Beuren syndrome.  Genomics.1999;57:279-284.Google Scholar
34.
Wang  JYFrenzel  KEWen  DFalls  DL Transmembrane neuregulins interact with LIM kinase 1, a cytoplasmic protein kinase implicated in development of visuospatial cognition.  J Biol Chem.1998;273:20525-20534.Google Scholar
35.
Hoogenraad  CCEussen  BHLangeveld  A  et al The murine CYLN2 gene: genomic organization, chromosome localization, and comparison to the human gene that is located within the 7q11.23 Williams syndrome critical region.  Genomics.1998;53:348-358.Google Scholar
36.
Frangiskakis  JMEwart  AKMorris  CA  et al LIM-kinase1 hemizygosity implicated in impaired visuospatial constructive cognition.  Cell.1996;86:59-69.Google Scholar
37.
Schmeichel  KLBeckerle  MC The LIM domain is a modular protein-binding interface.  Cell.1994;79:211-219.Google Scholar
38.
Wang  YKSamos  CHPeoples  RPerez-Jurado  LANusse  RFrancke  U A novel human homologue of the Drosophila frizzled wnt receptor gene binds wingless protein and is in the Williams syndrome deletion at 7q11.23.  Hum Mol Genet.1997;6:465-472.Google Scholar
39.
Cadigan  KMNusse  R Wnt signaling: a common theme in animal development.  Genes Dev.1997;11:3286-3305.Google Scholar
40.
Wang  YKSporle  RPaperna  TSchughart  KFrancke  U Characterization and expression pattern of the frizzled gene Fzd9, the mouse homolog of FZD9 which is deleted in Williams-Beuren syndrome.  Genomics.1999;57:235-248.Google Scholar
Original Contribution
February 2001

Analysis of Cerebral Shape in Williams Syndrome

Author Affiliations

From the Stanford Psychiatry Neuroimaging Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, Calif (Mr Schmitt and Drs Eliez and Reiss); and the Laboratory for Cognitive Neuroscience, the Salk Institute for Biological Studies, La Jolla, Calif (Dr Bellugi).

Arch Neurol. 2001;58(2):283-287. doi:10.1001/archneur.58.2.283
Abstract

Background  As a neurobehavioral disorder with a specific neurocognitive profile and a well-defined genetic etiology, Williams syndrome (WMS) provides an exceptional opportunity to examine associations among measures of behavior, neuroanatomy, and genetics. This study was designed to determine how cerebral shape differs between the brains of subjects with WMS and those of normal controls.

Subjects  Twenty adults with clinically and genetically diagnosed WMS (mean ± SD age, 28.5 ± 8.3 years) and 20 healthy, age- and sex-matched controls (mean ± SD age, 28.5 ± 8.2 years).

Design  High-resolution structural magnetic resonance imaging data were used for shape-based morphological analysis of the right and left cerebral hemispheres and the corpus callosum. Statistical analyses were performed to examine group differences.

Results  Both right and left cerebral hemispheres of subjects with WMS bend to a lesser degree in the sagittal plane than normal controls (P<.001). The corpus callosum also bends less in subjects with WMS (P = .05). In addition, subjects with WMS have decreased cerebral (P<.001) and corpus callosum (P<.001) midline lengths.

Conclusions  Subjects with WMS have significantly different cerebral shape from normal controls, perhaps due to decreased parieto-occipital lobe volumes relative to frontal regions. The similar observation in the corpus callosum may be associated with a decreased size of the splenium in WMS. These findings may provide important clues to the effect of genes in the WMS-deleted region on brain development.

×