Targeting Neurotherapeutic Agents Through the Blood-Brain Barrier | Clinical Pharmacy and Pharmacology | JAMA Neurology | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 18.206.177.17. Please contact the publisher to request reinstatement.
1.
Stiles  CD Cancer of the central nervous system.  Biochim Biophys Acta.1998;1377:R1-R10.Google Scholar
2.
Pardridge  WM Brain Drug Targeting: The Future of Brain Drug Development.  Cambridge, England: Cambridge University Press; 2001:1-353.
3.
Pardridge  WM BBB-genomics: creating new openings for brain-drug targeting.  Drug Discov Today.2001;6:381-383.Google Scholar
4.
Oldendorf  WH Brain uptake of radiolabeled amino acids, amines, and hexoses after arterial injection.  Am J Physiol.1971;221:1629-1639.Google Scholar
5.
Boado  RJLi  JYNagaya  MZhang  CPardridge  WM Selective expression of the large neutral amino acid transporter (LAT) at the blood-brain barrier.  Proc Natl Acad Sci U S A.1999;96:12079-12084.Google Scholar
6.
Lee  CGGottesman  MMCardarelli  CO  et al HIV-1 protease inhibitors are substrates for the MDR1 multidrug transporter.  Biochemistry.1998;37:3594-3601.Google Scholar
7.
Takasawa  KTerasaki  TSuzuki  HSugiyama  Y In vivo evidence for carrier-mediated efflux transport of 3′-azido-3′-deoxythymidine and 2′,3′-dideoxyinosine across the blood-brain barrier via a probenecid-sensitive transport system.  J Pharmacol Exp Ther.1997;281:369-375.Google Scholar
8.
Wu  DClement  JGPardridge  WM Low blood-brain barrier permeability to azidothymidine (AZT), 3TC, and thymidine in the rat.  Brain Res.1998;791:313-316.Google Scholar
9.
Clark  WG Blood-brain barrier to carbidopa (MK-486) and Ro 4-4602, peripheral dopa decarboxylase inhibitors.  J Pharm Pharmacol.1973;25:416-418.Google Scholar
10.
Green  NM Avidin.  Adv Protein Chem.1975;29:85-133.Google Scholar
11.
Li  JYSugimura  KBoado  RJ  et al Genetically engineered brain drug delivery vectors: cloning, expression, and in vivo application of an anti-transferrin receptor single chain antibody–streptavidin fusion gene and protein.  Protein Eng.1999;12:787-796.Google Scholar
12.
Penichet  MLKang  Y-SPardridge  WMMorrison  SLShin  S-U An anti-transferrin receptor antibody-avidin fusion protein serves as a delivery vehicle for effective brain targeting in an animal model: initial applications in antisense drug delivery to the brain.  J Immunol.1999;163:4421-4426.Google Scholar
13.
Pardridge  WMBuciak  JLFriden  PM Selective transport of anti-transferrin receptor antibody through the blood-brain barrier in vivo.  J Pharmacol Exp Ther.1991;259:66-70.Google Scholar
14.
Lee  HJEngelhardt  BLesley  LBickel  UPardridge  WM Targeting rat anti-mouse transferrin receptor monoclonal antibodies through the blood-brain barrier in the mouse.  J Pharmacol Exp Ther.2000;292:1048-1052.Google Scholar
15.
Pardridge  WMKang  Y-SBuciak  JLYang  J Human insulin receptor monoclonal antibody undergoes high affinity binding to human brain capillaries in vitro and rapid transcytosis through the blood-brain barrier in vivo in the primate.  Pharm Res.1995;12:807-816.Google Scholar
16.
Coloma  MJLee  HJKurihara  A  et al Transport across the primate blood-brain barrier of a genetically engineered chimeric monoclonal antibody to the human insulin receptor.  Pharm Res.2000;17:266-274.Google Scholar
17.
Kurihara  APardridge  WM Imaging brain tumors by targeting peptide radiopharmaceuticals through the blood-brain barrier.  Cancer Res.1999;59:6159-6163.Google Scholar
18.
Zhang  YPardridge  WM Conjugation of brain-derived neurotrophic factor to a blood-brain barrier drug targeting system enables neuroprotection in regional brain ischemia following intravenous injection of the neurotrophin.  Brain Res.2001;889:49-56.Google Scholar
19.
Wu  DPardridge  WM Neuroprotection with non-invasive neurotrophin delivery to brain.  Proc Natl Acad Sci U S A.1999;96:254-259.Google Scholar
20.
Kurihara  APardridge  WM Aβ1-40 peptide radiopharmaceuticals for brain amyloid imaging: 111In chelation, conjugation to polyethyleneglycol-biotin linkers, and autoradiography with Alzheimer's disease brain sections.  Bioconjug Chem.2000;11:380-386.Google Scholar
21.
Wong  AJBigner  SHBigner  DDKinzler  KWHamilton  SRVogelstein  B Increased expression of the epidermal growth factor receptor gene in malignant gliomas is invariably associated with gene amplification.  Proc Natl Acad Sci USA.1987;84:6899-6903.Google Scholar
22.
Nishikawa  RJi  XDHarmon  RC  et al A mutant epidermal growth factor receptor common in human glioma confers enhanced tumorigenicity.  Proc Natl Acad Sci U S A.1994;91:7727-7731.Google Scholar
23.
Kurihara  ADeguchi  YPardridge  WM Epidermal growth factor radiopharmaceuticals: 111In chelation, conjugation to a blood-brain barrier delivery vector via a biotin-polyethylene linker, pharmacokinetics, and in vivo imaging of experimental brain tumors.  Bioconjug Chem.1999;10:502-511.Google Scholar
24.
Pardridge  WM Neuroprotection in stroke: is it time to consider large-molecule drugs?  Drug Discov Today.2001;6:751-753.Google Scholar
25.
Kaplan  BBrint  STanabe  JJacewicz  MWang  X-JPulsinelli  W Temporal thresholds for neocortical infarction in rats subjected to reversible focal cerebral ischemia.  Stroke.1991;22:1032-1039.Google Scholar
26.
Belayev  LBusto  RZhao  WGinsberg  MD Quantitative evaluation of blood-brain barrier permeability following middle cerebral artery occlusion in rats.  Brain Res.1996;739:88-96.Google Scholar
27.
Albayrak  SZhao  QSiesjo  BKSmith  ML Effect of transient focal ischemia on blood-brain barrier permeability in the rat: correlation to cell injury.  Acta Neuropathol (Berl).1997;94:158-163.Google Scholar
28.
Hefti  F Pharmacology of neurotrophic factors.  Annu Rev Pharmacol Toxicol.1997;37:239-267.Google Scholar
29.
Sakane  TPardridge  WM Carboxyl-directed pegylation of brain-derived neurotrophic factor markedly reduces systemic clearance with minimal loss of biologic activity.  Pharm Res.1997;14:1085-1091.Google Scholar
30.
Pardridge  WMWu  DSakane  T Combined use of carboxyl-directed protein pegylation and vector-mediated blood-brain barrier drug delivery system optimizes brain uptake of brain-derived neurotrophic factor following intravenous administration.  Pharm Res.1998;15:576-582.Google Scholar
31.
Zhang  YPardridge  WM Neuroprotection in transient focal brain ischemia following delayed, intravenous administration of BDNF conjugated to a blood-brain barrier drug targeting system.  Stroke.2001;32:1378-1384.Google Scholar
32.
Longa  EZWeinstein  PRCarlson  SCummins  R Reversible middle cerebral artery occlusion without craniectomy in rats.  Stroke.1989;20:84-91.Google Scholar
33.
Smith  MLBendek  GDahlgren  NRosen  IWieloch  TSiesjo  BK Models for studying long-term recovery following forebrain ischemia in the rat: a 2-vessel occlusion model.  Acta Neurol Scand.1984;69:385-401.Google Scholar
34.
Li  JYBoado  RJPardridge  WM Blood-brain barrier genomics.  J Cereb Blood Flow Metab.2001;21:61-68.Google Scholar
Neurotherapeutics
January 2002

Targeting Neurotherapeutic Agents Through the Blood-Brain Barrier

Author Affiliations

From the Department of Medicine, University of California, Los Angeles, UCLA School of Medicine.

 

IRASHOULSONMD

Arch Neurol. 2002;59(1):35-40. doi:10.1001/archneur.59.1.35
Abstract

The blood-brain barrier (BBB) is maintained by the endothelial tight junctions within the brain microvasculature. Most small-molecule neuropharmaceutical agents and virtually all large-molecule drugs do not cross the BBB. The BBB problem is the rate-limiting factor preventing the transfer of progress in the molecular neurosciences to the development of clinically effective neurotherapeutic agents. The future development of neurotherapeutic agents will be accelerated by the development of BBB drug-targeting technology.

×