A Functional Magnetic Resonance Imaging Study of Left Hemisphere Language Dominance in Children | Pediatrics | JAMA Neurology | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 18.206.177.17. Please contact the publisher to request reinstatement.
1.
Damasio  AR Aphasia.  N Engl J Med.1992;326:531-539. Google Scholar
2.
Rasmussen  TMilner  B The role of early left-brain injury in determining lateralization of cerebral speech functions.  Ann N Y Acad Sci.1977;299:355-369. Google Scholar
3.
Ojemann  GA Surgical therapy for medically intractable epilepsy.  J Neurosurg.1987;66:489-499. Google Scholar
4.
Pujol  JDeus  JLosilla  JMCapdevila  A Cerebral lateralization of language in normal left-handed people studied by functional MRI.  Neurology.1999;52:1038-1043. Google Scholar
5.
Springer  JABinder  JRHammeke  TA  et al Language dominance in neurologically normal and epilepsy subjects: a functional MRI study.  Brain.1999;122:2033-2046. Google Scholar
6.
Preis  SJancke  LSchmitz-Hillebrecht  JSteinmetz  H Child age and planum temporale asymmetry.  Brain Cogn.1999;40:441-452. Google Scholar
7.
Wada  JAClarke  RHamm  A Cerebral hemispheric asymmetry in humans: cortical speech zones in 100 adults and 100 infant brains.  Arch Neurol.1975;32:239-246. Google Scholar
8.
Dehaene-Lambertz  G Cerebral specialization for speech and non-speech stimuli in infants.  J Cogn Neurosci.2000;12:449-460. Google Scholar
9.
Molfese  DLMolfese  VJ Cortical responses of preterm infants to phonetic and nonphonetic speech stimuli.  Dev Psychol.1980;16:574-581. Google Scholar
10.
Witelson  SFPallie  W Left hemisphere specialization for language in the newborn: neuroanatomical evidence of asymmetry.  Brain.1973;96:641-646. Google Scholar
11.
Muter  VTaylor  SVargha-Khadem  F A longitudinal study of early intellectual development in hemiplegic children.  Neuropsychologia.1997;35:289-298. Google Scholar
12.
Aram  DM Language sequelae of unilateral brain lesions in children.  In: Plum  F, ed.  Language, Communication and the Brain. New York, NY: Raven Press; 1998. Google Scholar
13.
Hecaen  H Acquired aphasia in children: revisited.  Neuropsychologia.1983;21:581-587. Google Scholar
14.
Woods  BTCarey  S Language deficits after apparent clinical recovery from childhood aphasia.  Ann Neurol.1979;6:405-409. Google Scholar
15.
Lenneberg  EH Biological Foundations of Language.  New York, NY: Wiley; 1967.
16.
Vargha-Khadem  FCarr  LJIsaacs  EBrett  EAdams  CMishkin  M Onset of speech after left hemispherectomy in a nine-year-old boy.  Brain.1997;120:159-182. Google Scholar
17.
Krashen  SD Lateralization, language learning, and the critical period: some new evidence.  Language Learning.1973;23:63-74. Google Scholar
18.
Benson  RRFitzGerald  DBLeSueur  LL  et al Language dominance determined by whole brain functional MRI in patients with brain lesions.  Neurology.1999;52:798-809. Google Scholar
19.
Binder  JRSwanson  SJHammeke  TA  et al Determination of language dominance using functional MRI: a comparison with the Wada test.  Neurology.1996;46:978-984. Google Scholar
20.
Hertz-Pannier  LGaillard  WDMott  SH  et al Noninvasive assessment of language dominance in children and adolescents with functional MRI: a preliminary study.  Neurology.1997;48:1003-1012. Google Scholar
21.
Lehéricy  SCohen  LBazin  B  et al Functional MR evaluation of temporal and frontal language dominance compared with the Wada test.  Neurology.2000;54:1625-1633. Google Scholar
22.
Chee  MWLO'Craven  KMBergida  RRosen  BRSavoy  RL Auditory and visual word processing studies with fMRI.  Hum Brain Mapp.1999;7:15-28. Google Scholar
23.
Demonet  JFChollet  FRamsay  S  et al The anatomy of phonological and semantic processing in normal subjects.  Brain.1992;115:1753-1768. Google Scholar
24.
Mazoyer  BMTzourio  NFrak  V  et al The cortical representation of speech.  J Cogn Neurosci.1993;5:467-479. Google Scholar
25.
Wise  RChollet  FHadar  UFriston  KHoffner  EFrackowiak  R Distribution of cortical neural networks involved in word comprehension and word retrieval.  Brain.1991;114:1803-1817. Google Scholar
26.
Binder  JRRao  SMHammeke  A  et al Lateralized human brain language systems demonstrated by task subtraction functional magnetic resonance imaging.  Arch Neurol.1995;52:593-601. Google Scholar
27.
Bookheimer  SYZeffiro  TABlaxton  TAGaillard  WDMalow  BTheodore  WH Regional cerebral blood flow during auditory responsive naming: evidence for cross-modality neural activation.  Neuroreport.1998;9:2409-2413. Google Scholar
28.
Zatorre  RJEvans  ACMeyer  EGjedde  A Lateralization of phonetic and pitch discrimination in speech processing.  Science.1992;256:846-884. Google Scholar
29.
Poldrack  RAWagner  ADPrull  MWDesmond  JEGlover  GHGabrieli  JDE Functional specialization for semantic and phonological processing in the left inferior prefrontal cortex.  Neuroimage.1999;10:15-35. Google Scholar
30.
Schlosser  MJAoyagi  NFulbright  RKGore  JCMcCarthy  G Functional MRI studies of auditory comprehension.  Hum Brain Mapp.1998;6:1-13. Google Scholar
31.
Warburton  EWise  RJSPrice  CJ  et al Noun and verb retrieval by normal subjects: studies with PET.  Brain.1996;119:159-179. Google Scholar
32.
Gaillard  WDGrandin  CBXu  B Developmental aspects of pediatric fMRI: considerations for image acquisition, analysis, and interpretation.  Neuroimage.2001;13:239-249. Google Scholar
33.
Ulualp  SOBiswal  BBYetkin  ZKidder  TM Functional magnetic resonance imaging of auditory cortex in children.  Laryngoscope.1998;108:1782-1786. Google Scholar
34.
Booth  JRMacWhinney  BThulborn  KRSacco  KVoyvodic  JFeldman  HM Functional organization of activation patterns in children: whole brain fMRI imaging during three different cognitive tasks.  Prog Neuropsychopharmacol Biol Psychiatr.1999;23:669-682. Google Scholar
35.
Booth  JRMacWhinney  BThulborn  KRSacco  KVoyvodic  JTFeldman  HM Developmental and lesion effects in brain activation during sentence comprehension and mental rotation.  Dev Neuropsychol.2000;18:139-169. Google Scholar
36.
Just  MACarpenter  PAKeller  TAEddy  WFThulborn  KR Brain activation modulated by sentence comprehension.  Science.1996;274:114-116. Google Scholar
37.
Oldfield  RC The assessment and analysis of handedness: the Edinburgh inventory.  Neuropsychologia.1971;9:97-113. Google Scholar
38.
Dunn  LMDunn  LM Peabody Picture Vocabulary Test-Revised.  Circle Pines, Minn: American Guidance Center; 1981.
39.
Gardner  MF Expressive One-Word Picture Vocabulary Test-Revised.  Novato, Calif: Academic Therapy Publications; 1990.
40.
Kaplan  EFGoodglass  HWeintraub  S The Boston Naming Test. 2nd ed. Philadelphia, Pa: Lea & Febiger; 1983.
41.
Friston  KJFrith  CDLiddle  PFFrakowiak  RS Comparing functional (PET) images: the assessment of clinical change.  J Cereb Blood Flow Metab.1991;11:690-699. Google Scholar
42.
Talairach  JTournoux  P Co-Planar Sterotaxic Atlas of the Human Brain.  New York, NY: Thieme Medical; 1988.
43.
Friston  KJHolmes  APPrice  CJBüchel  CWorsley  KJ Multisubject fMRI studies and conjunction analyses.  Neuroimage.1999;10:385-396. Google Scholar
44.
Gaillard  WDPugliese  MGrandin,  CB  et al Cortical localization of reading in normal children: an fMRI language study.  Neurology.2001;57:47-54. Google Scholar
45.
Springer  JABinder  JRHammeke  TA  et al Language dominance in neurologically normal and epilepsy subjects: a functional MRI study.  Brain.1999;122:2033-2046. Google Scholar
46.
Muller  R-ARothermel  RDBehen  MEMuzik  OMangner  TJChugani  HT Receptive and expressive language activations for sentences: a PET study.  Neuroreport.1997;8:3767-3770. Google Scholar
47.
Howard  DPatterson  KWise  R  et al The cortical localization of the lexicons.  Brain.1992;115:1769-1782. Google Scholar
48.
Malow  BABlaxton  TASato  S  et al Cortical stimulation elicits regional distinctions in auditory and visual naming.  Epilepsia.1996;37:245-252. Google Scholar
49.
Pugh  KRShaywitz  BAShaywitz  SE  et al Cerebral organization of component processes in reading.  Brain.1996;119:1221-1238. Google Scholar
50.
Shaywitz  BAPugh  KRConstable  T  et al Localization of semantic processing using functional magnetic resonance imaging.  Hum Brain Mapp.1998;2:149-158. Google Scholar
51.
Kosslyn  SMThompson  WLKim  IJAlpert  NM Topographcial representations of mental images in primary visual cortex.  Nature.1995;378:496-498. Google Scholar
52.
Pugliese  MGaillard  WDBasso  G  et al Functional brain mapping of visual mental imagery in children.  Neuroimage.1999;9(suppl):S352. Google Scholar
53.
Braver  TSCohen  JSNystrom  LEJonides  JSmith  EENoll  DC A parametric study of prefrontal cortex involvement in human working memory.  Neuroimage.1997;5:49-62. Google Scholar
54.
Underleider  LGHaxby  JV ‘What' and ‘where' in the human brain.  Curr Opini Neurobiol.1994;4:157-165. Google Scholar
55.
Steinmetz  H Seitz RJ Functional anatomy of language processing: neuroimaging and the problem of individual variability.  Neuropsychologia.1991;29:1149-1161. Google Scholar
56.
Filipek  PARichelme  CKennedy  DNCaviness  VS The young adult human brain: an MRI-based morphometric analysis.  Cereb Cortex.1994;4:344-360. Google Scholar
57.
Giedd  JNBlumenthal  JJeffries  NO  et al Brain development during childhood and adolescence: a longitudinal MRI study.  Nat Neurosci.1999;2:861-863. Google Scholar
58.
Yakovlev  PILecours  AR The myelogenetic cycles of regional maturation of the brain.  In: Minkowski  A, ed.  Regional Development of the Brain in Early Life. Oxford, England: Blackwell; 1967:3-70. Google Scholar
59.
Ojemann  GAOjemann  JLettich  EBerger  M Cortical language localization in left, dominant hemisphere: an electrical stimulation mapping investigation in 117 patients.  J Neurosurg.1989;71:316-326. Google Scholar
60.
Grandin  CBGaillard  WDWhitnah  JR  et al Gender related differences in activated brain areas for language processing: an fMRI study.  Neuroimage.1998;7(suppl):S159. Google Scholar
Original Contribution
July 2002

A Functional Magnetic Resonance Imaging Study of Left Hemisphere Language Dominance in Children

Author Affiliations

From the Department of Neurology, Children's National Medical Center, George Washington School of Medicine, Washington, DC (Mss Balsamo and Braniecki and Dr Gaillard); Epilepsy Research Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Md (Mss Balsamo and Braniecki and Drs Xu, Grandin, Petrella, and Gaillard); and American University, Washington, DC (Ms Balsamo and Dr Elliott).

Arch Neurol. 2002;59(7):1168-1174. doi:10.1001/archneur.59.7.1168
Abstract

Background  Functional magnetic resonance imaging is a noninvasive method of assessing language dominance in a pediatric population.

Objective  To determine the pattern of receptive language lateralization in healthy children.

Design  We used functional magnetic resonance imaging to assess an auditory language task in 11 children (7 girls, 4 boys; mean age, 8.5 years). Participants alternately rested and listened to descriptors of nouns presented auditorily, naming the object described silently. Asymmetry indices ([(left − right)/(left + right)]) were calculated for a priori–determined regions of interest.

Results  The results showed strong activation bilaterally, with greater activation on the left in the superior and middle temporal gyri. Other areas of activation included the cuneus, the left inferior temporal gyrus, the prefrontal area, and the left fusiform and lingual gyri. Regions of interest analysis of individual scans showed additional activation in the left frontal lobe. Asymmetry indices showed strong left lateralization of the inferior frontal gyrus, middle frontal gyrus, and the Wernicke region.

Conclusions  Hemispheric lateralization was clearly demonstrated in 8 children. As in adults, left hemisphere lateralization of receptive language is present at age 8 years.

×