Elevated Plasma Homocysteine Levels in Patients Treated With Levodopa: Association With Vascular Disease | Acute Coronary Syndromes | JAMA Neurology | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 18.205.38.159. Please contact the publisher to request reinstatement.
1.
Selhub  JJacques  PFWilson  PWFRush  DRosenberg  IH Vitamin status and intake as primary determinants of homocysteinemia in an elderly population.  JAMA.1993;270:2693-2698.Google Scholar
2.
Robinson  KMayer  ELMiller  DP  et al Hyperhomocysteinemia and low pyridoxal phosphate: common and independent reversible risk factors for coronary artery disease.  Circulation.1995;92:2825-2830.Google Scholar
3.
Dalery  KLussier-Cacan  SSelhub  JDavignon  JLatour  YGenest  J Homocysteine and coronary artery disease in French Canadian subjects: relation with vitamins B12, B6, pyridoxal phosphate, and folate.  Am J Cardiol.1995;75:1107-1111.Google Scholar
4.
Boushey  CJBeresford  SAOmenn  GSMotulsky  AG A quantitative assessment of plasma homocysteine as a risk factor for vascular disease.  JAMA.1995;274:1049-1057.Google Scholar
5.
Eikelboom  JWLonn  EGenest  JHankey  GJYusuf  S Homocyst(e)ine and cardiovascular disease: a critical review of the epidemiologic evidence.  Ann Intern Med.1999;131:363-375.Google Scholar
6.
Bostom  AGRosenber  IHSilbershatz  H  et al Nonfasting plasma total homocysteine levels and stroke incidence in elderly persons: the Framingham Study.  Ann Intern Med.1999;131:352-355.Google Scholar
7.
Bell  IREdman  JSSelhub  J  et al Plasma homocysteine in vascular disease and in nonvascular dementia of depressed elderly people.  Acta Psychiatr Scand.1992;86:386-390.Google Scholar
8.
Clarke  RSmith  ADJobst  KARefsum  HSutton  LUeland  PM Folate, vitamin B12, and serum total homocysteine levels in confirmed Alzheimer's disease.  Arch Neurol.1998;55:1449-1455.Google Scholar
9.
McCaddon  ADavies  GHudson  PTandy  SCattell  H Total serum homocysteine in senile dementia of Alzheimer type.  Int J Geriat Psychiatry.1998;13:235-239.Google Scholar
10.
Lehmann  MGottfries  CGRegland  B Identification of cognitive impairment in the elderly: homocysteine is an early marker.  Dement Geriatr Cogn Disord.1999;10:12-20.Google Scholar
11.
Seshadri  SBeiser  ASelhub  J  et al Plasma homocysteine as a risk factor for dementia and Alzheimer's disease.  N Engl J Med.2002;346:476-483.Google Scholar
12.
Goodwin  JSGoodwin  JMGarry  PJ Association between nutritional status and cognitive functioning in a healthy elderly population.  JAMA.1983;249:2917-2921.Google Scholar
13.
Riggs  KMSpiro  ATucker  KLRush  D Relations of vitamin B12, vitamin B6, folate, and homocysteine to cognitive performance in the Normartive Aging Study.  Am J Clin Nutr.1996;63:306-314.Google Scholar
14.
Bottiglieri  TGodfrey  PFlynn  TCarney  MWPToone  BKReynolds  EH Cerebrospinal fluid S-adenosylmethionine in depression and dementia: effects of treatment with parenteral and oral S-adenosylmethionine.  J Neurol Neurosurg Psychiatry.1990;53:1096-1098.Google Scholar
15.
Bottiglieri  T Folate, vitamin B12, and neuropsychiatric disorders.  Nutr Rev.1996;54:382-390.Google Scholar
16.
Allain  PLeBouil  ACoredilet  ELeQuay  LBagheri  HMontastruc  JL Sulfate and cysteine levels in the plasma of patients with Parkinson's disease.  Neurotoxicology.1995;16:527-530.Google Scholar
17.
Kuhn  WRoebroek  RBlom  H  et al Elevated plasma levels of homocysteine in Parkinson's disease.  Eur Neurol.1998;40:225-227.Google Scholar
18.
Muller  TWerne  BFowler  BKuhn  W Nigral endothelial dysfunction, homocysteine, and Parkinson's disease.  Lancet.1999;354:126-127.Google Scholar
19.
Yasui  KKowa  HNakaso  KTakeshima  TNakashima  K Plasma homocysteine and MTHFR C677T genotype in levodopa-treated patients with PD.  Neurology.2000;55:437-440.Google Scholar
20.
Jacques  PFSelhub  JBostom  AGWilson  PWFRosenberg  IH The effect of folic acid fortification on plasma folate and total homocysteine concentrations.  N Engl J Med.1999;340:1449-1454.Google Scholar
21.
Rasmussen  KMoller  J Methodologies of testing.  In: Carmel  R, Jacobsen  DW, eds.  Homocysteine in Health and Disease. New York, NY: Cambridge University Press; 2001:199-211. Google Scholar
22.
Hankey  GJEikelenboom  P Homocysteine and vascular disease.  Lancet.1999;354:407-413.Google Scholar
23.
Schnyder  GRoffi  MPin  R  et al Decreased rate of coronary restenosis after lowering of plasma homocysteine levels.  N Engl J Med.2001;345:1593-1600.Google Scholar
24.
Schnyder  GRoffi  MFlammer  YPin  RHess  OM Effect of homocysteine-lowering therapy with folic acid, vitamin B12, and vitamin B6 on clinical outcome after percutaneous coronary intervention.  JAMA.2002;288:973-979.Google Scholar
25.
Jacques  PFRosenberg  IHRogers  G  et al Serum total homocysteine concentrations in adolescent and adult Americans: results from the Third National Health and Nutrition Examination Survey.  Am J Clin Nutr.1999;69:482-489.Google Scholar
26.
Nygard  OVollset  SERefsum  H  et al Plasma homocysteine and cardiovascular risk profile: the Hordaland Homocysteine Study.  JAMA.1995;274:1526-1533.Google Scholar
27.
Stolzenberg-Solomon  RZMiller  ERMaguire  MGSelhub  JAppel  LJ Association of dietary protein intake and coffee consumption with serum homocysteine concentrations in an older population.  Am J Clin Nutr.1999;69:467-475.Google Scholar
28.
Ueland  PMRefsum  H Plasma homocysteine, a risk factor for vascular disease: plasma levels in health, disease, and drug therapy.  J Lab Clin Med.1989;114:473-501.Google Scholar
29.
Ueland  PMRefsum  HBrattstrom  L Plasma homocysteine and cardiovascular disease.  In: Francis  RB, ed.  Atherosclerotic Cardiovascular Disease, Hemostasis, and Endothelial Function. New York, NY: Marcel Dekker Inc; 1992:183-236. Google Scholar
30.
Schwaninger  MRingleb  PWinter  R  et al Elevated plasma concentrations of homocysteine in antiepileptic drug treatment.  Epilepsia.1999;40:345-350.Google Scholar
31.
Frosst  PBlom  HJMilos  R  et al A candidate genetic risk-factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase.  Nat Genet.1995;10:111-113.Google Scholar
32.
Ma  JStampfer  MJHennekens  CH  et al Methylenetetrahydrofolate reductase polymorphism, plasma folate, homocysteine, and risk of myocardial infarction in US physicians.  Circulation.1996;94:2410-2416.Google Scholar
33.
Christensen  BFrosst  PLussier-Cacan  S  et al Correlation of a common mutation in the methylenetetrahydrofolate reductase gene with plasma homocysteine in patients with premature coronary artery disease.  Arterioscler Thromb Vasc Biol.1997;17:569-573.Google Scholar
34.
Morita  HKurihara  HSugiyama  T  et al Polymorphism of the methionine synthase gene: association with homocysteine metabolism and late-onset vascular diseases in the Japanese population.  Arterioscler Thromb Vasc Biol.1999;19:298-302.Google Scholar
35.
Christensen  BArbour  LTran  P  et al Genetic polymorphisms in methylenetetrahydrofolate reductase and methionine synthase, folate levels in red blood cells, and risk of neural tube defects.  Am J Hum Genet.1999;84:151-157.Google Scholar
36.
Tsai  MYWelge  BGHanson  NQ  et al Genetic causes of mild hyperhomocysteinemia in patients with premature occlusive coronary artery disease.  Atherosclerosis.1999;143:163-170.Google Scholar
37.
Diaz-Arrastia  R Homocysteine and neurologic disease.  Arch Neurol.2000;57:1422-1428.Google Scholar
38.
Miller  JWShukitt-Hale  BVillalobos-Molina  RNadeau  MRSelhub  JJoseph  JA Effect of L-dopa and the catechol-O-methyltransferase inhibitor Ro41-0960 on sulfur amino acid metabolites in rats.  Clin Neuropharmacol.1997;20:55-66.Google Scholar
39.
D'Angelo  ASelhub  J Homocysteine and thrombotic disease.  Blood.1997;90:1-11.Google Scholar
40.
Selhub  JD'Angelo  G Hyperhomocysteinemia and thrombosis: acquired conditions.  Thromb Haemost.1997;78:527-531.Google Scholar
41.
Fabbender  KMielke  OBertsch  TNafe  BFroschen  SHennerici  M Homocysteine in cerebral macroangiography and microangiopathy.  Lancet.1999;353:1586-1587.Google Scholar
42.
Evers  SKoch  H-GGrotemeyer  K-HLange  BDeufel  TRingelstein  E-B Features, symptoms, and neurophysiological findings in stroke associated with hyperhomocysteinemia.  Arch Neurol.1997;54:1276-1282.Google Scholar
43.
Mayeux  RDenaro  JHemenegildo  N  et al A population-based investigation of Parkinson's disease with and without dementia: relationship to age and gender.  Arch Neurol.1992;49:492-497.Google Scholar
44.
Mayeux  RWilliams  JBStern  YCote  L Depression in Parkinson's disease.  Adv Neurol.1984;40:241-250.Google Scholar
Original Contribution
January 2003

Elevated Plasma Homocysteine Levels in Patients Treated With Levodopa: Association With Vascular Disease

Author Affiliations

From the Yarmen Center for Parkinson's Disease, Department of Neurology, Beth Israel Medical Center, New York, NY (Dr Rogers and Ms Sanchez-Saffon); and the Division of Neuropsychology, Departments of Psychiatry (Dr Frol) and Neurology (Dr Diaz-Arrastia), The University of Texas Southwestern Medical Center, Dallas.

Arch Neurol. 2003;60(1):59-64. doi:10.1001/archneur.60.1.59
Abstract

Background  Hyperhomocysteinemia is a risk factor for vascular disease and potentially for dementia and depression. The most common cause of elevated homocysteine levels is deficiency of folate or vitamin B12. However, patients with Parkinson disease (PD) may have elevated homocysteine levels resulting from methylation of levodopa and dopamine by catechol O-methyltransferase, an enzyme that uses S-adenosylmethionine as a methyl donor and yields S-adenosylhomocysteine. Since S-adenosylhomocysteine is rapidly converted to homocysteine, levodopa therapy may put patients at increased risk for vascular disease by raising homocysteine levels.

Objectives  To determine whether elevations in plasma homocysteine levels caused by levodopa use are associated with increased prevalence of coronary artery disease (CAD), and to determine what role folate and vitamin B12 have in levodopa-induced hyperhomocysteinemia.

Design/Methods  Subjects included 235 patients with PD followed up in a movement disorders clinic. Of these, 201 had been treated with levodopa, and 34 had not. Blood samples were collected for the measurement of homocysteine, folate, cobalamin, and methylmalonic acid levels. A history of CAD (prior myocardial infarctions, coronary artery bypass grafting, or coronary angioplasty procedures) was prospectively elicited. We analyzed parametric data by means of 1-way analysis of variance or the t test, and categorical data by means of the Fisher exact test or χ2 test.

Results  Mean ± SD plasma homocysteine levels were significantly higher in patients treated with levodopa (16.1 ± 6.2 µmol/L), compared with levodopa-naïve patients (12.2 ± 4.2 µmol/L; P<.001). We found no difference in the plasma concentration of folate, cobalamin, or methylmalonic acid between the 2 groups. Patients whose homocysteine levels were in the higher quartile (≥17.7 µmol/L) had increased prevalence of CAD (relative risk, 1.75; 95% confidence interval, 1.08-2.70;P= .04).

Conclusions  Levodopa therapy, rather than PD, is a cause of hyperhomocysteinemia in patients with PD. Deficiency of folate or vitamin B12 levels does not explain the elevated homocysteine levels in these patients. To our knowledge, this is the first report that levodopa-related hyperhomocysteinemia is associated with increased risk for CAD. These findings have implications for the treatment of PD in patients at risk for vascular disease, and potentially for those at risk for dementia and depression.

×