Putamen Hypertrophy in Nondemented Patients With Human Immunodeficiency Virus Infection and Cognitive Compromise | Allergy and Clinical Immunology | JAMA Neurology | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 18.207.129.82. Please contact the publisher to request reinstatement.
1.
Kaul  MGarden  GALipton  SA Pathways to neuronal injury and apoptosis in HIV-associated dementia.  Nature 2001;410 (6831) 988- 994PubMedGoogle ScholarCrossref
2.
Mattson  MPHaughey  NJNath  A Cell death in HIV dementia.  Cell Death Differ 2005;12(suppl 1)893- 904PubMedGoogle ScholarCrossref
3.
Navia  BACho  ESPetito  CKPrice  RW The AIDS dementia complex, II: neuropathology.  Ann Neurol 1986;19 (6) 525- 535PubMedGoogle ScholarCrossref
4.
Aylward  EHHenderer  JDMcArthur  JC  et al.  Reduced basal ganglia volume in HIV-1–associated dementia: results from quantitative neuroimaging.  Neurology 1993;43 (10) 2099- 2104PubMedGoogle ScholarCrossref
5.
Jernigan  TLArchibald  SHesselink  JR  et al. HNRC Group, Magnetic resonance imaging morphometric analysis of cerebral volume loss in human immunodeficiency virus infection.  Arch Neurol 1993;50 (3) 250- 255PubMedGoogle ScholarCrossref
6.
Stout  JCEllis  RJJernigan  TL  et al. HIV Neurobehavioral Research Center Group, Progressive cerebral volume loss in human immunodeficiency virus infection: a longitudinal volumetric magnetic resonance imaging study.  Arch Neurol 1998;55 (2) 161- 168PubMedGoogle ScholarCrossref
7.
Jernigan  TLGamst  ACArchibald  SL  et al Effects of methamphetamine dependence and HIV infection on cerebral morphology.  Am J Psychiatry2005162814611472 [published correction appears in Am J Psychiatry. 2005;162(9):1774] PubMedGoogle Scholar
8.
Arendt  GHefter  HElsing  CStrohmeyer  GFreund  HJ Motor dysfunction in HIV-infected patients without clinically detectable central-nervous deficit.  J Neurol 1990;237 (6) 362- 368PubMedGoogle ScholarCrossref
9.
Fischl  BSalat  DHBusa  E  et al.  Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain.  Neuron 2002;33 (3) 341- 355PubMedGoogle ScholarCrossref
10.
Power  CSelnes  OAGrim  JAMcArthur  JC HIV Dementia Scale: a rapid screening test.  J Acquir Immune Defic Syndr Hum Retrovirol 1995;8 (3) 273- 278PubMedGoogle ScholarCrossref
11.
 1993 Revised classification system for HIV infection and expanded surveillance case definition for AIDS among adolescents and adults.  MMWR Recomm Rep 1992;41(RR-17)1- 19PubMedGoogle Scholar
12.
Heaton  RKGrant  IButters  N  et al.  The HNRC 500: neuropsychology of HIV infection at different disease stages: HIV Neurobehavioral Research Center.  J Int Neuropsychol Soc 1995;1 (3) 231- 251PubMedGoogle ScholarCrossref
13.
Blair  JSpreen  O The New Adult Reading Test–Revised Manual.  Victoria, BC: University of Victoria; 1989
14.
Rosas  HDHevelone  NDZaleta  AKGreve  DNSalat  DHFischl  B Regional cortical thinning in preclinical Huntington disease and its relationship to cognition.  Neurology 2005;65 (5) 745- 747PubMedGoogle ScholarCrossref
15.
Hinkin  CHvan Gorp  WGMandelkern  MA  et al.  Cerebral metabolic change in patients with AIDS: report of a six-month follow-up using positron-emission tomography.  J Neuropsychiatry Clin Neurosci 1995;7 (2) 180- 187PubMedGoogle Scholar
16.
Rottenberg  DAMoeller  JRStrother  SC  et al.  The metabolic pathology of the AIDS dementia complex.  Ann Neurol 1987;22 (6) 700- 706PubMedGoogle ScholarCrossref
17.
Rottenberg  DASidtis  JJStrother  SC  et al.  Abnormal cerebral glucose metabolism in HIV-1 seropositive subjects with and without dementia.  J Nucl Med 1996;37 (7) 1133- 1141PubMedGoogle Scholar
18.
van Gorp  WGMandelkern  MAGee  M  et al.  Cerebral metabolic dysfunction in AIDS: findings in a sample with and without dementia.  J Neuropsychiatry Clin Neurosci 1992;4 (3) 280- 287PubMedGoogle Scholar
19.
von Giesen  HJAntke  CHefter  HWenserski  FSeitz  RJArendt  G Potential time course of human immunodeficiency virus type 1–associated minor motor deficits: electrophysiologic and positron emission tomography findings.  Arch Neurol 2000;57 (11) 1601- 1607PubMedGoogle ScholarCrossref
20.
Zhao  MLKim  MOMorgello  SLee  SC Expression of inducible nitric oxide synthase, interleukin-1 and caspase-1 in HIV-1 encephalitis.  J Neuroimmunol 2001;115 (1-2) 182- 191PubMedGoogle ScholarCrossref
21.
Anthony  ICRamage  SNCarnie  FWSimmonds  PBell  JE Influence of HAART on HIV-related CNS disease and neuroinflammation.  J Neuropathol Exp Neurol 2005;64 (6) 529- 536PubMedGoogle Scholar
22.
Chang  LLee  PLYiannoutsos  CT  et al. HIV MRS Consortium, A multicenter in vivo proton-MRS study of HIV-associated dementia and its relationship to age.  Neuroimage 2004;23 (4) 1336- 1347PubMedGoogle ScholarCrossref
23.
Berger  JRArendt  G HIV dementia: the role of the basal ganglia and dopaminergic systems.  J Psychopharmacol 2000;14 (3) 214- 221PubMedGoogle ScholarCrossref
24.
Dazzan  PMorgan  KDOrr  K  et al.  Different effects of typical and atypical antipsychotics on grey matter in first episode psychosis: the AESOP study.  Neuropsychopharmacology 2005;30 (4) 765- 774PubMedGoogle Scholar
25.
Jacobsen  LKGiedd  JNGottschalk  CKosten  TRKrystal  JH Quantitative morphology of the caudate and putamen in patients with cocaine dependence.  Am J Psychiatry 2001;158 (3) 486- 489PubMedGoogle ScholarCrossref
26.
Kieburtz  KKetonen  LCox  C  et al.  Cognitive performance and regional brain volume in human immunodeficiency virus type 1 infection.  Arch Neurol 1996;53 (2) 155- 158PubMedGoogle ScholarCrossref
27.
Morgello  SEstanislao  LSimpson  D  et al. for the Manhattan HIV Brain Bank, HIV-associated distal sensory polyneuropathy in the era of highly active antiretroviral therapy: the Manhattan HIV Brain Bank.  Arch Neurol 2004;61 (4) 546- 551PubMedGoogle ScholarCrossref
Original Contribution
September 2007

Putamen Hypertrophy in Nondemented Patients With Human Immunodeficiency Virus Infection and Cognitive Compromise

Author Affiliations

Author Affiliations: Cognitive Neuroimaging Laboratory, Center for Memory and Brain, Boston University, Boston, Massachusetts (Mss Castelo, Courtney, and Melrose and Dr Stern); and Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown (Dr Stern).

Arch Neurol. 2007;64(9):1275-1280. doi:10.1001/archneur.64.9.1275
Abstract

Background  Documented death and dysfunction of basal ganglia cells in patients seropositive for human immunodeficiency virus (HIV) suggest that the virus may cause structural compromise to these regions.

Objectives  To examine subcortical volumes in nondemented patients seropositive for HIV (HIV+) by means of a novel automated neuroanatomic morphometric analysis tool, and to investigate relationships among cognitive function, immune health, and subcortical volumes.

Design and Setting  Cross-sectional study of subcortical morphometry and cognitive function conducted at the Boston University Center for Memory and Brain and the Massachusetts General Hospital Athinoula A. Martinos Center for Biomedical Imaging.

Patients  Twenty-two nondemented HIV+ patients and 22 age- and education-matched healthy control participants.

Main Outcome Measures  Subcortical segmentation volumes, neuropsychological performance, and immunological variables.

Results  Nondemented HIV+ patients demonstrated relative and isolated putamen hypertrophy compared with control participants. Putamen volume enlargement in HIV+ patients was related to motor slowing and immune status, such that higher CD4 lymphocyte levels were associated with larger putamen volumes. There were no other subcortical volume differences between the groups.

Conclusions  This study suggests that basal ganglia hypertrophy accompanies HIV-related mild cognitive compromise. These findings may represent a structural imaging parallel to functional imaging studies demonstrating basal ganglia hypermetabolism in HIV+ patients with mild cognitive compromise and early HIV-associated brain disease.

×