Noninvasive Ventilation in Myasthenic Crisis | Critical Care Medicine | JAMA Neurology | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 34.204.186.91. Please contact the publisher to request reinstatement.
1.
Lacomis  D Myasthenic crisis.  Neurocrit Care 2005;3 (3) 189- 194PubMedGoogle ScholarCrossref
2.
Bedlack  RSSD On the concept of myasthenic crisis.  J Clin Neuromusc Dis 2002;4 (1) 40- 42Google ScholarCrossref
3.
Keesey  JC “Crisis” in myasthenia gravis: an historical perspective.  Muscle Nerve 2002;26 (1) 1- 3PubMedGoogle ScholarCrossref
4.
Jaretzki  A  IIIBarohn  RJErnstoff  RM  et al. Task Force of the Medical Scientific Advisory Board of the Myasthenia Gravis Foundation of America, Myasthenisia gravis: recommendations for clinical research standards.  Neurology 2000;55 (1) 16- 23PubMedGoogle ScholarCrossref
5.
Cohen  MSYounger  D Aspects of the natural history of myasthenia gravis: crisis and death.  Ann N Y Acad Sci 1981;377670- 677PubMedGoogle ScholarCrossref
6.
Qureshi  AIChoudhry  MAAkbar  MS  et al.  Plasma exchange versus intravenous immunoglobulin treatment in myasthenic crisis.  Neurology 1999;52 (3) 629- 632PubMedGoogle ScholarCrossref
7.
Stricker  RBKwiatkowska  BJHabis  JAKiprov  DD Myasthenic crisis: response to plasmapheresis following failure of intravenous gamma-globulin.  Arch Neurol 1993;50 (8) 837- 840PubMedGoogle ScholarCrossref
8.
Varelas  PNChua  HCNatterman  J  et al.  Ventilatory care in myasthenia gravis crisis: assessing the baseline adverse event rate.  Crit Care Med 2002;30 (12) 2663- 2668PubMedGoogle ScholarCrossref
9.
O’Riordan  JIMiller  DHMottershead  JPHirsch  NPHoward  RS The management and outcome of patients with myasthenia gravis treated acutely in a neurological intensive care unit.  Eur J Neurol 1998;5 (2) 137- 142PubMedGoogle ScholarCrossref
10.
Thomas  CEMayer  SAGungor  Y  et al.  Myasthenic crisis: clinical features, mortality, complications, and risk factors for prolonged intubation.  Neurology 1997;48 (5) 1253- 1260PubMedGoogle ScholarCrossref
11.
Rabinstein  AWijdicks  EF BiPAP in acute respiratory failure due to myasthenic crisis may prevent intubation.  Neurology 2002;59 (10) 1647- 1649PubMedGoogle ScholarCrossref
12.
Rabatin  JTGay  PC Noninvasive ventilation.  Mayo Clin Proc 1999;74 (8) 817- 820PubMedGoogle ScholarCrossref
13.
Keenan  SPBrake  D An evidence-based approach to noninvasive ventilation in acute respiratory failure.  Crit Care Clin 1998;14 (3) 359- 372PubMedGoogle ScholarCrossref
14.
Majid  AHill  NS Noninvasive ventilation for acute respiratory failure.  Curr Opin Crit Care 2005;11 (1) 77- 81PubMedGoogle ScholarCrossref
15.
Hess  DR Noninvasive ventilation in neuromuscular disease: equipment and application.  Respir Care 2006;51 (8) 896- 911PubMedGoogle Scholar
16.
Lo Coco  DMarchese  SPesco  MCLa Bella  VPiccoli  FLo Coco  A Noninvasive positive-pressure ventilation in ALS: predictors of tolerance and survival.  Neurology 2006;67 (5) 761- 765PubMedGoogle ScholarCrossref
17.
Simonds  AKMuntoni  FHeather  SFielding  S Impact of nasal ventilation on survival in hypercapnic Duchenne muscular dystrophy.  Thorax 1998;53 (11) 949- 952PubMedGoogle ScholarCrossref
18.
Rabinstein  AAWijdicks  EF Warning signs of imminent respiratory failure in neurological patients.  Semin Neurol 2003;23 (1) 97- 104PubMedGoogle ScholarCrossref
Original Contribution
January 2008

Noninvasive Ventilation in Myasthenic Crisis

Author Affiliations

Author Affiliations: Departments of Neurology (Drs Seneviratne, Wijdicks, and Rabinstein) and Biostatistics (Dr Mandrekar), Mayo Clinic, Rochester, Minnesota.

Arch Neurol. 2008;65(1):54-58. doi:10.1001/archneurol.2007.1
Abstract

Background  Myasthenic crisis (MC) is often associated with prolonged intubation and with respiratory complications.

Objectives  To assess predictors of ventilation duration and to compare the effectiveness of endotracheal intubation and mechanical ventilation (ET-MV) with bilevel positive airway pressure (BiPAP) noninvasive ventilation in MC.

Design  Retrospective cohort study.

Setting  Academic research.

Patients  We reviewed consecutive episodes of MC treated at the Mayo Clinic, Rochester, Minnesota.

Main Outcome Measures  Collected information included patients' demographic data, immunotherapy, medical complications, mechanical ventilation duration, and hospital lengths of stay, as well as baseline and preventilation measurements of forced vital capacity, maximal inspiratory and expiratory pressures, and arterial blood gases.

Results  We identified 60 episodes of MC in 52 patients. BiPAP was the initial method of ventilatory support in 24 episodes and ET-MV was performed in 36 episodes. There were no differences in patient demographics or in baseline respiratory variables and arterial gases between the groups of episodes initially treated using BiPAP vs ET-MV. In 14 episodes treated using BiPAP, intubation was avoided. The mean duration of BiPAP in these patients was 4.3 days. The only predictor of BiPAP failure (ie, requirement for intubation) was a PCO2 level exceeding 45 mm Hg on BiPAP initiation (P = .04). The mean ventilation duration was 10.4 days. Longer ventilation duration was associated with intubation (P = .02), atelectasis (P < .005), and lower maximal expiratory pressure on arrival (P = .02). The intensive care unit and hospital lengths of stay statistically significantly increased with ventilation duration (P < .001 for both). The only variable associated with decreased ventilation duration was initial BiPAP treatment (P < .007).

Conclusions  BiPAP is effective for the treatment of acute respiratory failure in patients with myasthenia gravis. A BiPAP trial before the development of hypercapnia can prevent intubation and prolonged ventilation, reducing pulmonary complications and lengths of intensive care unit and hospital stay.

×